研究论文

中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响

展开
  • 1福建师范大学地理科学学院, 福州 350007
    2湿润亚热带山地生态国家重点实验室培育基地, 福州 350007
    3福建三明森林生态系统与全球变化研究站, 福建三明 365000
    4三明市三元区林业局, 福建三明 365000

网络出版日期: 2016-05-25

基金资助

基金项目 国家自然科学基金(31130013和31500- 407)和国家重点基础研究发展规划(973计划) (2014- CB954003)

Impact of litterfall addition and exclusion on soil respiration in Cunninghamia lanceolata plantation and secondary Castanopsis carlesii forest in mid-subtropical China

Expand
  • 1School of Geographical Science, Fujian Normal University, Fuzhou 350007, China

    2Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou 350007, China

    3Sanming Research Station of Forest Ecosystem and Global Change, Sanming, Fujian 365000, China

    4Sanyuan District Forestry Bureau of Sanming, Sanming, Fujian 365000, China

Online published: 2016-05-25

摘要

在未来大气CO2浓度升高的背景下, 植被净初级生产力的增加将促使森林土壤碳输入增多。凋落物是土壤碳库的重要来源, 对土壤呼吸会产生重要影响。为了模拟植物净初级生产力提高、凋落物产量增加情景下凋落物对土壤呼吸和土壤碳库的影响, 2013年1月到2014年12月, 在福建省三明市陈大镇国有林场, 在杉木(Cunninghamia lanceolata)人工林和米槠(Castanopsis carlesii)次生林, 通过设置去除凋落物、添加凋落物和对照(保留凋落物, 不做任何处理)处理, 研究了土壤呼吸和土壤碳库的动态变化。研究发现: 土壤含水量在10%-25%范围内, 土壤呼吸温度敏感性指数(Q10)随着土壤含水量的增加呈递增趋势, 当含水量<10%时, 由于干旱胁迫打破了土壤呼吸与温度之间的耦合, 改变了Q10值, 使得Q10值小于1。土壤呼吸与凋落物输入量呈显著的线性正相关关系, 杉木人工林对照和添加凋落物处理及米槠次生林对照处理, 土壤呼吸与2个月前的凋落物输入量相关性最好。而米槠次生林添加凋落物处理, 土壤呼吸与当月的凋落物输入量相关性最好, 不同林分凋落物呼吸对土壤呼吸的贡献率不同, 米槠次生林凋落物层呼吸年通量明显大于杉木人工林, 分别占各林分土壤总呼吸的34.4%和15.1%, 添加凋落物后, 杉木人工林和米槠次生林的土壤呼吸速率增加, 但添加凋落物处理的土壤呼吸年通量与对照的差值小于年凋落物输入量。因此, 在未来全球CO2升高背景下, 植被碳储量的增加、凋落物增加并没有引起土壤呼吸成倍增加, 更有利于中亚热带地区土壤碳吸存。

本文引用格式

李晓杰, 刘小飞, 熊德成, 林伟盛, 林廷武, 施友文, 谢锦升, 杨玉盛 . 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响[J]. 植物生态学报, 2016 , 40(5) : 447 -457 . DOI: 10.17521/cjpe.2015.0404

Abstract

<i>Aims</i>

Under elevated atmospheric CO2 concentration, an increase in the net primary production is likely to enhance the amount of litter inputs to forest soil. This study aims to determine the dynamics of soil respiration and soil carbon pool as affected by increased litterfall production.

<i>Methods</i>

A litterfall manipulation experiment was conducted in Cunninghamia lanceolata plantations and secondary Castanopsis carlesii forest stands in Chenda township of Sanming in Fujian Province, China, from January 2013 to December 2014, with treatments of litterfall exclusion, litter addition, and control (normal litterfall condition).

