研究论文

中国生态功能保护区归一化植被指数动态及气候因子驱动

展开
  • 1安徽师范大学地理与旅游学院, 安徽芜湖 241002
    2安徽省江淮流域地表过程与区域响应重点实验室, 安徽芜湖 241002
* (xuxh1113@126.com)
徐光来: ORCID:0000-0002-4203-5346

收稿日期: 2020-04-07

  录用日期: 2020-06-03

  网络出版日期: 2020-07-07

基金资助

国家自然科学基金(41301029)

NDVIdynamics and driving climatic factors in the Protected Zones for Ecological Functions in China

Expand
  • 1School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui 241002, China
    2Anhui Key Laboratory of Natural Disaster Process and Prevention, Wuhu, Anhui 241002, China

Received date: 2020-04-07

  Accepted date: 2020-06-03

  Online published: 2020-07-07

Supported by

National Natural Science Foundation of China(41301029)

摘要

为揭示生态功能保护区归一化植被指数(NDVI)与气候因子相关性, 为今后该区域植被动态监测提供有用的信息, 该研究基于2000-2015年MODIS NDVI数据和逐月格点降水与气温数据, 采用生态功能保护区和像元两种空间尺度, 应用线性倾向分析、偏相关分析、复相关分析等方法研究了46个生态功能保护区NDVI变化及其与气候因子的关系, 在此基础上基于相关系数显著性水平对生态功能保护区NDVI动态进行了气候因子驱动分区。主要结果: (1)生态功能保护区NDVI总体呈增加趋势, 其增率加权平均值为0.045·a-1。像元分析表明, NDVI显著增加的区域主要分布在中部和东北部。(2)生态功能保护区NDVI与降水的偏相关系数在-0.30-0.72之间, 在32个分区呈正相关关系。NDVI与气温的偏相关性在-0.36-0.92之间, 在39个分区呈正相关关系。像元分析表明, 50.6%的像元NDVI与降水呈显著正偏相关关系, 主要分布在东北及西北地区。64.6%的像元NDVI与气温呈显著正偏相关关系, 主要分布在东北及青藏高原北缘地区。(3)气温-降水强驱动型是主要驱动类型, 占总面积的38.7%; 气温驱动型为次要驱动类型, 占27.3%; 非气候因子驱动型占17.6%。以上结果表明, 生态功能保护区NDVI与气温、降水气候因子改变具有显著相关性, 气候因子驱动的地区共占82.4%。研究气候变暖背景下生态功能保护区NDVI变化及其对气候因子的响应, 对于认识该区植被动态变化规律具有重要作用。

本文引用格式

徐光来, 李爱娟, 徐晓华, 杨先成, 杨强强 . 中国生态功能保护区归一化植被指数动态及气候因子驱动[J]. 植物生态学报, 2021 , 45(3) : 213 -223 . DOI: 10.17521/cjpe.2020.0096

Abstract

Aims This study demonstrates the consistencies and discrepancies of correlations between climate factors and normalized difference vegetation index (NDVI) in the Protected Zones for Ecological Functions (EFPZs) in China, which provide useful information for monitoring in subsequent studies of vegetation dynamics.
Methods Based on the MODISNDVI data and the grid data for monthly precipitation and air temperatures from 2000 to 2015, the dynamics of NDVI and correlations with climatic factors were examined across 46 EFPZs at two spatial scales, by individual EFPZs and the pixels, using linear tendency and partial correlation methods. In accordance to the analyses, the EFPZs were categorized into different types of climatic influences.
Important findings The overall NDVI across the EFPZs showed an increasing trend, with the average linear slope of 0.045·a-1. Pixel scale analysis showed that NDVIincreased significantly in the central regions and the northeast of China. Partial correlation coefficients between NDVI and precipitation in the EFPZs varied between -0.30 to 0.72, and were positive for 32 in the EFPZs. Partial correlation between NDVI and air temperature ranged from -0.36 to 0.92, with positive correlations in 39 in the EFPZs. In 50.6% of the pixels, NDVIwas positively correlated with precipitation, mainly in northeast and northwest China. In 64.6% of the pixels,NDVI was positively correlated with air temperatures, mainly in the northeastern and the northern edge of the Qingzang Plateau. Strong temperature-precipitation driving is the main type of climatic influences on NDVI changes across the EFPZs, accounting for 38.7% of the total, with temperature driving type being secondary, accounting for 27.3%; non-climatic driving type accounts for 17.6%. Our results show the NDVI in the EFPZs are significantly correlated with climatic factors concerning precipitation and air temperatures, and that NDVI dynamics in 82.4% of the areas are driven by climate factors. Studying the changes in NDVI and the responses of NDVI to climate factors is very important for understanding the dynamics of vegetation in the EFPZs under climate warming.

