研究论文

2001-2013年中国灌木生态系统净初级生产力的时空变化特征及其对气候变化的响应

展开
  • 1重庆市地理信息中心, 重庆 401121
    2北京师范大学减灾与应急管理研究院, 北京师范大学地表过程与资源生态国家重点实验室, 北京 100875

收稿日期: 2016-05-24

  修回日期: 2017-08-26

  网络出版日期: 2017-10-23

基金资助

国家自然科学基金(41171445)

Temporal and spatial variation characteristics of China shrubland net primary production and its response to climate change from 2001 to 2013

Expand
  • 1Chongqing Geomatics Center, Chongqing 401121, China

    2Academy of Disaster Reduction and Emergency Management, Beijing Normal University, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China

Received date: 2016-05-24

  Revised date: 2017-08-26

  Online published: 2017-10-23

摘要

植被净初级生产力(NPP)是陆地生态系统碳库的主要来源, NPP的变化反映了生态系统对气候变化及土地利用变化的响应。在我国广泛地分布着相当于国土面积20%的灌木林, 其NPP在中国陆地生态系统碳平衡过程中发挥着重要作用。该文利用CASA (Carnegie-Ames-Stanford Approach)模型估算了中国6类主要灌木生态系统2001-2013年的NPP, 并分析了其季节和年际间的变化趋势及其与气候变化之间的关系。结果显示: 中国灌木生态系统的年平均NPP为281.82 g•m-2•a-1, 其中亚热带常绿灌木年平均NPP最高为420.47 g•m-2•a-1, 而高寒荒漠灌木半灌木年平均NPP最低为52.65 g•m-2•a-1。在2001-2013年间, 中国灌木生态系统的NPP以1.23 g•m-2•a-1的速度显著增加, 其相对变化速率达到了5.99%, 其中高寒荒漠灌木半灌木、温带荒漠灌木半灌木、温带落叶灌木以及亚热带常绿灌木的NPP都显著增加, 温带落叶灌木的NPP增长最快, 达到3.05 g•m-2•a-1, 亚高山常绿灌木则以0.73 g•m-2•a-1的速率显著下降, 亚高山落叶灌木则无显著变化趋势。不同灌木生态系统的NPP对不同季节气候变化的响应不同, 但总体上中国灌木生态系统NPP的变化更多受到降水变化的影响, 此外, 春季气温升高也对NPP的增加起到积极的促进作用。

本文引用格式

王亚林, 龚容, 吴凤敏, 范文武 . 2001-2013年中国灌木生态系统净初级生产力的时空变化特征及其对气候变化的响应[J]. 植物生态学报, 2017 , 41(9) : 925 -937 . DOI: 10.17521/cjpe.2016.0177

Abstract

Aims Net primary production (NPP) is the input to terrestrial ecosystem carbon pool. Climate and land use change affect NPP significantly. Shrublands occupy more than 20% of the terrestrial area of China, and their NPP is comparable to those of the forests. Our objective was to estimate China shrubland NPP from 2001 to 2013, and to analyze its variation and response to climate change.Methods We used a Carnegie-Ames-Stanford Approach (CASA) model to estimate the NPP of six shrubland types in China from 2001 to 2013. Furthermore, we used Theil-Sen slope combined with Mann-kendall test to analyze its spatial variation and a linear regression of one-variable model to analyze its inter- and intra-annual variation. Finally, a multi-factor linear regression model was used to analyze its response to climate change.Important findings We found the annual mean NPP of China shrubland was 281.82 g•m-2•a-1. The subtropical evergreen shrubland has the maximum NPP of 420.47 g•m-2•a-1, while the high cold desert shrubland has the minimum NPP of 52.65 g•m-2•a-1. The countrywide shrublands NPP increased at the rate of 1.23 g•m-2•a-1, the relative change rate was 5.99%. The temperate deciduous shrubland NPP increased the fastest with a speed of 3.05 g•m-2•a-1 and subalpine evergreen shrubland had a decreasing trend with a speed of -0.73 g•m-2•a-1. Moreover, the other four shrublands NPP had a growing trend, only subalpine deciduous shrubland NPP did not change significantly. The response of NPP to climate change of different seasons varies to different shrubland types. In general, the NPP variation was mainly affected by precipitation, and the spring warming also contributed to it. The increase of countrywide shrubland NPP may promote its contribution to the regional ecosystem function.

