研究论文

腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应

展开
  • 1中国科学院西北生态环境资源研究院, 沙坡头沙漠研究试验站, 兰州 730000
    2中国科学院大学, 北京 100049
* 通信作者Author for correspondence (E-mail:sunzhiqiang1956@sina.com)

网络出版日期: 2017-04-12

基金资助

国家自然科学基金(41530746和41621001)和中国科学院“西部之光”博士项目

Responses of soil respiration with biocrust cover to water and temperature in the southeastern edge of Tengger Desert, Northwest China

Expand
  • 1Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    and
    2University of Chinese Academy of Sciences, Beijing 100049, China
KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

Online published: 2017-04-12

摘要

生物结皮土壤呼吸是干旱区碳循环的重要参与者, 是了解荒漠生态系统碳循环的重要过程之一, 但有关生物结皮土壤呼吸对水热因子的响应还存在许多不确定性, 难以在区域尺度上准确评估生物结皮土壤系统碳排放对水热因子变化的响应及反馈方向和程度。该文以腾格里沙漠东南缘天然植被区藓类和藻-地衣结皮土壤为研究对象, 利用开顶式生长室模拟增温, 采用全自动土壤碳通量测定系统研究了模拟增温及降水格局变化对不同类型生物结皮土壤呼吸的影响。结果表明: 观测期间(2016年4月1日到7月31日), 不同自然降水事件下(降水量在0.3-30.0 mm间), 藓类结皮土壤呼吸速率在-0.16-4.69 μmol·m-2·s-1之间变动, 藻-地衣结皮土壤呼吸速率在-0.21-5.72 μmol·m-2·s-1之间变动。藓类结皮土壤呼吸速率平均为1.09 μmol·m-2·s-1, 高于藻-地衣结皮土壤呼吸速率的0.94 μmol·m-2·s-1, 是藻-地衣结皮土壤呼吸速率的1.2倍。生物结皮土壤呼吸在不同的降水事件下具有明显的时空异质性, 且生物结皮土壤呼吸速率与降水量有显著正相关关系。对照下两类结皮土壤呼吸速率平均为1.24 μmol·m-2·s-1, 增温条件下为0.79 μmol·m-2·s-1, 增温显著降低了其呼吸速率, 增温主要是通过加速土壤水分的散失而降低两类结皮土壤呼吸。大多数情况下, 土壤温度和生物结皮土壤呼吸呈现类似的单峰曲线, 但土壤温度峰值出现的时间滞后于生物结皮土壤呼吸峰值出现的时间, 滞后时间一般为2 h。

本文引用格式

管超, 张鹏, 李新荣 . 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应[J]. 植物生态学报, 2017 , 41(3) : 301 -310 . DOI: 10.17521/cjpe.2016.0326

Abstract

Aims Soil respiration of the lands covered by biocrusts is an important component in the carbon cycle of arid, semi-arid and dry-subhumid ecosystems (drylands hereafter), and one of the key processes in the carbon cycle of drylands. However, the responses of the rate of soil respiration with biocrusts to water and temperature are uncertain in the investigations of the effects of experimental warming and precipitation patterns on CO2 fluxes in biocrust dominated ecosystems. The objectives of this study were to investigate the relationships of carbon release from the biocrust-soil systems with water and temperature in drylands. Methods Intact soil columns with two types of biocrusts, including moss and algae-lichen crusts, were collected in a natural vegetation area in the southeastern fringe of the Tengger Desert. Open top chambers were used to simulate climate warming, and the soil respiration rate was measured under warming and non-warming treatments using an automated soil respiration system (LI-8150). Important findings Over the whole observational period (from April 2016 to July 2016), soil respiration rates varied from -0.16 to 4.69 μmol·m-2·s-1 for the moss crust-covered soils and from -0.21 to 5.72 μmol·m-2·s-1 for the algae-lichen crust-covered soils, respectively, under different rainfall events (the precipitations between 0.3-30.0 mm). The mean soil respiration rate of the moss crust-covered soils is 1.09 μmol·m-2·s-1, which is higher than that of the algae-lichen crust-covered soils of 0.94 μmol·m-2·s-1. The soil respiration rate of the two types of biocrust-covered soils showed different dynamics and spatial heterogeneities with rainfall events, and were positively correlated with precipitation. The mean soil respiration rate of the biocrust-covered soils without warming was 1.24 μmol·m-2·s-1, significantly higher than that with warming treatments of 0.79 μmol·m-2·s-1 (p < 0.05). By increasing the evaporation of soil moisture, the simulated warming impeded soil respiration. In most cases, soil temperature and soil respiration rate displayed a similar single-peak curve during the diel cycle. Our results show an approximately two hours’ lag between soil temperature at 5 cm depth and the soil respiration rate of the biocrust-covered soils during the diel cycle.

