北京松山落叶阔叶林生态系统水热通量对环境因子的响应
收稿日期: 2021-03-23
录用日期: 2021-05-24
网络出版日期: 2021-06-28
基金资助
国家重点研发计划(2020YFA0608100);中央高校基本科研业务费(2015ZCQ-SB-02)
Responses of water vapor and heat fluxes to environmental factors in a deciduous broad- leaved forest ecosystem in Beijing
Received date: 2021-03-23
Accepted date: 2021-05-24
Online published: 2021-06-28
Supported by
National Key R&D Program of China(2020YFA0608100);Fundamental Research Funds for the Central Universities(2015ZCQ-SB-02)
温带森林生态系统水热通量在多时间尺度上受各种生物物理因子的影响。该研究假设这些因子对水热通量的影响机制具有时间尺度分异性, 通过涡度相关法(EC)于2019年全年对北京松山典型天然落叶阔叶林生态系统蒸散发(ET)、显热通量(H)、潜热通量(LE)、土壤热通量(G)、饱和水汽压差(VPD)、空气温度(Ta)、光合有效辐射(PAR)、归一化植被指数(NDVI)及10 cm深度土壤水分(VWC)等要素进行原位连续监测, 使用小波分析的方法分析了日、季节尺度上生物与非生物因子对生态系统能量分配与水汽交换的调控机制。主要研究结果: 2019年松山天然落叶阔叶林生态系统年均波文比(β)为1.53。ET具有明显的季节变化特征, 从第100天开始逐渐增加, 7月达到峰值, 第300天下降到最低水平。ET最大日累计值为5.01 mm·d-1, 年累计值为476.2 mm, 年降水量为503.3 mm。在日尺度上水热通量与VPD间滞后时间最短, 为3.36 h。在季节尺度上与PAR间滞后时间最短, 为8天。季节尺度上PAR通过VPD来对ET造成间接影响, 而对β造成直接影响。该研究发现不同时间尺度上水热通量与环境因子间的时滞关系, 为选择模型在不同时间尺度下北方温带落叶阔叶林生态系统过程的最佳输入参数提供科学支持。
李鑫豪, 田文东, 李润东, 靳川, 蒋燕, 郝少荣, 贾昕, 田赟, 查天山 . 北京松山落叶阔叶林生态系统水热通量对环境因子的响应[J]. 植物生态学报, 2021 , 45(11) : 1191 -1202 . DOI: 10.17521/cjpe.2021.0106
Aims The responses of water and heat fluxes of temperate forest ecosystems to environmental factors are hypothesized to vary with time scales. This study aimed to examine the variations of water and heat fluxes in a typical natural deciduous broad-leaved forest ecosystem in Songshan and their response mechanisms to environmental factors at different time scales.
Methods The eddy-covariance (EC) method was used to continuously monitor the evapotranspiration (ET), sensible heat (H), latent heat (LE), soil heat flux (G), vapor pressure deficit (VPD), air temperature (Ta), photosynthetically active radiation (PAR), normalized difference vegetation index (NDVI), and soil water content at a depth of 10 cm (VWC) in a typical deciduous broad-leaved forest ecosystem in Songshan, Beijing in 2019. The wavelet analysis was used to examine the regulation mechanism of biotic and abiotic factors on energy distribution and water vapor exchange at different time scales.
Important findings The mean annual Bowen ratio (β) was 1.53 in 2019. ET had obvious seasonal dynamics, increasing gradually from day 100, peaking in July, and decreasing to the lowest level on day 300. The maximum daily evapotranspiration was 5.01 mm·d-1, the cumulative annual evapotranspiration was 476.2 mm, and the cumulative annual rainfall was 503.3 mm. The main influencing factors of the water and heat fluxes varied with time scales, being mostly controlled by VPD at the daily scale, and by PAR at the seasonal scale. At the diurnal scale, water and heat fluxes lagged 3.36 h behind VPD. At the seasonal scale, water and heat fluxes lagged 8 days behind PAR. At the seasonal scale, PAR had an indirect impact on ET through its effects on VPD and a direct impact on β. The results indicate the time-delay relationships between water and heat fluxes and environmental factors at different time scales, which provides support for selecting the optimal input parameters of the models for quantitatively forecasting ecosystem processes at different time scales in northern temperate deciduous broad-leaved forests.
