基于超声清洗的树木叶面颗粒物粒径分布与吸滞效率研究——以银杏和油松为例
网络出版日期: 2016-08-23
基金资助
河南省重点科技攻关项目(16210211- 0090)、中国博士后科学基金(2015M570629)
Ultrasonic based investigation on particle size distribution and retention efficiency of particulate matters retained on tree leaves—Taking Ginkgo biloba and Pinus tabuliformis as examples
Online published: 2016-08-23
明确在常规叶片清洗方法(泡洗或泡洗+刷洗)上增加超声清洗对叶面各径级颗粒物滞纳量定量评估的影响, 并在此基础上研究叶面颗粒物的粒径分布和吸滞效率, 可进一步提高城市树木大气颗粒物吸滞能力的定量评估精度。该文以城市森林建设常用阔叶树种银杏(Ginkgo biloba)和针叶树种油松(Pinus tabuliformis)为研究对象, 于雨后(降水量>15 mm) 4天(短滞尘时长)和14天(长滞尘时长)分别采集叶样, 并依次对其进行泡洗(WC)、刷洗(BC)、超声清洗(UC)等洗脱程序, 然后对每个清洗步骤下叶片洗脱液中颗粒物的质量和粒径分布进行测试, 并依此估算叶片各径级颗粒物的吸滞效率。结果表明, 以“泡洗+刷洗+超声清洗”清洗流程的测试结果为参照, 若只对叶片进行泡洗, 则银杏和油松对大气颗粒物(PM1, 粒径d ≤1 µm)、PM2.5 (d ≤ 2.5 µm)、PM5 (d ≤ 5 µm)、PM10 (d ≤ 10 µm)吸滞量会分别被低估约一半(54%、53%、53%和53%)和40% (42%、42%、42%和42%); 若只进行“泡洗+刷洗”, 则银杏和油松对相应径级颗粒物的吸滞量仍会分别被低估约15% (17%、16%、15%和15%)和20% (21%、20%、20%和20%)。油松叶面颗粒物粒径分布呈双峰曲线, 而银杏叶面颗粒物粒径则呈单峰分布, 且银杏叶面颗粒物平均粒径在短、长滞尘时长下均大于油松。油松叶片对PM1、PM2.5、PM5、PM10和总悬浮颗粒物的吸滞效率分别为8.96、23.92、23.96、23.96和23.96 mg·m-2·d-1, 分别比银杏叶片高112%、73%、34%、37%和42%。
刘金强, 曹治国, 刘欢欢, 张少伟, 贾黎明, 贾忠奎, 席本野 . 基于超声清洗的树木叶面颗粒物粒径分布与吸滞效率研究——以银杏和油松为例[J]. 植物生态学报, 2016 , 40(8) : 798 -809 . DOI: 10.17521/cjpe.2016.0100
Aims On the basis of conventional cleaning method (washing + brushing), this study aims to verify the effect of ultrasonic cleaning on quantitative evaluation of particulate matters with various particle sizes retained on tree leaves, and further to investigate the size distribution and retention efficiency of these particulate matters, which will help to improve the accuracy of quantitative assessment of the retention ability of urban trees to atmospheric particles. Methods Ginkgo biloba and Pinus tabuliformis as examples of broadleaf and conifer species, leaf samples were collected 4 days (short dust retention period) and 14 days (long dust retention period) after the rain (rainfall >15 mm), and then particles retained on these leaves were collected by the means of washing (WC), brushing (BC) and ultrasonic cleaning (UC). Further, the quality and size distribution of the particulate matters eluted at each wash step were determined to assess the retention efficiency of tree leaves to particulate matter with various particle sizes. Important findings Taking the result of “washing + brushing + ultrasonic cleaning” process as a reference, with only washing process, the retention amount of PM1 (particulate diameter d ≤ 1 µm), PM2.5 (d ≤ 2.5 µm), PM5 (d ≤ 5 µm) and PM10 (d ≤ 10 µm) on G. biloba and P. tabuliformis leaves would be underestimated by around 50% (54%, 53%, 53% and 53%) and 40% (42%, 42%, 42% and 42%), respectively; under washing and brushing protocols, the dust retention capacity of G. biloba and P. tabuliformis were still undervalued by about 15% (17%, 16%, 15% and 15%) and 20% (21%, 20%, 20% and 20%), respectively. Size distribution of particulate matters retained on P. tabuliformis showed bimodal curves, whereas the particulate matters retained on G. biloba exhibited unimodal size distribution. However, the average particle size of particulate matters on G. biloba leaves were greater than that on P. tabuliformis leaves in both short (G. biloba: 1.68 μm; P. tabuliformis: 1.16 μm) and long (G. biloba: 1.51 μm; P. tabuliformis: 1.19 μm) dust retention periods. The retention efficiency of P. tabuliformis to PM1, PM2.5, PM5, PM10 and total suspended particulate (TSP) were 8.96, 23.92, 23.96, 23.96 and 23.96 mg·m-2·d-1, respectively, higher than that of G. biloba by 112%, 73%, 34%, 37% and 42%, respectively.