参考文献

[1] Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.Forest Ecology and Management, 259, 660-684.
[2] Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I (2005). Drier summers cancel out the CO2 uptake enhancement induced by warmer springs.Proceedings of the National Academy of Sciences of the United States of America, 102, 10823-10827.
[3] Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005). Regional vegetation die-off in response to global-change-type drought.Proceedings of the National Academy of Sciences of the United States of America, 102, 15144-15148.
[4] Canadell J, Jackson R, Ehleringer J, Mooney HA, Sala OE, Schulze E-D (1996). Maximum rooting depth of vegetation types at the global scale.Oecologia, 108, 583-595.
[5] Chapin FS, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer, New York.
[6] Dai A (2011). Drought under global warming: A review.Wiley Interdisciplinary Reviews: Climate Change, 2, 45-65.
[7] Ding Y, Ren G, Zhao Z, Xu Y, Luo Y, Li Q, Zhang J (2007). Detection, causes and projection of climate change over China: An overview of recent progress.Advances in Atmospheric Sciences, 24, 954-971.
[8] Dubovyk O, Landmann T, Erasmus BFN, Tewes A, Schellberg J (2015). Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa.International Journal of Applied Earth Observation and Geoinformation, 38, 175-183.
[9] Fang JY, Piao SL, Field CB, Pan YD, Guo QH, Zhou LM, Peng CH, Tao S (2003). Increasing net primary production in China from 1982 to 1999.Frontiers in Ecology and the Environment, 1, 293-297.
[10] Fensholt R, Proud SR (2012). Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series.Remote Sensing of Environment, 119, 131-147.
[11] Field CB (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components.Science, 281, 237-240.
[12] Field CB, Randerson JT, Malmstrom CM (1995). Global Net Primary Production: Combining Ecology and Remote Sensing.Remote Sensing of Environment, 51, 74-88.
[13] Gao Q, Yu M, Zhang X, Xu H, Huang Y (2005). Modelling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment.Functional Plant Biology, 32, 583-598.
[14] Gao Q, Yu M, Zhou C (2013). Detecting the differences in responses of stomatal conductance to moisture stresses between deciduous shrubs and Artemisia subshrubs. PLOS ONE, 8, e84200. doi:10.1371/journal.pone.0084200.
[15] Gao Q, Zhao P, Zeng X, Cai X, Shen W (2002). A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress.Plant, Cell & Environment, 25, 1373-1381.
[16] Gao QZ, Wan YF, Li YE Lin ED, Yang K, Jinagcun WZ, Wang BS, Li WF (2007). Grassland net primary productivity and its spatiotemporal distribution in Northern Tibet: A study with CASA model.Chinese Journal of Applied Ecology, 18, 2526-2532. (in Chinese with English abstract)[高清竹, 万运帆, 李玉娥, 林而达, 杨凯, 江村旺扎, 王宝山, 李文福 (2007). 基于CASA模型的藏北地区草地植被净第一性生产力及其时空格局. 应用生态学报, 18, 2526-2532.]
[17] Hansen J, Ruedy R, Sato M, Lo K (2010). Global surface temperature change. Reviews of Geophysics, 48, RG4004. doi: 10.1029/2010RG000345.
[18] Hicke JA, Asner GP, Randerson JT, Los S, Birdsey R, Jenkins JC, Tucker C, Field C (2002). Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochemical Cycles, 16, 2-1-2-14. doi: 10.1029/2001GB001550.
[19] Hipel KW, McLeod AI (1994). Time Series Modelling of Water Resources and Environmental Systems. Elsevier Science, New York.
[20] Hunt ER (1994). Relationship between woody biomass andPAR conversion efficiency for estimating net primary production from NDVI. International Journal of Remote Sensing, 15, 1725-1729.