参考文献

[1] Allison SD, Treseder KK (2008). Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 14, 2898-2909.
[2] Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004). Water pluses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221-235.
[3] Belnap J (1994). Cryptobiotic soil crusts: Basis for arid land restoration (Utah). Restoration and Management Notes, 12, 85-86.
[4] Belnap J, Phillips SL, Miller ME (2004). Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia, 141, 106-316.
[5] Bowling D, Grote E, Belnap J (2011). Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. Journal of Geophysical Research Atmospheres, 116, 2415-2422.
[6] Chen J, Luo YQ, Xia JY, Shi Z, Jiang LF, Niu SL, Zhou XH, Cao JJ (2016). Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agricultural and Forest Meteorology, 220, 21-29.
[7] Conant RT, Dalla-Betta P, Klopatek CC, Klopatek JM (2004). Controls on soil respiration in semiarid soils. Soil Biology & Biochemistry, 36, 945-951.
[8] Gao YH, Zhang ZS, Liu LC, Jia RL (2012). Soil respiration patterns during restoration of vegetation in the Shapotou Area, Northern China. Acta Ecologica Sinica, 32, 2474-2482. (in Chinese with English abstract)[高艳红, 张志山, 刘立超, 贾荣亮 (2012). 沙坡头人工植被演替过程的土壤呼吸特征. 生态学报, 32, 2474-2482.]
[9] Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005). Trends in intense precipitation in the climate record. Journal of Climate, 18, 1326-1350.
[10] Hu YG, Feng YL, Zhang ZS, Huang L, Zhang P, Xu BX (2014). Greenhouse gases fluxes of biological soil crusts and soil ecosystem in the artificial sand-fixing vegetation region in Shapotou area. Chinese Journal of Applied Ecology, 25, 61-68. (in Chinese with English abstract)[胡宜刚, 冯玉兰, 张志山, 黄磊, 张鹏, 徐冰鑫 (2014). 沙坡头人工植被固沙区生物结皮-土壤系统温室气体通量特征. 应用生态学报, 25, 61-68.]
[11] Huang G, Li Y, Su YG (2015). Effects of increasing precipitation on soil microbial community composition and soil respiration in a temperate desert, Northwestern China. Soil Biology & Biochemistry, 83, 52-56.
[12] Huang L, Zhang ZS, Wu P (2010). Wavelet analysis of the precipitation time series in Shapotou desert area. Journal of Lanzhou University (Natural Sciences), 46(5), 63-66. (in Chinese with English abstract)[黄磊, 张志山, 吴攀 (2010). 沙坡头地区多年降水量时间序列的小波分析. 兰州大学学报(自然科学版), 46(5), 63-66.]
[13] IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[14] Lane RW, Menon M, McQuaid JB, Adams DG, Thomas AD, Hoon SR, Dougill AJ (2013). Laboratory analysis of the effects of elevated atmospheric carbon dioxide on respira¬tion in biological soil crusts. Journal of Arid Environ¬ments, 98, 52-59.
[15] Law BE, Kelliher FM, Baldocchi DD, Anthoni PM, Irvine J, Moore D, van Tuyl S (2001). Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agricultural and Forest Meteorology, 110, 27-43.
[16] Li XR, Zhang YM, Zhao YG (2009). A study of biological soil crusts: Recent development, trend and prospect. Advances in Earth Science, 24, 11-14. (in Chinese with English abstract)[李新荣, 张元明, 赵允格 (2009). 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-14.]
[17] Li XR, Zhou HY, Wang XP, Liu LC, Zhang JG, Chen GX, Zhang ZS, Liu YB, Tan HJ, Gao YH (2016). Ecological restoration and recovery in arid desert regions of China: A review for 60-year research progresses of Shapotou Desert Research and Experiment Station, Chinese Academy of Sciences. Journal of Desert Research, 36, 247-264. (in Chinese with English abstract)[李新荣, 周海燕, 王新平, 刘立超, 张景光, 陈国雄, 张志山, 刘玉冰, 谭会娟, 高艳红 (2016). 中国干旱沙区的生态重建与恢复: 沙坡头站60年重要研究进展综述. 中国沙漠, 36, 247-264.]
[18] Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
[19] Lundegardh H (1927). Carbon dioxide evolution and crop growth. Soil Science, 23, 417-453.
[20] Luo CY, Xu GP, Chao ZG, Wang SP, Lin XW, Hu YG, Zhang ZH, Duan JC, Chang XF, Su AL, Li YN, Zhao XQ, Du MY, Tang YH, Kimball B (2010). Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau. Global Change Biology, 16, 1606-1617.
[21] Luo YQ, Zhou XH (2007). Soil Respiration and the Environment. Translated by Jiang LF, Qu LY, Zhou YM, Wen YX. Higher Education Press, Beijing. 18-21. (in Chinese)[骆亦其, 周旭辉 (2007). 土壤呼吸与环境. 姜丽芬, 曲来叶, 周玉梅, 温逸馨, 译. 高等教育出版社, 北京.]
[22] Maestre FT, Escolar C, de Guevara ML, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gozalo B, Gallardo A (2013). Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Global Change Biology, 19, 3835-3847.
[23] Nash TH III (1996). Lichen Biology. Cambridge University Press, Cambridge, UK.
[24] New M, Todd M, Hulme M, Jones P (2001). Precipitation measurements and trends in the twentieth century. International Journal of Climatology, 21, 1899-1922.
