研究论文

黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略

展开
  • 1西北农林科技大学水利与建筑工程学院, 陕西杨凌 712100
    2西北农林科技大学水土保持研究所, 陕西杨凌 712100
    3中国科学院水利部水土保持研究所, 陕西杨凌 712100
    4兰州大学西部环境教育部重点实验室, 兰州 730000
* 通信作者Author for correspondence (E-mail:sunzhiqiang1956@sina.com)

收稿日期: 2016-08-01

  录用日期: 2016-12-25

  网络出版日期: 2017-03-16

Soil water use strategy of dominant species in typical natural and planted shrubs in loess hilly region

Expand
  • 1College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China

    2Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China

    3Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China

    4Key Laboratory of Western China’s Environmental Systems of Ministry of Education, Lanzhou University, Lanzhou 730000, China
KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

Received date: 2016-08-01

  Accepted date: 2016-12-25

  Online published: 2017-03-16

摘要

细裂叶莲蒿(Artemisia gmelinii)是黄土高原农地退耕后长期存在的天然植物群落优势种。柠条锦鸡儿(Caragana korshinskii)灌丛是黄土高原防治水土流失的主要人工群落类型。研究它们的水分利用策略对评价气候暖干化趋势下黄土高原生态建设可持续性具有重要意义。该研究以退耕7年的天然草地细裂叶莲蒿群落、退耕30年的天然草地细裂叶莲蒿群落和退耕30年的人工灌木林柠条锦鸡儿群落为研究对象, 采用氧稳定同位素比率(δ18O)技术研究其对不同土层土壤水分利用的季节性变化, 通过MixSIR模型量化各土层土壤水分利用的贡献。结果表明: 在δD-δ18O分布图上, 对黄土丘陵区降水样的氢稳定同位素比率(δD)和δ18O回归分析得到当地的大气降水线, 土壤水和植物水中的氢氧稳定同位素组成在δD-δ18O分布图上都位于当地大气降水线的右下方, 表明研究区土壤水分中的同位素组成受强烈蒸发影响发生了富集作用。随着季节变化, 退耕7年的天然草地细裂叶莲蒿和退耕30年的人工灌木林柠条锦鸡儿植物水分来源可在不同土层之间较为灵活地转换, 当浅层(0-40 cm)土壤水可利用时, 植物主要利用40 cm以上的土壤水分; 当浅层土壤干燥时, 主要吸收40-80 cm土层土壤的水分。退耕30年天然草地中细裂叶莲蒿主要依赖于0-10 cm表层土壤的水分。这表明在未来极端干旱事件发生频率增大的情况下, 退耕7年的天然草地细裂叶莲蒿和退耕30年的人工灌木林柠条锦鸡儿具有更大的生存优势, 而退耕30年的天然草地细裂叶莲蒿受干旱等极端天气影响更为严重。

本文引用格式

吕婷, 赵西宁, 高晓东, 潘燕辉 . 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[J]. 植物生态学报, 2017 , 41(2) : 175 -185 . DOI: 10.17521/cjpe.2016.0253

Abstract

Aims Artemisia gmelinii is a dominant specie naturally established after abandonment of cultivated lands in the Loess Plateau, and Caragana korshinskii is one of the main planted shrub species to control soil erosion. Improved understanding of water use strategies of these two species is of great significance to evaluate the sustainable development of the Loess Plateau under the trend of climate warming and increasing drought events.
Methods Stable oxygen-18 isotope was used to determine seasonal variations in the water sources of native A. gmelinii communities established after abandonment of cultivated lands for 7 and 30 years and planted C. korshinskii after 30 years. The contributions of soil water from different depths to water uptake were estimated by the MixSIR Bayesian mixing model. The geometric mean regression method was used to fit the line of precipitation to get the local meteoric water line (LWML).
Important findings The stable hydrogen isotope rate (δD) and stable oxygen isotope rate (δ18O) of soil water and xylem water plotted to the right side of the LWML, indicating that the isotopic compositions of soil water were enriched due to evaporation. The native A. gmelinii communities established after abandonment of cultivated lands for 7 years and planted C. korshinskii after 30 years showed plasticity in switching water sources from different soil layers, extracting water from shallow soil (0-40 cm) when soil water was available, but deeper soil (40-80 cm) when shallow soil water was dry. In contrast, A. gmelinii growing in site after cultivation abandonment for 30 years mainly relied on water from the surface soil (0-10 cm) throughout the growing season. Our results suggest that the ability of A. gmelinii to compete for soil water reduces with aging of the community while the planted C. korshinskii will have competitive advantage under the condition of increasing frequency of drought events in the future.

