小麦根系在碱胁迫下的生理代谢反应
收稿日期: 2017-04-05
录用日期: 2016-04-14
网络出版日期: 2017-07-19
基金资助
基金项目 国家自然科学基金(31200243和31570328)
Metabolic responses of wheat roots to alkaline stress
Received date: 2017-04-05
Accepted date: 2016-04-14
Online published: 2017-07-19
为明确碱胁迫对小麦(Triticum aestivum)根系离子组及代谢组的影响, 探讨其响应变化规律及机制, 该研究以小麦为实验材料, 采用两种碱性盐(NaHCO3和Na2CO3)按摩尔比1:1混合模拟不同碱胁迫强度, 利用气相色谱-质谱联用(GC-MS)技术结合多元变量分析方法, 系统分析小麦根系在碱胁迫下的矿质元素、游离阴离子、代谢产物及代谢途径变化。结果显示: 低浓度碱胁迫下小麦根系仍能维持一定的生长, 但在高浓度碱胁迫下根系生长受到了明显抑制。当碱胁迫强度超过小麦根系调节能力时, 根系中Na含量急剧增加的同时K含量明显减少。碱胁迫刺激根中Ca积累, 而Mg、Cu和Fe含量呈现下降趋势。碱胁迫明显减少根中游离阴离子(主要是Cl-)含量。检测代谢物组包括有机酸、氨基酸、碳水化合物、嘧啶和嘌呤等70个代谢产物, 主成分分析结果表明代谢物均分布在95%的置信区间内。碱胁明显迫促进苹果酸、琥珀酸等代谢物积累, 但造成糖类(果糖、蔗糖)及多元醇(肌醇、山梨糖醇)和氨基酸(γ-氨基丁酸、丙氨酸)含量显著下降。结果表明: 根系中Na+含量剧增, 加上高pH值危害, 导致根系生长率降低; 与此同时, 游离阴离子明显减少, 造成根系内负电荷亏缺和pH不稳定, 导致离子平衡遭到破坏, 进而引起一系列代谢途径的协变反应。小麦根系在碱胁迫下糖酵解、细胞膜脂代谢和氨基酸合成受到明显的抑制, 但三羧酸循环显著增强。这些结果表明碱胁迫(高pH值)对碳素合成和储存有明显的负效应, 降低代谢合成碳骨架和能量, 使得清除活性氧能力明显下降。碱胁迫下根外部质子缺乏造成NO3-含量降低, 影响氮素吸收利用, 导致氨基酸合成受阻。三羧酸循环增强为生成有机酸类化合物和调控pH平衡提供能量, 这可能是植物适应碱胁迫的一种特殊对应策略。
郭瑞, 周际, 杨帆, 李峰 . 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017 , 41(6) : 683 -692 . DOI: 10.17521/cjpe.2016.0136
Aims The aim of this study was to investigate the effects of alkaline stress on primary, secondary metabolites and metabolic pathways in the roots of wheat (Triticum aestivum). The results were used to evaluate the physiological adaptive mechanisms by which wheat tolerated alkali stress.Methods A pot experiment was carried out in the greenhouse. For each plastic pot, five wheat seeds were planted. After germination, seedlings were allowed to grow under controlled water and nutrient conditions for two months, then seedlings were exposed to alkaline stress (NaHCO3-Na2CO3) for 12 days. The relative growth rate (RGR), absolute water content (AWC), metal elements, free cations and metabolites were measured.Important findings The alkaline stress caused the reduction of RGR and AWC. Alkaline stress caused a rapid increase of Na content with the concurrent decrease in K and Cl content, resulting in inhibited metal element accumulation and an ionic imbalance. In the present study, alkaline stress strongly enhanced Ca accumulation in wheat roots, suggesting that an increased Ca concentration can immediately trigger the salt overly sensitive (SOS)-Na exclusion system and reduce Na-associated injuries. Also, 70 metabolites, including organic acids, amino acids, sugars/polyols and others, behaved differently in the alkaline stress treatments according to a GC-MS analysis. The metabolic profiles of wheat were closely associated with alkaline-stress conditions. Alkaline stress caused the accumulation of organic acids, accompanied by the depletion of sugars/polyols and amino acids. Organic acids could play a central role in the regulation of intracellular pH by accumulating vacuoles to neutralize excess cations. Glycolysis and amino acid synthesis in roots were inhibited under salt stress while prolonged alkaline stress led to a progressive tricarboxylic acid (TCA) cycle. The severe negative effects of alkaline stress on sugar synthesis and storage may reflect the toxic levels of Na+ accumulating in plant cells in a high-pH environment, implying that the reactive oxygen species detoxification capacity was diminished by the high pH. A lack of NO3- in wheat roots can decrease synthase enzyme activities, limiting the synthesis of amino acids. Under salt stress, the TCA cycle and organic acid accumulation increased, but glycolysis and amino acid synthesis were inhibited in roots. Thus, energy levels and high concentrations of organic acids may be the key adaptive mechanisms by which wheat seedlings maintain their intracellular ion balance under alkaline stress.