[25] Noy-Meir I (1973). Desert ecosystems environment and producers. Annual Review of Ecology and Systematics, 4, 25-51.
[26] Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JM, Henry GHR, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G (2007). Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecological Monographs, 77, 221-238.
[27] Reynolds JF, Smith DM, Lambin EF, Turner BL, Mortimore M, Batterbury S, Downing TE, Dowlatabadi H, Fernandez RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker BG (2007). Global desertification: Building a science for dryland development. Science, 316, 847-851.
[28] Riveros-Iregui DA, Emanuel RE, Muth DJ, McGlynn BL, Epstein HE, Welsch DL, Pacific VJ, Wraith JM (2007). Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content. Geophysical Research Letters, 34, L17404.
[29] Sala OE, Laurenroth WK (1982). Small rainfall events: An ecological role in semiarid regions. Oecologia, 53, 301-304.
[30] Schwinning S, Sala OE (2004). Hierarchy of responses to re¬source pulses in arid and semi-arid ecosystems. Oecologia, 141, 211-220.
[31] Sharkhuu A, Plante AF, Enkhmandal O, Gonneau C, Casper BB, Boldgiv B, Petraitis PS (2016). Soil and ecosystem respiration responses to grazing, watering and experimen¬tal warming chamber treatments across topographical gra¬dients in northern Mongolia. Geoderma, 269, 91-98.
[32] Shen ZX, Li YL, Fu G (2015). Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet. Applied Soil Ecology, 90, 35-40.
[33] Shi YF (1996). Features and tendency of global warming and its implications for China. Journal of Natural Disasters, 5(2), 1-10. (in Chinese with English abstract)[施雅风 (1996). 全球和中国变暖特征及未来趋势. 自然灾害学报, 5(2), 1-10.]
[34] Su YG, Wu L, Zhou ZB, Liu YB, Zhang YM (2013). Carbon flux in deserts depends on soil cover type: A case study in the Gurbantunggute desert, North China. Soil Biology & Biochemistry, 58, 332-340.
[35] Subke JA, Reichstein M, Tenhunen JD (2003). Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biology & Biochemistry, 35, 1467-1483.
[36] Swemmer AM, Knapp AK, Snyman HA (2007). Intra-seasonal precipitation patterns and aboveground productivity in three perennial grasslands. Journal of Ecology, 95, 780-788.
[37] Wang B, Zha TS, Jia X, Wu B, Zhang YQ, Qin SG (2014). Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences, 11, 259-268.
[38] Wang Q, He NP, Liu Y, Li ML, Xu L (2016). Strong pulse effects of precipitation events on soil microbial respiration in temperate forests. Geoderma, 275, 67-73.
[39] West NE, Stark JM, Johnson DW, Abrams MM, Wight JR, Heggem D, Peck S (1994). Effects of climatic-change on the edaphic features of arid and semiarid lands of western north America. Arid Soil Research Rehabilitation, 8, 307-351.
[40] Xu BX, Hu YG, Zhang ZS, Chen YL, Zhang P, Li G (2014). Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region. Chinese Journal of Plant Ecology, 38, 809-820. (in Chinese with English abstract)[徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚 (2014). 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报, 38, 809-820.]
[41] Xu WF, Li XL, Liu W, Li LH, Hou LY, Shi HQ, Xia JZ, Liu D, Zhang HC, Chen Y, Cai WW, Fu Y, Yuan WP (2016). Spatial patterns of soil and ecosystem respiration regulated by biological and environmental variables along a precipitation gradient in semi-arid grasslands in China. Ecological Research, 31, 505-513.
[42] Zhang ZS, Dong XJ, Liu YB, Li XR, Jia RL, Hu YG, He MZ, Huang L (2012). Soil oxidases recovered faster than hydrolases in a 50-year chronosequence of desert revegetation. The Plant Soil, 358, 275-287.
[43] Zhang ZS, Dong XJ, Xu BX, Chen YL, Zhao Y, Gao YH, Hu YG, Huang L (2015). Soil respiration sensitivities to water and temperature in a revegetated desert. Journal of Geophysical Research: Biogeosciences, 120, 773-787.
[44] Zhang ZS, Li XR, Nowak RS, Wu P, Gao YH, Zhao Y, Huang L, Hu YG, Jia RL (2013). Effect of sand-stabilizing shrubs on soil respiration in a temperate desert. The Plant Soil, 367, 449-463.
[45] Zhao Y, Li XR, Zhang ZS (2014). Biological soil crusts influence carbon release response following rainfall in a temperate desert, northern China. Ecological Research, 29, 889-896.
[46] Zhu YJ, Wu B, Lu Q (2012). Progress in the study on response of arid zones to precipitation change. Forest Research, 25, 100-106. (in Chinese with English abstract)[朱雅娟, 吴波, 卢琦 (2012). 干旱区对降水变化响应的研究进展. 林业科学研究, 25, 100-106.]
文章导航

/