参考文献

[1] Asbjornsen H, Shepherd G, Helmers M, Mora G (2008). Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the corn belt region of the midwestern US.Plant and Soil, 308, 69-92.
[2] Brunel JP, Walker GR, Kennett-Smith AK (1995). Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment. Journal of Hydrology, 167, 351-368.
[3] Cai M, Han RL, Jin SJ, Guo Y, Liang ZS (2012). Effect of soul drought on growth and water consumption of two subshrub species in Loess Plateau. Journal of Northwest Forestry University, 27, 26-32. (in Chinese with English abstract)[蔡马, 韩蕊莲, 靳淑静, 郭颖, 梁宗锁 (2012). 土壤干旱对黄土高原2种半灌木植物生长与耗水规律的影响. 西北林学院学报, 27, 26-32.]
[4] Chen J, Xu Q, Gao DQ, Song AY, Hao YG, Ma YB (2017). Differential water use strategies among selected rare and endangered species in West Ordos Desert of China. Journal of Plant Ecology, 10, in press. doi: 10.1093/jpe/rtw-059.
[5] Chen XL, Chen YN, Chen YP (2014). Relationship among water use of different plants in Heihe River riparian forests.Chinese Journal of Eco-Agriculture, 22, 927-979. (in Chinese with English abstract)[陈小丽, 陈亚宁, 陈亚鹏 (2014). 黑河下游荒漠河岸林植物水分利用关系研究. 中国生态农业学报, 22, 972-979.]
[6] Cheng XL, An SQ, Li B, Chen GQ, Lin GH, Liu YH, Luo YQ, Liu SR (2006). Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecology, 184, 1-12.
[7] Dai Y, Zheng XJ, Tang LS, Li Y (2014). Dynamics of water usage in Haloxylon ammodendron in the southern edge of the Gurbantünggüt Desert. Chinese Journal of Plant Ecology, 38, 1214-1225. (in Chinese with English abstract)[戴岳, 郑新军, 唐立松, 李彦 (2014). 古尔班通古特沙漠南缘梭梭水分利用动态. 植物生态学报, 38, 1214-1225.]
[8] Dai Y, Zheng XJ, Tang LS, Li Y (2015). Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantünggüt Desert.Plant and Soil, 389, 73-87.
[9] Dawson TE, Mambelli S, Plamboeck AH, Templer P, Tu KP (2002). Stable isotopes in plant ecology.Annual Review of Ecology and Systematics, 33, 507-559.
[10] Ehleringer JR, Dawson TE (1992). Water uptake by plants: Perspectives from stable isotope composition.Plant, Cell & Environment, 15, 1073-1082.
[11] Ellsworth PZ, Williams DG (2007). Hydrogen isotope fractionation during water uptake by woody xerophytes.Plant and Soil, 291, 93-107.
[12] Gao XD (2013). Catchment-Scale Available Soil Moisture Spatial-Temporal Variability in the Hilly Areas of the Loess Plateau. PhD dissertation, Graduate University of Chinese Academy of Sciences and Ministry of Education Research Center of Soil and Water Conservation and Ecological Environment, Yangling, Shaanxi. 35-64. (in Chinese with English abstract)[高晓东 (2013). 黄土丘陵区小流域土壤有效水时空变异与动态模拟研究. 博士学位论文, 中国科学院研究生院教育部水土保持与生态环境研究中心, 陕西杨凌. 35-64.]
[13] Hu XM, Chen JM, Wan HE, Zhao YY, Xu XB, Gu XJ, Li WJ (2006). Effect of short-term watering on photosynthetic characteristics and chlorophyll fluorescence of Artemisia sacrorum under long-term drought.Acta Agrestia Sinica, 14, 236-241. (in Chinese with English abstract)[胡相明, 程积民, 万惠娥, 赵艳云, 徐宣斌, 古晓林, 李维军 (2006). 短期施水对长期干旱细裂叶莲蒿光合作用和叶绿素荧光特征的影响. 草地学报, 14, 236-241.]