<i>Important findings</i>

(1) The value of temperature sensitivity index (Q10) shows a positive relationship with soil water content in the range 10%-25%, and drops below 1 at water content < 10%. Drought stress altered Q10 value and interrupted the coupling between temperature and soil respiration, as it reduced the diffusion of soluble carbon substrate and the extracellular enzymes, consequently, limited the microbial activity. (2) Linear regression analysis shows that soil respiration is significantly correlated with monthly litter mass (p < 0.05). In the treatments of the control and litter addition in the Cunninghamia lanceolata stands and that of the control in the Castanopsis carlesii stands, soil respiration was best correlated with litter mass two months ago; in the treatment of the litter addition in the Castanopsis carlesii stands, soil respiration was best correlated with litter mass of the current month. (3) On average, the annual CO2 efflux was significantly reduced by litterfall exclusion, by about (362.0 ± 64.9) g C·m-2·a-1 in the Castanopsis carlesii stands and (96.2 ± 37.3) g C·m-2·a-1 in the Cunninghamia lanceolata stands compared with the control. Litter respiration contributed to 34.4% of soil respiration in the Castanopsis carlesii stands and 15.1% in the Cunninghamia lanceolata stands. Litter addition increased the soil respiration rate in both Castanopsis carlesii and Cunninghamia lanceolata stands, but the magnitude of the increase did not match up with the doubling of litter inputs, implying that under elevated atmospheric CO2 concentration, an increased litterfall inputs due to increases in the net primary production would be advantageous to the forest soil carbon sequestration.

