高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析
收稿日期: 2020-09-25
录用日期: 2021-01-14
网络出版日期: 2021-03-09
基金资助
第二次青藏高原综合科学考察研究(SQ2019QZKK2004);国家重点研发计划(2016YFC0502002);国家自然科学基金(41401072)
Analyzing leaf anatomical structure of dominant species Stipa purpurea adapting to alpine and drought environment at Qingzang Plateau
Received date: 2020-09-25
Accepted date: 2021-01-14
Online published: 2021-03-09
Supported by
Second Comprehensive Scientific Investigation of the Qinghai-Tibet Plateau(SQ2019QZKK2004);National Key R&D Program of China(2016YFC0502002);National Natural Science Foundation of China(41401072)
随着气候变暖, 高寒草原分布面积逐步增加, 高寒草原植物如何适应高寒干旱环境的研究还比较缺乏。该研究通过分析高寒草原优势种紫花针茅(Stipa purpurea)不同地理种群叶片解剖结构特征差异及其与气候因子的相关性, 阐明紫花针茅叶片适应高寒环境的策略, 为理解高寒植物对高寒干旱胁迫环境的适应机制提供科学依据。在青藏高原不同地理位置选择8个紫花针茅种群, 选择成熟健康叶片用卡诺氏固定液固定, 将固定好的叶片带回实验室进行石蜡切片和染色, 用显微镜观察叶片结构, 并用数码相机拍摄, 然后用软件Image-pro plus 6对叶片结构进行测量。结果显示: 紫花针茅叶片普遍具有较厚的角质层, 可减少水分散失和抵御较强的辐射; 不同地理种群紫花针茅叶片解剖结构在厚壁细胞厚度、叶片厚度、导管直径、主脉导管腔面积/主脉维管束面积和维管束面积/叶横切面积等特征上存在较大差异, 以适应不同区域的生境。Pearson相关性和聚类分析结果表明紫花针茅叶片解剖结构与气候因子密切相关; 主成分和冗余分析结果表明在干旱区域紫花针茅叶片解剖结构主要受到蒸发量的影响, 而在相对湿润区域紫花针茅叶片解剖结构主要受生长季降水量、湿润系数和年降水量/年蒸发量影响。综上所述, 紫花针茅通过增加厚壁细胞减少水分散失, 同时增加导管直径、主脉导管面积/主脉维管束面积和维管束面积/叶横切面积等输水组织面积适应高寒干旱气候。
吴建波, 王小丹 . 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021 , 45(3) : 265 -273 . DOI: 10.17521/cjpe.2020.0322
Aims The anatomical structure of plant leaves could be a direct reflection of the plant’s mechanism of response and adaptation to climate change. The distribution of alpine steppe has increased due to climatic warming over the Qingzang Plateau.Stipa purpurea is the dominant species of alpine steppe. However, few studies have been conducted on the adaptation mechanisms of alpine steppe plants. In this study, we analyzed the characteristics of leaf anatomical structure among different populations of S. purpurea and the relationship between these characteristics and climatic factors over the Qingzang Plateau. The ultimate aim was to identify the mechanism by which S. purpurea acclimatizes to alpine environments.
Methods Leaves of S. purpurea were collected from eight sites on the Qingzang Plateau and fixed using FAA fixative solution. Then, the leaves were paraffin wax sectioned and double-stained. Samples were then observed with a microscope and photographed with a digital camera. The area and thickness of leaf anatomical structure were measured with the soft (Image-pro plus 6.0).
Important findings Leaves of S. purpurea generally had thick cuticles, which were able to reduce water loss and radiation exposure. From the results of one-way analysis of variance, there were significant differences among the eight populations in collenchymatous cell thickness, vessel diameter, bundle catheter cavity area/bundle of the main vascular area, and vascular area/leaf cross-sectional area, which were beneficial characteristics for S. purpurea in adapting to the local environment. The characteristics of leaf anatomical structure were significantly correlated with environmental factors via Pearson’s analysis and cluster analysis. The results from principal component analysis and redundancy analysis showed that the anatomical structures in arid regions were mainly affected by annual evaporation, and those in semi-humid regions were mainly affected by the average precipitation humidity index and annual precipitation/annual evaporation during the growing season. In conclusion, to adapt to the alpine and arid environment,S. purpurea has reduced water loss by simultaneously increasing its collenchymatous cell thickness and water-conducting tissue area (vessel diameter, bundle catheter cavity area/bundle of main vascular area, and vascular bundle area/leaf cross-sectional area).
