研究论文

白刺不同物候期的生物量分配规律

展开
  • 1中国林业科学研究院林业研究所, 北京 100091
    2国家林业和草原局林木培育重点实验室, 北京 100091
    3中国林业科学研究院沙漠林业实验中心, 内蒙古磴口 015200

收稿日期: 2019-06-26

  录用日期: 2020-05-01

  网络出版日期: 2020-07-03

基金资助

国家自然科学基金(31470622);国家重点研发计划(31470622);中央级公益性科研院所基本科研业务费专项(31470622)

Variation in biomass allocation of Nitraria tangutorum during different phenological phases

Expand
  • 1Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
    2Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing 100091, China
    3Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Nei Mongol 015200, China

Received date: 2019-06-26

  Accepted date: 2020-05-01

  Online published: 2020-07-03

Supported by

National Natural Science Foundation of China(31470622);National Key R&D Program of China(31470622);Fundamental Research Funds for the Central Nonprofit Research Institution of Chinese Academy of Forestry(31470622)

摘要

植物生物量的分配模式是植物对环境适应的结果, 并伴随着植物生活史的每一个阶段, 与植物的生长和发育息息相关。目前关于植物生物量分配的大小依赖性已有相关报道, 但关于其对物候期的响应尚鲜有报道。该研究以乌兰布和沙漠地区白刺(Nitraria tangutorum)为研究对象, 通过对其2016与2017年连续2个生长季里盛花期、盛果期与营养生长期3个物候期的根、压条、新枝、老枝、叶、繁殖器官等部分的生物量测定, 采用标准化主轴回归方程的斜率和截距的显著性比较, 分别探讨了白刺在不同物候期的异速生长的大小依赖程度和相对生物量分配比例, 特别是地上与地下部分之间、支持与同化器官之间, 在不同物候期的生物量分配规律。结果表明: 白刺的繁殖生长对生物量分配模式造成的影响主要体现在相对生物量分配比例(36.00%)而不是个体大小的依赖性程度上(16.67%), 且对新枝的影响较大, 使其不同物候期的大小依赖性程度发生了改变, 但是变化趋势不一致, 同时繁殖生长增加对叶片的相对生物量分配比例, 减少对老枝的相对生物量分配比例, 但并没有改变他们的大小依赖性程度。白刺生长过程中的地下部分生物量分配率随个体生物量的累积均增大, 而繁殖分配会在一定程度内减弱这种速率。白刺随着个体生物量的增大其生物量向支持器官分配率也越大, 但随着生长时间推移, 更倾向于将生物量分配给同化吸收器官。

本文引用格式

邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁 . 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020 , 44(7) : 763 -771 . DOI: 10.17521/cjpe.2019.0162

Abstract

Aims The pattern of plant biomass allocation represents the plant response to the environment and is accompanied by every stage of plant life history. So it is closely related to the growth and development of plants. There have been reports on the size dependence of plant biomass allocation, but few studies have reported on its responses to different phenological phase.
Methods In this study, Nitraria tangutorum in Ulan Buh Desert was used as the research object. The biomass of different organs (root, layering, newborn stem, older stem, leaf and reproductive organ) in the flowering, fruiting and vegetative growth stages in two consecutive years of 2016 and 2017 were measured. The significant differences of slope and intercept of the fitted equation with Standardized-major-axis were respectively used to discuss the varied size dependence and the biomass allocation in different phenological phase or ages, especially between the aboveground and belowground biomass and between the support and assimilation organs.
Important findings The results showed that the effect of reproductive allocation on biomass allocation pattern of N. tangutorum is mainly reflected in the scale of relative biomass allocation (36.00%) rather than the extent of size dependence (16.67%). The reproductive growth has a greater impact on the biomass allocation pattern of newborn stems, which changes the size dependence extent among different phenological phases, but the trend is inconsistent. The reproductive growth increases the scale of relative biomass allocation to leaves and reduces that to older stems, but did not change their extent of size dependence. The biomass allocation rate in the belowground part of N. tangutorum increased with the accumulation of its biomass, but the reproductive allocation slightly decreased this rate. Nitraria tangutorum exhibited a higher rate of biomass allocation to supporting organs as plant biomass increases. Over time it is more likely for biomass to be allocated to assimilating organs.