参考文献

1 Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration.Nature International Weekly Journal of Science, 396, 570-572.
2 Chen GS, Yang YS, lu PP, Zhang YP, Qian XL (2008). Regional patterns of soil respiration in China.Acta Ecologica Sinica, 28, 1748-1761. (in Chinese with English abstract)[陈光水, 杨玉盛, 吕萍萍, 张亿萍, 钱小兰 (2008). 中国森林土壤呼吸模式. 生态学报, 28, 1748-1761.]
3 Dai L, Xu ZB, Zhang YJ, Chen H (2001). Study on decomposition rate and fall of Pinus koraiensis needle.Acta Ecologica Sinica, 21, 1296-1300. (in Chinese with English abstract)[代力民, 徐振邦, 张扬建, 陈华 (2001). 红松针叶的凋落及其分解速率研究. 生态学报, 21, 1296-1300.]
4 Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest.Global Change Biology, 4, 217-227.
5 Deng Q, Liu SZ, Liu JX, Meng Z, Zhang DQ (2007). Contributions of litterfall to soil respiration and its affecting factors in southern subtropical forests of China.Advances in Earth Science, 22, 976-986. (in Chinese with English abstract)[邓琦, 刘世忠, 刘菊秀, 孟泽, 张德强 (2007). 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素. 地球科学进展, 22, 976-986.]
6 Ding ZL, Duan XN, Ge QS, Zhang ZQ (2009). Control of atmospheric CO2 concentration by 2050: An allocation on the emission rights of different countries. Science in China (Series D), 8, 1009-1027. (in Chinese)[丁仲礼, 段晓男, 葛全胜, 张志强 (2009). 2050年大气CO2浓度控制: 各国排放权计算. 中国科学(D辑), 8, 1009-1027.]
7 Ellsworth DS, Richard T, Crous KY, Sari P, Eric W, Chris M (2012). Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: A synthesis from Duke FACE.Global Change Biology, 18, 223-242.
8 Finzi AC, Schlesinger WH (2001). Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment.Ecology, 82, 470-484.
9 Gao Q, Ma MR, Han H, Zhang WY, Wang HB, Zheng ZM, You WH (2015). Short-term effects of aboveground litter exclusion and addition on soil respiration in a Schima superba forest in Zhejiang Province, Eastern China.Chinese Journal of Ecology, 34, 1189-1197. (in Chinese with English abstract)[高强, 马明睿, 韩华, 张维砚, 王昊彬, 郑泽梅, 由文辉 (2015). 去除和添加凋落物对木荷林土壤呼吸的短期影响. 生态学杂志, 34, 1189-1197.]
10 Glardina CP, Ryan MG (2000). Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature.Nature, 404, 858-861.
11 IPCC (Intergovernmental Panel on Climate Change) (2013). Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. In: Thomas FS, Din D, Gian-Kasper P, Melinda MBT, Simon KA, Judith B, Alexander N, Yu X, Vincent B, Pauline MM eds. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK.
12 Jassal RS, Andrewk T, Novak MD, Gaumont GD, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand.Global Change Biology, 14, 1305-1318.
13 Kuzyakov Y (2010). Priming effects: Interactions between living and dead organic matter.Soil Biology & Biochemistry, 42, 1363-1371.
14 Kuzyakov Y (2011). Ecology: Prime time for microbes. Nature Climate Change, 1, 295-297.
15 Kuzyakov Y, Friedel JK, Stahr K (2000). Review of mechanisms and quantification of priming effects.Soil Biology & Biochemistry, 32, 1485-1498.
16 La?titia B, Stéphane P, Jacques R, Vincent F, Marie-Madeleine C, Damien B, Daniel E (2009). Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots. Plant and Soil, 319, 235-246.
17 Laganière J, Paré D, Bergeron Y, Chen HYH (2012). The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality.Soil Biology & Biochemistry, 53, 18-27.
18 Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY, Robitaille G (2003). Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems.Canadian Journal of Forest Research, 33, 1744-1753.
19 Leff JW, Wieder WR, Taylor PG, Townsend AR, Nemergut DR, Stuart GA, Cleveland CC (2012). Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.Global Change Biology, 18, 2969-2979.
20 Li YQ, Xu M, Sun OJ, Cui WC (2004). Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests.Soil Biology & Biochemistry, 36, 2111-2114.
21 Lü MK, Xie JS, Wang C, Guo JF, Wang MH, Liu XF, Chen YM, Chen GS, Yang YS (2015). Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China.Biology & Fertility of Soils, 51, 857-867.
22 Luo YQ, Zhou XH (2006). Soil Respiration and the Environment. Academic Press, Oxford, UK.
23 Manzoni S, Schimel JP, Porporato A (2012). Responses of soil microbial communities to water stress: Results from a meta-analysis.Ecology, 93, 930-938.
24 Mesquita RDCG, Workman SW, Neely CL (1998). Slow litter decomposition in a Cecropia-dominated secondary forest of central Amazonia.Soil Biology & Biochemistry, 30, 167-175.