参考文献

[1] Chen YH, Li XB, Shi PJ (2001). Variation in NDVI driven by climate factors across china, 1983-1992. Acta Phytoecologica Sinica, 25, 716-720.
[1] [陈云浩, 李晓兵, 史培军 (2001). 1983-1992年中国陆地 NDVI变化的气候因子驱动分析. 植物生态学报, 25, 716-720.]
[2] China’s Third National Assessment Report on Climate Change Editing Committee (2015). The Third National Assessment Report on Climate Change. Science Press, Beijing.192-193.
[2] [第三次气候变化国家评估报告编写委员会 (2015). 第三次气候变化国家评估报告. 科学出版社, 北京. 192-193.]
[3] Chu H, Venevsky S, Wu C, Wang M (2019). NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Science of the Total Environment, 650, 2051-2062.
[4] Climate Change Center of China Meteorological Administration (2019). Blue Paper on Climate Change in China. Climate Change Center of China Meteorological Administration, Beijing. 5.
[4] [中国气象局气候变化中心 (2019). 中国气候变化蓝皮书. 中国气象局气候变化中心, 北京. 5.]
[5] Gong Z, Kawamura K, Ishikawa N, Goto M, Wulan T, Alateng D, Yin T, Ito Y (2015). MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland. Solid Earth, 6, 1185-1194.
[6] Guo J, Hu Y, Xiong Z, Yan X, Ren B, Bu R (2017). Spatiotemporal variations of growing-season NDVI associated with climate change in northeastern China?s permafrost zone. Polish Journal of Environmental Studies, 26, 1521- 1530.
[7] Han JC, Huang Y, Zhang H, Wu X (2019). Characterization of elevation and land cover dependent trends of NDVI variations in the Hexi region, northwest China. Journal of Environmental Management, 232, 1037-1048.
[8] Hou P, Wang Q, Fang Z, Wang CZ, Wei YC (2013). Satellite- based monitoring and appraising vegetation growth in national key regions of ecological protection. Acta Ecologica Sinica, 33, 780-788.
[8] [侯鹏, 王桥, 房志, 王昌佐, 魏彦昌 (2013). 国家生态保护重要区域植被长势遥感监测评估. 生态学报, 33, 780-788.]
[9] Hou W, Gao J, Wu S, Dai E (2015). Interannual variations in growing-season NDVI and its correlation with climate variables in the southwestern karst region of China. Remote Sensing, 7, 11105-11124.
[10] Jin J, Wang Y, Jiang H, Cheng M (2016). Recent NDVI-based variation in growth of boreal intact forest landscapes and its correlation with climatic variables. Sustainability, 8(326), 1-10.
[11] Li LL, Wang DW, Han T (2018). Spatial-temporal dynamics of vegetation coverage and responding to climate change in Shiyang River basin during 2000-2015. Journal of Desert Research, 38, 1108-1118.
[11] [李丽丽, 王大为, 韩涛 (2018). 2000-2015年石羊河流域植被覆盖度及其对气候变化的响应. 中国沙漠, 38, 1108-1118.]
[12] Li S, Yang S, Liu X, Liu Y, Shi M (2015). NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia region, central China. Remote Sensing, 7, 11163-11182.
[13] Liu X, Tian Z, Zhang A, Zhao A, Liu H (2019). Impacts of climate on spatiotemporal variations in vegetation NDVI from 1982-2015 in Inner Mongolia, China. Sustainability, 11(768), 122.
[14] Lu YH, Zhang LW, Feng XM, Zeng Y, Fu BJ, Yao XL, Li JR, Wu BF (2015). Recent ecological transitions in China: greening, browning, and influential factors. Scientific Reports, 5, 8732. DOI: 10.1038/srep08732.
[15] Luo M, Guli J, Guo H, Guo H, Guo H, Zhang PF, Meng FH, Liu T (2017). Spatial-temporal variation of growing- season NDVI and its responses to hydrothermal condition in the Tarim river basin from 2000 to 2013. Journal of Natural Resources, 32, 50-63.
[15] [罗敏, 古丽?加帕尔, 郭浩, 郭辉, 张鹏飞, 孟凡浩, 刘铁 (2017). 2000-2013年塔里木河流域生长季 NDVI时空变化特征及其影响因素分析. 自然资源学报, 32, 50-63.]
[16] Mbatha N, Xulu S (2018). Time series analysis of MODIS- derived NDVI for the Hluhluwe-Imfolozi park, south Africa: impact of recent intense drought. Climate, 6(95), 1-24.