[14] Leng X, Cui J, Zhang S, Zhang W, Liu Y, Liu S, An S (2013). Differential water uptake among plant species in humid alpine meadows.Journal of Vegetation Science, 24, 138-147.
[15] Liu W, Wang P, Li J, Liu W, Li H (2014). Plasticity of source water acquisition in epiphytic, transitional and terrestrial growth phases of Ficus tinctoria.Ecohydrology, 7, 1524-1533.
[16] Meng XJ, Wen XF, Zhang XY, Han JY, Sun XM, Li XB (2012). Potential impacts of organic contaminant on δ18O and δD in leaf and xylem water detected by isotope ratio infrared spectroscopy.Chinese Journal of Eco-Agricul- ture, 20, 1359-1365. (in Chinese with English abstract)[孟宪菁, 温学发, 张心昱, 韩佳音, 孙晓敏, 李晓波 (2012). 有机物对红外光谱技术测定植物叶片和茎秆水δ18O和δD的影响. 中国生态农业学报, 20, 1359-1365.]
[17] Moore JW, Semmens BX (2008). Incorporating uncertainty and prior information into stable isotope mixing models. Ecology Letters, 11, 470-480.
[18] Ning T (2014). Study on Suitable Initial Planting Density of Caragana korshinskii Plantation in Semi-Arid Loess Hilly Region. PhD dissertation, Graduate University of Chinese Academy of Sciences and Ministry of Education Research Center of Soil and Water Conservation and Ecological Environment, Yangling, Shaanxi. 1-9. (in Chinese with English abstract)[宁婷 (2014). 半干旱黄土丘陵区人工柠条锦鸡儿林合理初植密度研究. 博士学位论文, 中国科学院研究生院教育部水土保持与生态环境研究中心, 陕西杨凌. 1-9.]
[19] Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: Coping with too many sources.Oecologia, 136, 261-269.
[20] Rozanski K, Araguás-Araguás L, Gonfiantini R (1993). Isotopic patterns in modern global precipitation.Climate Change in Continental Isotopic Records, 78, 1-36.
[21] Wang P, Song X, Han D, Zhang Y, Liu X (2010). A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China.Agricultural Water Management, 97, 475-482.
[22] Xu GQ, Li Y (2009). Roots distribution of three desert shrubs and their response to precipitation under co-occurring conditions.Acta Ecologica Sinica, 29, 130-137. (in Chinese with English abstract)[徐贵青, 李彦 (2009). 共生条件下三种荒漠灌木的根系分布特征及其对降水的响应. 生态学报, 29, 130-137.]
[23] Xu Q, Li HB, Chen JQ, Cheng XL, Liu SR, AN SQ (2011). Water use patterns of three species in subalpine forest, Southwest China: The deuterium isotope approach. Ecohydrology, 4, 236-244.
[24] Yang B, Wen X, Sun X (2015a). Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin.Scientific Reports, 5, 12506. doi: 10.1038/srep15206.
[25] Yang B, Wen X, Sun X (2015b). Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region.Agricultural and Forest Meteorology, 201, 218-228.