[21] Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). A global analysis of root distributions for terrestrial biomes.Oecologia, 108, 389-411.
[22] Jeong SJ, Ho CH, Gim HJ, Brown ME (2011). Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008.Global Change Biology, 17, 2385-2399.
[23] Jiang W, Yuan L, Wang W, Cao R, Zhang Y, Shen W (2015). Spatio-temporal analysis of vegetation variation in the Yellow River Basin.Ecological Indicators, 51, 117-126.
[24] Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008). Mountain pine beetle and forest carbon feedback to climate change.Nature, 452, 987-990.
[25] Li GC (2004). Estimation of Chinese Terrestrial Net Primary Production Using LUE Model and MODIS Data. PhD dissertation, Institute of Remote Sensing Applications, The Chinese Academy of Sciences, Beijing. 60-72. (in Chinese with English abstract)[李贵才 (2004). 基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究. 博士学位论文, 中国科学院遥感应用研究所, 北京. 60-72.]
[26] Liang W, Yang Y, Fan D, Guan HD, Zhang T, Long D, Zhou Y, Bai D (2015). Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010.Agricultural and Forest Meteorology, 204, 22-36.
[27] Lotsch A, Friedl MA, Anderson BT, Tucker CJ (2005). Response of terrestrial ecosystems to recent Northern Hemispheric drought.Geophysical Research Letters, 32, 1-5.
[28] Melillo JM, McGuire AD, Kicklighter DW, Moore Iii B, Vorosmarty CJ, Schloss AL (1993). Global climate change and terrestrial net primary production.Nature, 363, 234-240.
[29] Monserud RA, Marshall JD (1999). Allometric crown relations in three northern Idaho conifer species.Canadian Journal of Forest Research, 29, 521-535.
[30] Park H-S, Sohn BJ (2010). Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations.Journal of Geophysical Research, 115, D14101. doi: 10.1029/2009JD012752.
[31] Peng J, Liu Z, Liu Y, Wu J, Han Y (2012). Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent.Ecological Indicators, 14, 28-39.
[32] Peng SL, Guo ZH, Wang BS (2000). Use of GIS and RS to estimate the light utilization efficiency of the vegetation in Guangdong, China.Acta Ecologica Sinica, 20, 903-909. (in Chinese with English abstract)[彭少麟, 郭志华, 王伯荪 (2000). 利用GIS和RS估算广东植被光利用率. 生态学报, 20, 903-909.
[33] Peng SS, Chen AP, Xu L, Cao CX, Fang JY, Myneni RB, Pinzon JE, Tucker CJ, Piao SL (2011). Recent change of vegetation growth trend in China.Environmental Research Letters, 6, 044027.
[34] Piao S (2003). Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. Journal of Geophysical Research, 108, 4401.
[35] Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China.Nature, 458, 1009-1013.
[36] Piao S, Fang J, Jinsheng HE (2006a). Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999.Climatic Change, 74, 253-267.
[37] Piao S, Fang J, Zhou L, Ciais P, Zhu B (2006b). Variations in satellite-derived phenology in China’s temperate vegetation.Global Change Biology, 12, 672-685.
[38] Piao S, Fang J, Zhou L, Zhu B, Tan K, Tao S (2005). Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles, 19, GB2027. doi: 10.1029/2004GB002274.
[39] Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J (2011). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006.Global Change Biology, 17, 3228-3239.
[40] Potter C, Klooster S, Genovese V (2012). Net primary production of terrestrial ecosystems from 2000 to 2009.Climatic Change, 115, 365-378.
[41] Potter C, Klooster S, Myneni R, Genovese V, Tan PN, Kumar V (2003). Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998.Global and Planetary Change, 39, 201-213.