25 Nadelhoffer KJ, Boone RD, Bowden RD (2004). The DIRT experiment: Litter and root influences on forest soil organic matter stocks and function. In: Foster D, Aber J eds. Forests in Time: The Environmental Consequences of 1000 Years of Change in New England. Yale University Press, The Hague. 300-315.
26 Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng WX, Wullschleger SD, Gumderson CA, Edwards NT, Johnson DW (2002). Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage.Ecological Applications, 12, 1261-1266.
27 Piao S, Ciais P, Peylin P (2009). The carbon balance of terrestrial ecosystems in China.Nature, 458, 1009-1013.
28 Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982). Soil carbon pools and world life zones.Nature, 298, 156-159.
29 Raich JW, Nadelhoffer KJ (1989). Belowground carbon allocation in forest ecosystems: Global trends.Ecology, 70, 1346-1354.
30 Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.Tellus, 44, 81-99.
31 Rey A, Pegoraro E, Tedeschi V, Parri ID, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in Central Italy.Global Change Biology, 8, 851-866.
32 Sampson DA, Janssens IA, Yuste JC, Ceulemans R (2007). Basal rates of soil respiration are correlated with photosynthesis in a mixed temperate forest.Global Change Biology, 13, 2008-2017.
33 Schlesinger WH, Lichter J (2001). Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2.Nature, 411, 466-469.
34 Sheng H, Yang YS, Yang ZJ, Chen GS, Xie JS, Guo JF, Zou SQ (2010). The dynamic response of soil respiration to land-use changes in subtropical China.Global Change Biology, 16, 1107-1121.
35 Shi XH, Zhang XP, Liang AZ, Shen Y, Fan RQ, Yang XM (2010). Advance in the main controlling soil carbon dioxide flux.Chinese Journal of Soil Science, 41, 761-768. (in Chinese with English abstract)[时秀焕, 张晓平, 梁爱珍, 申艳, 范如芹, 杨学明 (2010). 土壤CO2排放主要影响因素的研究进展. 土壤通报, 41, 761-768.]
36 Sombroek WG, Nachtergaele FO, Hebel A (1993). Amounts, dynamics and sequestering of carbon in tropical and subtropical soils.AMBIO, 22, 417-425.
37 Wang GJ, Tian DL, Yan WD, Zhu F, Li SZ (2009a). Impact of litter addition and exclusion on soil respiration in a Liquidambar formosana forest and a nearby Cinnamomum camphora forest of central southern China.Acta Ecologica Sinica, 29, 643-652. (in Chinese with English abstract)[王光军, 田大伦, 闫文德, 朱凡, 李树战 (2009a). 去除和添加凋落物对枫香(Liquidambar formosana)和樟树(Cinnamomum camphora)林土壤呼吸的影响. 生态学报, 29, 643-652.
38 Wang GJ, Tian DL, Yan WD, Zhu F, Li SZ (2009b). Soil system respiration and its controlling factors in Cunninghamia lanceolata and Pinus massoniana communities of subtropical China.Chinese Journal of Plant Ecology, 33, 53-62. (in Chinese with English abstract)[王光军, 田大伦, 闫文德, 朱凡, 李树战 (2009b). 亚热带杉木和马尾松群落土壤系统呼吸及其影响因子. 植物生态学报, 33, 53-62.]
39 Wang JS, Zhao XH, Zhang CY, Kang FF, Shang BS, Chi QJ (2012). Changes of carbon input influence soil respiration in a Pinus tabulaeformis plantation.Acta Ecologica Sinica, 32, 2768-2777. (in Chinese with English abstract)[汪金松, 赵秀海, 张春雨, 康峰峰, 尚宝山, 池青俊 (2012). 改变C源输入对油松人工林土壤呼吸的影响. 生态学报,32, 2768-2777.]
40 Wang YF, Hao YB, Cui XY, Zhao HT, Xu CY, Zhou XQ, Xu ZH (2014). Responses of soil respiration and its components to drought stress.Journal of Soils & Sediments, 14, 99-109.
41 Wei SJ, Luo BZ, Sun L, Wei SW, Liu FF, Hu HQ (2013). Spatial and temporal heterogeneity and effect factors of soil respiration in forest ecosystems: A review.Ecology & Environmental Sciences, 22, 689-704. (in Chinese with English abstract)[魏书精, 罗碧珍, 孙龙, 魏书威, 刘芳芳, 胡海清 (2013). 森林生态系统土壤呼吸时空异质性及影响因子研究进展. 生态环境学报, 22, 689-704.]
42 Woodwell GM, Whitaker RH, Reiners WA, Likens GE, Delwich CC, Botkin DB (1978). The biota and world carbon budget.Science, 199, 141-146.
43 Xu S, Liu L, Sayer EJ (2013). Variability of above-ground litter inputs alters soil physicochemical and biological processes: A meta-analysis of litterfall-manipulation experiments.Biogeosciences, 10, 7423-7433.
44 Yang WQ, Deng RJ, Zhang J (2007). Forest litter decomposition and its responses to global climate change.Chinese Journal of Applied Ecology, 18, 2889-2895. (in Chinese with English abstract)[杨万勤, 邓仁菊, 张健 (2007). 森林凋落物分解及其对全球气候变化的响应. 应用生态学报, 18, 2889-2895.]
45 Zhang ZQ, Lin KM, Zou SQ, Cao GQ (2006). Decomposition of Cunninghamia lanceolata litter with different control measures.Journal of Zhejiang Forest College, 23, 65-69. (in Chinese with English abstract)[章志琴, 林开敏, 邹双全, 曹光球 (2006). 不同调控措施对杉木枯落物分解的影响. 浙江林学院学报, 23, 65-69.]
46 Zheng ZM, Yu GR, Fu YL, Sun XM (2009). Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study.Soil Biology & Biochemistry, 41, 1531-1540.
文章导航

/

005-264X/bottom_cn.htm"-->