[17] Ministry of Environmental Protection of the People?s Republic of China, Chinese Academy of Sciences (2008). National Ecological Function Zoning. Ministry of Ecology and Environment of the People’s Republic of China, Beijing. 17.
[17] [中华人民共和国生态环境部和中国科学院 (2008). 全国生态功能区划. 中华人民共和国生态环境部, 北京. 17.]
[18] Ministry of Environmental Protection of the People?s Republic of China, Chinese Academy of Sciences (2015). National Ecological Function Zoning, Revised Edition. Ministry of Ecology and Environment of the People’s Republic of China, Beijing.8-9.
[18] [中华人民共和国生态环境部和中国科学院 (2015). 全国生态功能区划(修编版). 中华人民共和国生态环境部, 北京.8-9.]
[19] Ning T, Liu W, Lin W, Song X (2015). NDVI variation and its responses to climate change on the northern Loess Plateau of China from 1998 to 2012. Advances in Meteorology,1-10.
[20] Piedallu C, Cheret V, Denux JP, Perez V, Azcona JS, Seynave I, Gegout JC (2019). Soil and climate differently impact NDVI patterns according to the season and the stand type. Science of the Total Environment, 651, 2874-2885.
[21] Tian YC, Liang MZ (2016). The NDVI Characteristics of vegetation and its ten-day response to temperature and precipitation in Beibu gulf coastal region. Journal of Natural Resources, 31, 488-502.
[21] [田义超, 梁铭忠 (2016). 北部湾沿海地区植被覆盖对气温和降水的旬响应特征. 自然资源学报, 31, 488-502.]
[22] Verbyla D (2015). Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environmental Research Letters, 10, 125016. DOI: 10.1088/1748-9326/10/12/125016.
[23] Wang F, Wang Z, Zhang Y (2018). Spatio-temporal variations in vegetation net primary productivity and their driving factors in Anhui Province from 2000 to 2015. Acta Ecologica Sinica, 38, 2754-2767.
[23] [王芳, 汪左, 张运 (2018). 2000-2015年安徽省植被净初级生产力时空分布特征及其驱动因素. 生态学报, 38, 2754-2767.]
[24] Wang H, Liu D, Lin H, Montenegro A, Zhu X (2015). NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan Plateau. International Journal of Climatology, 35, 687-698.
[25] Wang JP, Guo ZJ, Cheng F, Zhang QB, Ma H, Yu YL (2017). Spatio-temporal change in precipitation and surface temperature and their relationships with NDVI of different ecological function zones in north Xinjiang. Forest Resources Management, (1), 110-117.
[25] [王计平, 郭仲军, 程复, 张启斌, 马欢, 于一雷 (2017). 北疆生态功能区降水气温时空变化及其与 NDVI相关性分析. 林业资源管理, (1), 110-117.]
[26] Wang L, Jing YS, Li K (2010). Spatio-temporal characteristics of vegetation net primary productivity and climate change effects in Jiangsu province. Ecology and Environmental Sciences, 19, 2529-2533.
[26] [王琳, 景元书, 李琨 (2010). 江苏省植被NPP时空特征及气候因素的影响. 生态环境学报, 19, 2529-2533.]
[27] Wang Q, Zhang TB, Yi GH, Chen TT, Bie XJ, He YX (2017). Tempo-spatial variations and driving factors analysis of net primary productivity in the Hengduan Mountain area from 2004 to 2014. Acta Ecologica Sinica, 37, 3084-3095.
[27] [王强, 张廷斌, 易桂花, 陈田田, 别小娟, 何奕萱 (2017). 横断山区2004-2014年植被NPP时空变化及其驱动因子. 生态学报, 37, 3084-3095.]
[28] Zhao DS, Guo CY, Guo YQ, Liu L, Gao X, Zhang JC, Zhu Y, Zhang XM (2019). Effects of climate change on major ecological projects of mountains-rivers-forests-farmlands- lakes-grasslands. Acta Ecologica Sinica, 39, 8780-8788.
[28] [赵东升, 郭彩赟, 郭义强, 刘磊, 高璇, 张家诚, 朱瑜, 张雪梅 (2019). 气候变化对“山水林田湖草”重大生态工程的影响. 生态学报, 39, 8780-8788.]
[29] Zheng HL, Fang SF, Liu CC, Wu JH, Du JQ (2019). Dynamics of monthly vegetation activity and its responses to climate change in the Qinghai-Tibet Plateau. Journal of Geo- information Science, 21, 201-214.
[29] [郑海亮, 房世峰, 刘成程, 吴金华, 杜加强 (2019). 青藏高原月 NDVI时空动态变化及其对气候变化的响应. 地球信息科学学报, 21, 201-214.]
[30] Zheng Y, Han J, Huang Y, Fassnacht SR, Xie S, Lv E, Chen M (2018). Vegetation response to climate conditions based on NDVI simulations using stepwise cluster analysis for the Three-River Headwaters region of China. Ecological Indicators, 92, 18-29.
文章导航

/