[1] | Buckley TN, John GP, Scoffoni C, Sack L (2015). How does leaf anatomy influence water transport outside the xylem? Plant Physiology, 168, 1616-1635. |
[2] | Cai YL, Song YC (2001). Adaptive ecology of lianas in Tiantong evergreen broad-leaved forest, Zhejiang, China. I. Leaf anatomical characters. Acta Phytoecologica Sinica, 25, 90-98. |
[2] | [蔡永立, 宋永昌 (2001). 浙江天童常绿阔叶林藤本植物的适应生态学: I. 叶片解剖特征的比较. 植物生态学报, 25, 90-98.] |
[3] | Chen DL, Xu BQ, Yao TD, Guo ZT, Cui P, Chen FH, Zhang RH, Zhang XZ, Zhang YL, Fan J, Hou ZQ, Zhang TH (2015). Assessment of past, present and future environmental changes on the Tibetan Plateau. Chinese Science Bulletin, 60, 3025-3035. |
[3] | [陈德亮, 徐柏青, 姚檀栋, 郭正堂, 崔鹏, 陈发虎, 张人禾, 张宪洲, 张镱锂, 樊杰, 侯增谦, 张天华 (2015). 青藏高原环境变化科学评估: 过去、现在与未来. 科学通报, 60, 3025-3035.] |
[4] | Cox CB, Moorc PD (2010). Biogeography: an Ecological and Evolutionary Approach. Blackwell Publishing, Oxford, UK. |
[5] | Deng YB, Jiang YC, Liu J (1998). The xeromophic and saline mophic structure of leaves and assimilating branches in ten Chenopodiacea species in Xinjiang. Acta Phytoecologica Sinica, 22, 164-170. |
[5] | [邓彦斌, 姜彦成, 刘健 (1998). 新疆10种藜科植物叶片和同化枝的旱生和盐生结构的研究. 植物生态学报, 22, 164-170.] |
[6] | Guo GG, Feng B, Ma BL, Zhang YL, Guo CH, Jing ZB (2013). Leaf anatomical structures of different regional Amygdalus pedunculata Pall. and their drought resistance analysis. Acta Botanica Boreali-Occidentalia Sinica, 33, 720-728. |
[6] | [郭改改, 封斌, 麻保林, 张应龙, 郭春会, 井赵斌 (2013). 不同区域长柄扁桃叶片解剖结构及其抗旱性分析. 西北植物学报, 33, 720-728.] |
[7] | He T, Wu XM, Jia JF (2007). Research advances in morphology and anatomy of alpine plants growing in the Qinghai- Tibet Plateau and their adaptations to environments. Acta Ecologica Sinica, 27, 2574-2583. |
[7] | [何涛, 吴学明, 贾敬芬 (2007). 青藏高原高山植物的形态和解剖结构及其对环境的适应性研究进展. 生态学报, 27, 2574-2583.] |
[8] | Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901-908. |
[9] | Holmes MG, Keiller DR (2002). Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant, Cell & Environment, 25, 85-93. |
[10] | Hu JY, Guo K, Dong M (2008). Variation of leaf structure of two dominant species in alpine grassland and the relationship between leaf structure and ecological factors. Journal of Plant Ecology (Chinese Version), 32, 370-378. |
[10] | [胡建莹, 郭柯, 董鸣 (2008). 高寒草原优势种叶片结构变化与生态因子的关系. 植物生态学报, 32, 370-378.] |
[11] | Hu MY, Zhang L, Luo TX, Shen W (2012). Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 36, 136-143. |
[11] | [胡梦瑶, 张林, 罗天祥, 沈维 (2012). 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 36, 136-143.] |
[12] | Hu XP, Ji CJ, An LH (2016). Leaf epidermis characteristics of the main grassland monocotyledonous plant species on the Tibetan Plateau. Acta Ecologica Sinica, 36, 6465-6474. |
[12] | [胡选萍, 吉成均, 安丽华 (2016). 青藏高原草地主要单子叶植物的叶表面特征. 生态学报, 36, 6465-6474.] |
[13] | Ji RX, Yu X, Chang Y, Shen C, Bai XQ, Xia XL, Yin WL, Liu C (2020). Geographical provenance variation of leaf anatomical structure of Caryopteris mongholica and its significance in response to environmental changes. Chinese Joumal of Plant Ecology, 44, 277-286. |
[13] | [纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超 (2020). 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义. 植物生态学报, 44, 277-286.] |
[14] | Kang S, Niu JM, Zhang Q, Chen LP (2013). Anatomical structure of Stipa breviflora leaves and its relationship with environmental factors. Acta Prataculturae Sinica, 22, 77-86. |
[14] | [康萨如拉, 牛建明, 张庆, 陈丽萍 (2013). 短花针茅叶片解剖结构及与气候因子的关系. 草业学报, 22, 77-86.] |