[26] Yin L, Zhao LJ, Ruan YF, Xiao HL, Cheng GD, Zhou MX, Wang F, Li CZ (2012). Study of the replenishment sources of typical ecosystems water and dominant plant water in the lower reaches of the Heihe, China.Journal of Glaciology and Geocryology, 34, 1478-1486. (in Chinese with English abstract)[尹力, 赵良菊, 阮云峰, 肖洪浪, 程国栋, 周茅先, 王芳, 李彩芝 (2012). 黑河下游典型生态系统水分补给源及优势植物水分来源研究. 冰川冻土, 34, 1478-1486.]
[27] Zhang BQ (2014). Study on Spatiotemporal Variability of Drought and Rainwater Harvesting Potential on the Chinese Loess Plateau. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. 106-111. (in Chinese with English abstract)[张宝庆 (2014). 黄土高原干旱时空变异及雨水资源化潜力研究. 博士学位论文, 西北农林科技大学, 陕西杨凌. 106-111.]
[28] Zhang BQ, Wu PT, Zhao XN, Gao XD (2012). Study on regional drought assessment based on variable infiltration capacity model and palmer drought severity index.Journal of Hydraulic Engineering, 43, 926-934. (in Chinese with English abstract)[张宝庆, 吴普特, 赵西宁, 高晓东 (2012). 基于可变下渗容量模型和Palmer干旱指数的区域干旱化评价研究. 水利学报, 43, 926-934.]
[29] Zhao WZ, Cheng GD (2001). Comments on a number of issues of eco-hydrological processes in arid areas.Chinese Sci- ence Bulletin, 46, 1851-1857. (in Chinese with English abstract)[赵文智, 程国栋 (2001). 干旱区生态水文过程研究若干问题评述. 科学通报, 46, 1851-1857.]
[30] Zhao XN, Wu PT, Wang WZ, Feng H (2005). Research ad- vance on eco-environmental water requirement.Advances in Water Science, 16, 617-622. (in Chinese with English abstract)[赵西宁, 吴普特, 王万忠, 冯浩 (2005). 生态环境需水研究进展. 水科学进展, 16, 617-622.]
[31] Zheng XR, Zhao GQ, Li XY, Li L, Wu HW, Zhang SY, Zhang ZH (2015). Application of stable hydrogen isotope in study of water sources for Caragana microphylla bushland in Nei Mongol. Chinese Journal of Plant Ecology, 39, 184-196. (in Chinese with English abstract)[郑肖然, 赵国琴, 李小雁, 李柳, 吴华武, 张思毅, 张志华 (2015). 氢同位素在内蒙古小叶锦鸡儿灌丛水分来源研究中的应用. 植物生态学报, 39, 184-196.]
[32] Zhou H, Zhao W, Zheng X, Li S (2015). Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat.Journal of Plant Research, 128, 613-622.
[33] Zhou H, Zheng XJ, Tang LS, Li Y (2013). Differences and similarities between water sources of Tamarix ramosissima, Nitraria sibirica and Reaumuria soongorica in the southeastern Junggar Basin.Chinese Journal of Plant Ecology, 37, 665-673. (in Chinese with English abstract)[周海, 郑新军, 唐立松, 李彦 (2013). 准噶尔盆地东南缘多枝柽柳、白刺和红砂水分来源的异同. 植物生态学报, 37, 665-673.]
[34] Zhou P, Liu GB, Hou XL (2008). Study on vegetation and soil nutrient characters of Artemisia sacrorum communities in hilly-gully region of the Loess Plateau.Acta Prataculturae Sinica, 17, 9-18. (in Chinese with English abstract)[周萍, 刘国彬, 侯喜禄 (2008). 黄土丘陵区铁杆蒿群落植被特性及土壤养分特征研究. 草业学报, 17, 9-18]
[35] Zhu L, Qi YS, Xu X (2014). Water sources of Medicago sativa grown in different slope positions in Yanchi County of Ningxia.Chinese Journal of Plant Ecology, 38, 1226-1240. (in Chinese with English abstract)[朱林, 祁亚淑, 许兴 (2014). 宁夏盐池不同坡位旱地紫苜蓿水分来源. 植物生态学报, 38, 1226-1240.]
文章导航

/