[1] | Baidurela A, Halik U, Aishan T, Nuermaimaiti K (2015). Maximum dust retention of main greening trees in arid land oasis cities, Northwest China. Scientia Silvae Sinicae, 51(3), 57-63. (in Chinese with English abstract)[阿丽亚·拜都热拉, 玉米提·哈力克, 塔依尔江·艾山, 凯丽比努尔·努尔麦麦提 (2015). 干旱区绿洲城市主要绿化树种最大滞尘量对比. 林业科学, 51(3), 57-63.] |
[2] | Beckett KP, Freer-Smith P, Taylor G (2000). Effective tree species for local air-quality management. Journal of Arboriculture, 26, 12-19. |
[3] | Cao ZG, Yu G, Chen YS, Liu C, Cao QM, Fiedler H, Deng SB, Huang J, Wang B (2012). Particle size: A missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environment International, 49, 24-30. |
[4] | Cao ZG, Yu G, Chen YS, Liu C, Liu K, Zhang TT, Wang B, Deng SB, Huang J (2013). Mechanisms influencing the BFR distribution patterns in office dust and implications for estimating human exposure. Journal of Hazardous Materials, 252, 11-18. |
[5] | Chen LX, Liu CM, Zou R, Yang M, Zhang ZQ (2015). Experimental examination of effectiveness of vegetation as bio-filter of particulate matter in the urban environment. Environmental Pollution, 208, 198-208. |
[6] | Chen YY, Ebenstein A, Greenstone M, Li HB (2013). Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proceedings of the National Academy of Sciences of the United States of America, 110, 12936-12941. |
[7] | Cohen AJ, Ross Anderson H, Ostro B, Pandey KD, Krzyzan- owski M., Künzli N, Gutschmidt K, Pope A, Romieu I, Samet JM (2005). The global burden of disease due to outdoor air pollution. Journal of Toxicology & Environmental Health Part A, 68, 1301-1307. |
[8] | Dzierżanowski K, Gawroński SW (2011). Use of trees for reducing particulate matter pollution in air. Challenges of Modern Technology, 1(2), 69-73. |
[9] | Fan SX, Yan H, Qishi MY, Bai WL, Pi DJ, Li X, Dong L (2015). Dust capturing capacities of twenty-six deciduous broad-leaved trees in Beijing. Chinese Journal of Plant Ecology, 39, 736-745. (in Chinese with English abstract)[范舒欣, 晏海, 齐石茗月, 白伟岚, 皮定均, 李雄, 董丽 (2015). 北京市26种落叶阔叶绿化树种的滞尘能力. 植物生态学报, 39, 736-745.] |
[10] | Gao JH, Wang DM, Zhao L (2007). Airborne dust detainment by different plant leaves: Taking Beijing as an example. Journal of Beijing Forestry University, 29(2), 94-99. (in Chinese with English abstract)[高金晖, 王冬梅, 赵亮, 王多栋 (2007). 植物叶片滞尘规律研究——以北京市为例. 北京林业大学学报, 29(2), 94-99.] |
[11] | Hofman J, Stokkaer I, Snauwaert L, Samson R (2013). Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles. Environmental Pollution, 183, 123-132. |
[12] | Liu L, Fang YM, Wang SC, Xie Y, Yang DD (2013). Leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals in seven trees species. Environmental Science, 34, 2361-2367. (in Chinese with English abstract)[刘玲, 方炎明, 王顺昌, 谢影, 杨耽耽 (2013). 7种树木的叶片微形态与空气悬浮颗粒吸附及重金属累积特征. 环境科学, 34, 2361-2367.] |
[13] | Nowak DJ, Hirabayashi S, Bodine A, Hoehn R (2013). Mod- eled PM2.5 removal by trees in ten US cities and associated health effects. Environmental Pollution, 178, 395-402. |
[14] | Ottelé M, Bohemen HD, Fraaij ALA (2010). Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecological Engineering, 36, 154-162. |
[15] | Pal A, Kamla K, Ahmad KJ, Behl HM (2002). Do leaf surface characters play a role in plant resistance to auto-exhaust pollution? Flora-Morphology, Distribution, Functional Ecology of Plants, 197, 47-55. |