[15] | Kou M, Yin QL, Jiao JY (2019). Leaf anatomical structures and acclimation of ten monocotyledons in the Hilly-Gullied Loess Plateau region. Acta Botanica Boreal-Occidentalia Sinica, 39, 102-109. |
[15] | [寇萌, 尹秋龙, 焦菊英 (2019). 黄土丘陵沟壑区10种单子叶植物叶片解剖结构及环境适应性. 西北植物学报, 39, 102-109.] |
[16] | Li QF, Wang BJ, An LH, Ji CJ (2013). Leaf anatomical characteristics of the plants of grasslands in the Tibetan Plateau. Acta Ecologica Sinica, 33, 2062-2070. |
[16] | [李全发, 王宝娟, 安丽华, 吉成均 (2013). 青藏高原草地植物叶解剖特征. 生态学报, 33, 2062-2070.] |
[17] | Li X, Yang SH, Yang YQ, Yin X, Sun XD, Yang YP (2015). Comparative physiological and molecular analyses of intraspecific differences of Stipa purpurea (Poaceae) response to drought. Plant Diversity and Resources, 37, 439-452. |
[17] | [李雄, 杨时海, 杨云强, 尹欣, 孙旭东, 杨永平 (2015). 不同居群紫花针茅响应干旱胁迫的生理和分子差异分析. 植物分类与资源学报, 37, 439-452.] |
[18] | Li ZL (1981). Morphology and structure of drought vegetation. Biology of Journal, 16, 9-12. |
[18] | [李正理 (1981). 旱生植物的形态和结构. 生物学通报, 16, 9-12.] |
[19] | Ma B, Sun J (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18, 1-12. |
[20] | Ma JJ, Ji CJ, Han M, Zhang FT, Yan XD, Hu D, Zeng H, He JS (2012). Comparative analyses of leaf anatomy of dicotyledonous species in Tibetan and Inner Mongolian grasslands. Science China, Life Science, 55, 68-79. |
[21] | Meng M, Ni J, Zhang ZG (2004). Aridity index and its applications in geo-ecological study. Acta Phytoecologica Sinica, 28, 853-861. |
[21] | [孟猛, 倪健, 张治国 (2004). 地理生态学的干燥度指数及其应用评述. 植物生态学报, 28, 853-861.] |
[22] | Sun HT, Jiang S, Liu JM, Cuo YJ, Shen GS, Gu S (2016). Structure and ecological adaptability of the leaves of three Asteracae species different altitudes on the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 36, 1559-1570. |
[22] | [孙会婷, 江莎, 刘婧敏, 郭亚娇, 沈广爽, 古松 (2016). 青藏高原不同海拔3种菊科植物时片结构变化及其生态适应性. 生态学报, 36, 1559-1570.] |
[23] | Tan CP, Yang JP, Mi R (2010). Analysis of the climatic change characteristics in the Southern Tibetan Plateau from 1971 to 2007. Journal of Glaciology and Geocryology, 32, 1111-1120. |
[23] | [谭春萍, 杨建平, 米睿 (2010). 1971-2007年青藏高原南部气候变化特征分析. 冰川冻土, 32, 1111-1120.] |
[24] | Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216. |
[24] | [王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.] |
[25] | Wang M, Li Y, Hang RQ, Li YL (2005). The effects of climate warming on the alpine vegetation of the Qinghai-Tibetan Plateau hinterland. Acta Ecologica Sinica, 25, 1275-1281. |
[25] | [王谋, 李勇, 黄润秋, 李亚林 (2005). 气候变暖对青藏高原腹地高寒植被的影响. 生态学报, 25, 1275-1281.] |
[26] | Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and 1ow-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
[27] | Wu JB, Wang XD (2019). Temporal stability of aboveground net primary production in northern Tibet alpine steppe in response to nitrogen addition. Journal of Mountain Science, 16, 2679-2686. |
[28] | Yang MB, Yang J, Yang JY, Liang N, Qing H (2007). Changes of characteristics of the leaf epidermis and genetic diversity of Caragana davazamcii in different habitats in Erdos Plateau, China. Journal of Plant Ecology (Chinese Version), 31, 1181-1189. |
[28] | [杨明博, 杨劼, 杨九艳, 梁娜, 清华 (2007). 鄂尔多斯高原不同生境条件下中间锦鸡儿植物叶片表皮特征及遗传多样性变化分析. 植物生态学报, 31, 1181-1189.] |
[29] | Zhong YM, Dong FY, Wang WJ, Wang JM, Li JW, Wu B, Jia XH (2017). Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats. Journal of Beijing Forestry University, 39(10), 53-61. |
[29] | [钟悦鸣, 董芳宇, 王文娟, 王健铭, 李景文, 吴波, 贾晓红 (2017). 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报, 39(10), 53-61.] |
/
〈 |
|
〉 |