[1] | Deng RL, Xu HR, Cao YF, Xiao K (2007). The molecular basis of ammonium transporters in plants.Plant Nutrition and Fertilizer Science, 13, 512-519. (in Chinese with English abstract)[邓若磊, 徐海荣, 曹云飞, 肖凯 (2007). 植物吸收铵态氮的分子生物学基础. 植物营养与肥料学报, 13, 512-519.] |
[2] | FAO ( |
[3] | Guo R, Li F, Zhou J, Li HR, Xia X, Liu Q (2016). Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses. Chinese Journal of Plant Ecology, 40, 69-79. (in Chinese with English abstract)[郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪 (2016). 亚麻响应盐、碱胁迫的生理特征. 植物生态学报, 40, 69-79.] |
[4] | Guo W, Yu LH (2012). Effects of salinity-alkalinity stress on root activity and phenylalanine ammonia-lyase activity of wheat seedlings.Crops, (1), 31-34. (in Chinese with English abstract)[郭伟, 于立河 (2012). 盐碱胁迫对小麦幼苗根系活力和苯丙氨酸解氨酶活性的影响. 作物杂志, (1), 31-34.] |
[5] | Hu HY, He J, Zhao JJ, Ru ZG (2013). Dynamic change of cell defense enzyme activity in wheat seedling under different alkaline pH conditions.Journal of Henan Institute of Science and Technology (Natural Science Edition), 41(5), 1-5. (in Chinese with English abstract)[胡海燕, 贺杰, 赵俊杰, 茹振刚 (2013). 碱性pH条件下小麦幼苗保护酶活性的变化动态. 河南科技学院学报(自然科学版), 41(5), 1-5.] |
[6] | Jianaer AH, Yang CW, Shi DC, Wang DL (2007). Physiological response of an alkali resistant halophyte Kochia sieversiana to salt and alkali stresses. Acta Botanica Boreali-Occidentalia Sinica, 27, 79-84. (in Chinese with English abstract)[贾娜尔·阿汗, 杨春武, 石德成, 王德利 (2007). 盐生植物碱地肤对盐碱胁迫的生理响应特点. 西北植物学报, 27, 79-84. ] |
[7] | Jiang SX, Liu DX, Pang HX, Lü JY (2014). Effects of PEG stress and recovery on activities of key enzymes involved in proline metabolism in wheat cultivars with difference in drought tolerance.Acta Botanica Boreali-Occidentalia Sinica, 34, 1581-1587. (in Chinese with English abstract)[姜淑欣, 刘党校, 庞红喜, 吕金印 (2014). PEG胁迫及复水对不同抗旱性小麦幼苗脯氨酸代谢关键酶活性的影响. 西北植物学报, 34, 1581-1587.] |
[8] | Kerepesi I, Galiba G (2000). Osmotic and salt stress induced alteration in soluble carbohydrate content in wheat seedlings.Crop Science, 40, 482-487. |
[9] | Kingsbury RW, Epstein E, Peary RW (1984). Physiological responses to salinity in selected lines of wheat. Plant Physiology, 74, 417-423. |
[10] | Li B, Wang ZC, Sun ZG, Chen Y, Yang F (2005). Resources and sustainable resource exploitation of salinized land in China.Agricultural Research in the Arid Areas, 23(2), 152-158. (in Chinese with English abstract)[李彬, 王志春, 孙志高, 陈渊, 杨福 (2005). 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 23(2), 152-158.] |
[11] | Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants.Nature Protocol, 1, 387-396. |
[12] | Luo YY, Liu SK (2009). Research progress of ammonium transporter in plants.Genomics and Applied Biology, 28, 373-379. (in Chinese with English abstract)[骆媛嫒, 柳参奎 (2009). 植物中铵转运蛋白的研究进展. 基因组学与应用生物学, 28, 373-379.] |
[13] | Munns R, Tester M (2008). Mechanisms of salinity tolerance.Annual Review of Plant Biology, 59, 651-681. |
[14] | Parida AK, Das AB (2005). Salt tolerance and salinity effects on plants: A review.Ecotoxicology and Environmental Safety, 60, 324-349. |