[16] | Przybysz A, Sæbø A, Hanslin HM, Gawroński SW (2014). Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Science of the Total Environment, 481, 360-369. |
[17] | Remy S, Nawrot T, Fierens F, Petit P, Vanderstraeten P, Nemery B, Bouland C (2011). Health impact of urban air pollution in Belgium. Air Quality, Atmosphere & Health, 4, 243-246. |
[18] | Sæbø A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012). Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment, 427-428, 347-354. |
[19] | Sgrigna G, Sæbø A, Gawronski SW, Popek R, Calfapietra C (2015). Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environmental Pollution, 197, 187-194. |
[20] | Song YS, Maher BA, Li F, Wang XK, Sun X (2015). Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmospheric Environment, 105, 53-60. |
[21] | Wang B, Zhang WK, Niu X, Wang XY (2015). Particulate matter adsorption capacity of 10 evergreen species in Beijing. Environmental Science, 36, 408-414. (in Chinese with English abstract)[王兵, 张维康, 牛香, 王晓燕 (2015). 北京10个常绿树种颗粒物吸附能力研究. 环境科学, 36, 408-414.] |
[22] | Wang HX, Shi H, Li YY, Zhang YJ, Du HX, Du H (2012). Distribution features of particle size and heavy metal elements in foliage-captured dust. Journal of Safety and Environment,12(1), 170-174. (in Chinese with English abstract)[王会霞, 石辉, 李秧秧, 张雅静, 杜红霞, 杜衡(2012). 城市植物叶面尘粒径和几种重金属(Cu、Zn、Cr、Cd、Pb、Ni)的分布特征. 安全与环境学报, 12(1), 170-174.] |
[23] | Wang HX, Shi H, Wang YH (2015). Dynamics of the captured quantity of particulate matter by plant leaves under typical weather conditions. Acta Ecologica Sinica, 35, 1696-1705. (in Chinese with English abstract)[王会霞, 石辉, 王彦辉 (2015). 典型天气下植物叶面滞尘动态变化. 生态学报, 35, 1696-1705.] |
[24] | Wang HX, Shi H, Wang YH (2015a). Effects of weather, time, and pollution level on the amount of particulate matter deposited on leaves of Ligustrum lucidum. The Scientific World Journal, 935942. doi:10.1155/2015/935942. |
[25] | Wang L, Gao SY, Liu LY, Ha S (2006). Atmospheric particle-retaining capability of eleven garden plant species in Beijing. Chinese Journal of Applied Ecology, 17, 597-601. (in Chinese with English abstract)[王蕾, 高尚玉, 刘连友, 哈斯 (2006). 北京市11种园林植物滞留大气颗粒物能力研究. 应用生态学报, 17, 597-601.] |
[26] | Wang L, Gong HL, Liao WB, Wang Z (2015b). Accumulation of particles on the surface of leaves during leaf expansion. Science of the Total Environment, 532, 420-434. |
[27] | Wang Y, Fang RC, Lin MM, Lu Y, Wang L, Jin B (2011). Anatomical structure dynamics of Ginkgo biloba L. leaves during annual growth and development. Acta Botanica Boreali-Occidentalia Sinica, 31, 942-949. (in Chinese with English abstract)[王扬, 房荣春, 林明明, 陆彦, 王莉, 金飙 (2011). 银杏叶发育过程的解剖结构观察. 西北植物学报, 31, 942-949.] |
[28] | Wang YC (2007). Study on the Source Apportionment and Physicochemical Characteristics of Foliar Dust on Urban Plants. Master degree dissertation, Nanjing Forest University, Nanjing.(in Chinese). [王亚超 (2007). 城市植物叶面尘理化特性及源解析研究. 硕士学位论文, 南京林业大学, 南京. ] |
[29] | Wang ZH, Li JB (2006). Capacity of dust uptake by leaf surface of Euonymus japonicus Thunb. and the morphology of captured particle in air polluted city. Ecology & Environ- ment, 15, 327-330. (in Chinese with English abstract)[王赞红, 李纪标 (2006). 城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态. 生态环境, 15, 327-330.] |