参考文献

[1] Aarssen LW (2008). Death without sex—The ‘problem of the small’ and selection for reproductive economy in flowering plants. Evolutionary Ecology, 22, 279-298.
[2] Barnes AD (2002). Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration. Tree Physiology, 22, 733-740.
[3] Bond BJ (2000). Age-related changes in photosynthesis of woody plants. Trends in Plant Science, 5, 349-353.
[4] Bonser SP, Aarssen LW (2009). Interpreting reproductive allometry: individual strategies of allocation explain size- dependent reproduction in plant populations. Perspectives in Plant Ecology, Evolution and Systematics, 11, 31-40.
[5] Canham CD, Berkowitz AR, Kelly VR, Lovett GM, Ollinger SV, Schnurr J (1996). Biomass allocation and multiple resource limitation in tree seedlings. Canadian Journal of Forest Research, 26, 1521-1530.
[6] Chen RF, Ran JZ, Huang H, Dong LW, Sun Y, Ji MF, Hu WG, Yao SR, Lu JL, Gong HY, Xie SB, Du QJ, Hou QQ, Niklas KJ, Deng JM (2019). Life history strategies drive size-dependent biomass allocation patterns of dryland ephemerals and shrubs. Ecosphere, 10, e02709. DOI: 10.1002/ecs2.2709.
[7] Cheplick GP (2005). Biomass partitioning and reproductive allocation in the invasive, cleistogamous grass Microstegium vimineum: influence of the light environment. Journal of the Torrey Botanical Society, 132, 214-224.
[8] Cheverud JM (1982). Relationships among ontogenetic, static, and evolutionary allometry. American Journal of Physical Anthropology, 59, 139-149.
[9] Coleman MD, Friend AL, Kern CC (2004). Carbon allocation and nitrogen acquisition in a developing Populus deltoides plantation. Tree Physiology, 24, 1347-1357.
[10] Deng JM, Wang GX, Morris EC, Wei XP, Li DX, Chen BM, Zhao CM, Liu J, Wang Y (2006). Plant mass-density relationship along a moisture gradient in north-west China. Journal of Ecology, 94, 953-958.
[11] Eziz A, Yan ZB, Tian D, Han WX, Tang ZY, Fang JY (2017). Drought effect on plant biomass allocation: a meta- analysis. Ecology and Evolution, 7, 11002-11010.
[12] Fan GH, Huang YX, Zhao XY, Shen XJ (2017). Effect of population density on the allometric growth of Agriophyllum squarrosum. Acta Prataculturae Sinica, 26, 53-64.
[12] [ 范高华, 黄迎新, 赵学勇, 神祥金 (2017). 种群密度对沙米异速生长的影响. 草业学报, 26, 53-64.]
[13] Fraterrigo JM, Turner MG, Pearson SM (2006). Previous land use alters plant allocation and growth in forest herbs. Journal of Ecology, 94, 548-557.
[14] Fu YH, Zhao HF, Piao SL, Peaucelle M, Peng SS, Zhou GZ, Ciais P, Huang MT, Menzel A, Pe?uelas J, Song Y, Vitasse Y, Zeng ZZ, Janssens IA (2015). Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526, 104-107.
[15] Gedroc JJ, McConnaughay KDM, Coleman JS (1996). Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Functional Ecology, 10, 44-50.
[16] Guo LZ, Huang D, Zhang C, Li JH, Zhao H, Wang K (2019). Analysis of biomass allocation and allometric growth of Stellera chamaejasme in degraded typical steppe. Chinese Journal of Grassland, 41, 53-59.
[16] [ 郭丽珠, 黄顶, 张丛, 李佳欢, 赵欢, 王堃 (2019). 退化典型草原狼毒生物量分配及异速生长分析. 中国草地学报, 41, 53-59.]
[17] Husáková I, Weiner J, Münzbergová Z (2018). Species traits and shoot-root biomass allocation in 20 dry-grassland species. Journal of Plant Ecology, 11, 273-285.
[18] Klinkhamer PGL, Meelis E, de Jong TJ, Weiner J (1992). On the analysis of size-dependent reproductive output in plants. Functional Ecology, 6, 308-316.
[19] Komiyama A, Ong JE, Poungparn S (2008). Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany, 89, 128-137.
[20] Li QH, Xin ZM, Gao TT, Wang SX, Xu J, Sun F (2012). Reproductive allocation in four desert species of the genus Nitraria L. Acta Ecologica Sinica, 32, 5054-5061.
[20] [ 李清河, 辛智鸣, 高婷婷, 王赛宵, 徐军, 孙非 (2012). 荒漠植物白刺属4个物种的生殖分配比较. 生态学报, 32, 5054-5061.]
[21] Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl ?, Defila C, Donnelly A, Filella Y, Jatczak K, M?ge F, Mestre A, Nordli ?, Pe?uelas J, Pirinen P, Remi?ová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969-1976.
[22] McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21, 713-720.
[23] McConnaughay KDM, Coleman JS (1999). Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology, 80, 2581-2593.
[24] Müller I, Schmid B, Weiner J (2000). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 115-127.
[25] Niinemets U (2004). Adaptive adjustments to light in foliage and whole-plant characteristics depend on relative age in the perennial herb Leontodon hispidus. New Phytologist, 162, 683-696.
[26] Niklas KJ (2005). Modelling below- and above-ground biomass for non-woody and woody plants. Annals of Botany, 95, 315-321.
[27] Niklas KJ (2006). A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytologist, 171, 27-40.
[28] Niklas KJ, Enquist BJ (2002). On the vegetative biomass partitioning of seed plant leaves, stems, and roots. The American Naturalist, 159, 482-497.
[29] Peng YF, Yang YH (2016). Allometric biomass partitioning under nitrogen enrichment: evidence from manipulative experiments around the world. Scientific Reports, 6, 28918. DOI: 10.1038/srep28918.
[30] Poorter H, Nagel O (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology, 27, 595-607.
[31] Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
[32] Reekie EG, Bazzaz FA (2011). Reproductive Allocation in Plants. Academic Press, New York. 1-49.
[33] Reich PB, Luo YJ, Bradford JB, Poorter H, Perry CH, Oleksyn J (2014). Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences of the United States of America, 111, 13721-13726.
[34] Shipley B, Meziane D (2002). The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16, 326-331.
[35] Tian DS, Pan QM, Simmons M, Chaolu HD, Du BH, Bai YF, Wang H, Han XG (2012). Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 years of nutrient addition. PLOS ONE, 7, e42833. DOI: 10.1371/journal.pone.0042833.
[36] Weiner J, Campbell LG, Pino J, Echarte L (2009). The allometry of reproduction within plant populations. Journal of Ecology, 97, 1220-1233.
[37] Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012). Warming experiments underpredict plant phenollogical responses to climate change. Nature, 485, 494-497.
[38] Xie JB, Tang LS, Wang ZY, Xu GQ, Li Y (2012). Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture. PLOS ONE, 7, e41502. DOI: 10.1371/journal.pone.0041502.
[39] Xu H, Li Y, Xu GQ, Zou T (2007). Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant, Cell & Environment, 30, 399-409.
文章导航

/