[15] | Parvaneh R, Shahrokh T, Hosseini SM (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulace oloracea L.) leaves. Stress Physiology & Biochemistry, 8, 182-193. |
[16] | Peng ZH, Peng KQ, Hu JJ, Xiao LT (2002). Research progress on accumulation of proline under osmotic stress in plants.Chinese Agriculture Science Bulletin, 18(4), 80-83. (in Chinese with English abstract)[彭志红, 彭克勤, 胡家金, 萧浪涛 (2002). 渗透胁迫下植物脯氨酸积累的研究进展. 中国农学通报, 18(4), 80-83.] |
[17] | Sa RL, Liu JH, Liu L, Bai JH, Wang ZH (2014). Cation- responsive mechanisms of oats to alkali stress.Acta Agronomica Sinica, 40, 362-368. (in Chinese with English abstract)[萨如拉, 刘景辉, 刘伟, 白健慧, 王占海 (2014). 燕麦对碱胁迫的阳离子响应机制. 作物学报, 40, 362-368.] |
[18] | Shi DC, Wang DL (2005). Effects of various salt-alkaline mixed stresses onAneurolepidium chinense (Trin.) Kitag. Plant and Soil, 271, 15-26. |
[19] | Shi LX, Ma S, Fang Y, Xu J (2015). Crucial variations in growth and ion homeostasis of glycine gracilis seedlings under two types of salt stresses.Journal of Soil Science and Plant Nutrition, 15, 1-17. |
[20] | Wang H, Wu ZH, Han JY, Zheng W, Yang CW (2012). Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants.PLOS ONE, 7, e37817. doi: 10.1371/journal.pone.0037817. |
[21] | Wang JY, Zhu SG, Xu CF (2002). Biochemistry. 3rd edn. Higher Education Press, Beijing. (in Chinese)[王镜岩, 朱圣庚, 徐长法 (2002). 生物化学. 第三版. 高等教育出版社, 北京.] |
[22] | Wang XD, Wang C, Ma ZH, Hou RF, Gao Q, Chen Q (2011). Effect of short-term salt stress on the absorption of K+ and accumulation of Na+, K+ in seedlings of different wheat varieties.Acta Ecologica Sinica, 31, 2822-2830. (in Chinese with English abstract)[王晓冬, 王成, 马智宏, 侯瑞锋, 高权, 陈泉 (2011). 短期NaCl胁迫对不同小麦品种幼苗K+吸收和Na+、K+积累的影响. 生态学报, 31, 2822-2830.] |
[23] | Wang XP, Geng SJ, Ri YJ, Cao DH, Liu J, Shi DC, Yang CW (2011). Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses.Scientia Horticulturae, 130, 248-255. |
[24] | Wu DZ, Shen QF, Cai SG, Chen ZH, Dai F, Zhang GP (2013). Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley.Plant & Cell Physiology, 54, 1976-1988. |
[25] | Yang CW, Li CY, Zhang ML, Liu J, Ju M, Shi DC (2008). pH and ion balance in wheat-wheatgrass under salt-or alkali stress.Chinese Journal of Applied Ecology, 19, 1000-1005. (in Chinese with English abstract)[杨春武, 李长有, 张美丽, 刘杰, 鞠淼, 石德成 (2008). 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 19, 1000-1005.] |
[26] | Yang C, Shi D, Wang D (2008). Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyteSuaeda glauca(Bge.). Plant Growth Regulation, 56, 179-190. |
[27] | Yang T, Xie ZX, Yu Q, Liu XJ (2014). Effects of partial root salt stress on seedling growth and photosynthetic characteristics of winter wheat.Chinese Journal of Eco- Agrculture, 22, 1074-1078. (in Chinese with English abstract)[杨婷, 谢志霞, 喻琼, 刘小京 (2014). 局部根系盐胁迫对冬小麦生长和光合特征的影响. 中国生态农业学报, 22, 1074-1078.] |
[28] | Yu RP (1999). Saline soil resources in China and their exploitation.Chinese Journal of Soil Science, 30(4), l58-159. (in Chinese with English abstract)[俞仁培 (1999). 我国盐渍土资源及其开发利用. 土壤通报, 30(4), l58-159.] |
[29] | Zhu JK (2003). Regulation of ion homeostasis under salt stress.Current Opinion in Plant Biology, 6, 441-445. |
/
〈 |
|
〉 |