[42] Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993). Terrestrial ecosystem production—A Process Model-based on global satellite and surface data.Global Biogeochemical Cycles, 7, 811-841.
[43] Qi Y, Fang SB, Zhou WZ (2014). Variation and spatial distribution of surface solar radiation in China over recent 50 years.Acta Ecologica Sinica, 34, 7444-7453. (in Chinese with English abstract)[齐月, 房世波, 周文佐 (2014). 近50年来中国地面太阳辐射变化及其空间分布. 生态学报, 34, 7444-7453.
[44] Robeson SM (2004). Trends in time-varying percentiles of daily minimum and maximum temperature over North America.Bulletin of the American Meteorological Society, 31, 4379-4384.
[45] Shi XZ, Yu DS (2004). Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese Genetic Soil Classification System.Soil Survey Horizons, 45, 111-148.
[46] The Editorial Committee of Vegetation Map of China,Chinese Academy of Sciences(2007).Vegetation Map of the People’s Republic of China 1:1 000 000. Geological Publishing House, Beijing. (in Chinese)[中国科学院中国植被图编辑委员会 (2007).中华人民共和国植被图1:1 000 000. 地质出版社, 北京.]
[47] Wang X, Piao S, Ciais P, Li J, Friedlingstein P, Koven C, Chen A (2011). Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006.Proceedings of the National Academy of Sciences of the United State of America, 108, 1240-1245.
[48] Wang YL, Gao Q, Liu T, Tian YQ, Yu M (2016). The greenness of major shrublands in China increased from 2001 to 2013.Remote Sensing, 8, 121.
[49] Wilson BF (1995). Shrub stems: Form and function. In: Gartner BL ed. Plant Stems. Academic Press, San Diego, USA. 91-102.
[50] Xiao JF, Zhuang QL (2007). Drought effects on large fire activity in Canadian and Alaskan forests.Environmental Research Letters, 2, 44003. doi: 10.1088/1748-9326/2/4/044003.
[51] Xu X, Piao S, Wang X, Chen A, Ciais P, Myneni RB (2012). Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades.Environmental Research Letters, 7, 035701. doi: 10.1088/1748-9326/7/3/035701.
[52] Zhang F, Zhou GS, Wang YH (2008). Dynamics simulation of net primary productivity by a satellite data-driven CASA model in inner Mongolian typical steppe, China.Journal of Plant Ecology (Chinese Version), 32, 786-797. (in Chinese with English abstract)[张峰, 周广胜, 王玉辉 (2008). 基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟. 植物生态学报, 32, 786-797.]
[53] Zhang Y, Gao Q, Xu L, Yu M, Tian Y (2014). Shrubs proliferated within a six-year exclosure in a temperate grassland -- Spatiotemporal relationships between vegetation and soil variables.Sciences in Cold and Arid Regions, 6, 139-149.
[54] Zhao M, Heinsch FA, Nemani RR, Running SW (2005). Improvements of the MODIS terrestrial gross and net primary production global data set.Remote Sensing of Environment, 95, 164-176.
[55] Zhao M, Running SW (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.Science, 329, 940-943.
[56] Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov N V, Myneni RB (2001). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999.Journal of Geophysical Research, 106, 20069-20083.
[57] Zhu W, Pan Y, He H, Yu D, Hu H (2006). Simulation of maximum light use efficiency for some typical vegetation types in China.Chinese Science Bulletin, 51, 457-463.
[58] Zhu WQ, Pan YZ, Zhang JS (2007). Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing.Journal of Plant Ecology (Chinese Version), 31, 413-424. (in Chinese with English abstract)[朱文泉, 潘耀忠, 张锦水 (2007). 中国陆地植被净级生产力遥感估算. 植物生态学报, 31, 413-424.]
文章导航

/

005-264X/bottom_cn.htm"-->