[30] | Xie BZ, Wang HX, Yang J, Wang YH, Shi H (2014). Retention capability of PM2.5 and its explanation by leaf surface micro-structure of common broad-leaved plant species in Beijing. Acta Botanica Boreali-Occidentalia Sinia, 34, 2432-2438. (in Chinese with English abstract)[谢滨泽, 王会霞, 杨佳, 王彦辉, 石辉 (2014). 北京常见阔叶绿化植物滞留PM2.5能力与叶面微结构的关系. 西北植物学报, 34, 2432-2438.] |
[31] | Xing FQ, Mao JF, Meng JX, Dai JF, Zhao W, Liu H, Xing Z, Zhang Hua, Wang XR, Li Y (2014). Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis. Ecology and Evolution, 4, 1890-1902. |
[32] | Yang J, Wang HX, Xie BZ, Shi H, Wang YH (2015). Accumulation of particulate matter on leaves of nine urban greening plant species with different micromorphological structures in Beijing. Reaserch of Environmental Sciences, 2015, 28, 384-392. (in Chinese with English abstract)[杨佳, 王会霞, 谢滨泽, 石辉, 王彦辉 (2015). 北京9个树种叶片滞尘量及叶面微形态解释. 环境科学研究, 28, 384-392.] |
[33] | Yao XY, Hu YS, Liu YH (2014). Dust-retention effect of 8 common greening tree species in Beijing. Journal of Northwest Forestry University, 29(3), 92-95. (in Chinese with English abstract)[么旭阳, 胡耀升, 刘艳红 (2014). 北京市8种常见绿化树种滞尘效应. 西北林学院学报, 29(3), 92-95.] |
[34] | Yin S, Shen ZM, Zhou PS, Zou XD, Che SQ, Wang WH (2011). Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environmental Pollution, 159, 2155-2163. |
[35] | Yu XR (2008). The Characteristic of Foliar Dust of Main Af- forestation Thee Species in Nanjing and Association with Leaf’s Surface Micro-structure. Master degree dissertation, Nanjing Forest University, Nanjing.(in Chinese). [俞学如 (2008). 南京市主要绿化树种叶面滞尘特征及其与叶面结构的关系. 硕士学位论文, 南京林业大学, 南京.] |
[36] | Zhang F (2013). Studies on the Existing Shrubs of the Road in Changchun and the Dust Retention Capacity of the Three Shrubs. Master degree dissertation, Jilin Agricultural University, Changchun.(in Chinese). [张放 (2013). 长春市街道绿化现有灌木调查及3种主要灌木滞尘能力研究. 硕士学位论文, 吉林农业大学, 长春.] |
[37] | Zhang WK, Wang B, Niu X (2015). Absorption capacities of the air particulate matter in urban landscape plants in different polluted regions of Beijing (China). Environmental Science, 12, 9263-9638. (in Chinese with English abstract)[张维康, 王兵, 牛香 (2015). 北京不同污染地区园林植物对空气颗粒物的滞纳能力. 环境科学, 12, 9263-9638.] |
[38] | Zhang ZD, Cao ZG, Jia LM (2015). Regulation of four typical scenic recreational plantations to stand PM2.5 concentra- tion in Beijing, China. Chinese Journal of Applied Ecology, 26, 3475-3481. (in Chinese with English abstract)[张志丹, 曹治国, 贾黎明 (2015). 北京4种典型风景游憩林对林内PM2.5的调控作用. 应用生态学报, 26, 3475-3481.] |
[39] | Zhang ZD, Xi BY, Cao ZG, Jia LM (2014). Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: Taking Populus tomentosa as an example. Chinese Journal of Applied Ecology, 25, 2238-2242. (in Chinese with English abstract)[张志丹, 席本野, 曹治国, 贾黎明 (2014). 植物叶片吸滞PM2.5等大气颗粒物定量研究方法初探——以毛白杨为例. 应用生态学报, 25, 2238-2242.] |
[40] | Zhao ST, Li XY, Li YM (2014). The characteristics of deposi- tion of airborne particulate matters with different size on certain plants. Ecology and Environmental Sciences, 23, 271-276. (in Chinese with English abstract)[赵松婷, 李新宇, 李延明 (2014). 园林植物滞留不同粒径大气颗粒物的特征与规律. 生态环境学报, 23, 271-276.] |
[41] | Zheng SW, Xing GM, Li J, Li JS (2008). Effect of dust catching capacity of common virescence tree species in the North of China. Journal of Shanxi Agricultural University, 28, 383-387. (in Chinese with English abstract)[郑少文, 邢国明, 李军, 李锦生 (2008). 北方常见绿化树种的滞尘效应. 山西农业大学学报(自然科学版), 28, 383-387.] |
/
〈 |
|
〉 |