[1] | Amiro BD, Barr AG, Black TA, Iwashita H, Kljun N, McCaughey JH, Morgenstern K, Murayama S, Nesic Z, Orchansky AL, Saigusa N (2006). Carbon, energy and water fluxes at mature and disturbed forest sites Saskatchewan, Canada. Agricultural and Forest Meteorology, 136, 237-251. |
[2] | Bahn M, Reichstein M, Guan K, Moreno JM, Williams C (2015). Preface: climate extremes and biogeochemical cycles in the terrestrial biosphere: impacts and feedbacks across scales. Biogeosciences, 12, 4827-4830. |
[3] | Baldocchi D, Falge E, Wilson K (2001). A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agricultural and Forest Meteorology, 107, 1-27. |
[4] | Baldocchi DD, Xu LK, Kiang N (2004). How plant functional- type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agricultural and Forest Meteorology, 123, 13-39. |
[5] | Ding RS, Kang SZ, Li FS, Zhang YQ, Tong L (2013). Evapotranspiration measurement and estimation using modified Priestley-Taylor model in an irrigated maize field with mulching. Agricultural and Forest Meteorology, 168, 140-148. |
[6] | Forner A, Valladares F, Bonal D, Granier A, Grossiord C, Aranda I (2018). Extreme droughts affecting Mediterranean tree species’ growth and water-use efficiency: the importance of timing. Tree Physiology, 38, 1127-1137. |
[7] | Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell JG, Ciais P, Cramer W, et al. (2015). Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 21, 2861-2880. |
[8] | Grinsted A, Moore JC, Jevrejeva S (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561-566. |
[9] | Hong J, Kim J (2011). Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: a wavelet analysis and its ecosystem modeling implications. Global Change Biology, 17, 1900-1916. |
[10] | Huang JP, Yu HP, Guan XD, Wang GY, Guo RX (2016). Accelerated dryland expansion under climate change. Nature Climate Change, 6, 166-171. |
[11] | Jia X, Zha TS, Gong JN, Wu B, Zhang YQ, Qin SG, Chen GP, Feng W, Kellomäki S, Peltola H (2016). Energy partitioning over a semi-arid shrubland in northern China. Hydrological Processes, 30, 972-985. |
[12] | Jia X, Zha TS, Gong JN, Zhang YQ, Wu B, Qin SG, Peltola H (2018). Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperate semiarid shrubland. Agricultural and Forest Meteorology, 259, 250-259. |
[13] | Jia X, Zha TS, Wu B, Zhang YQ, Gong JN, Qin SG, Chen GP, Qian D, Kellomaki S, Peltola H (2014). Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences, 11, 4679-4693. |
[14] | Jiang P, Liu HY, Piao SL, Ciais P, Wu XC, Yin Y, Wang HY (2019). Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nature Communications, 10, 195. DOI: 10.1038/s41467-018-08229-z. |
[15] | Kang M, Zhang Z, Noormets A, Fang X, Zha T, Zhou J, Sun G, McNulty SG, Chen J (2015). Responses of energy partitioning and surface resistance to drought in a poplar plantation in northern China. Biogeosciences Discussions, 12, 345-388. |
[16] | Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY, Munger JW, O’Keefe J, Schmid HP, Wing IS, Yang B, Richardson AD (2014). Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change, 4, 598-604. |
[17] | Koebsch F, Jurasinski G, Koch M, Hofmann J, Glatzel S (2015). Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology, 204, 94-105. |
[18] | Kosugi Y, Takanashi S, Tanaka H, Ohkubo S, Tani M, Yano M, Katayama T (2007). Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years. Journal of Hydrology, 337, 269-283. |
[19] | Kume T, Tanaka N, Kuraji K, Komatsu H, Yoshifuji N, Saitoh TM, Suzuki M, Kumagai T (2011). Ten-year evapotranspiration estimates in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 151, 1183-1192. |
[20] | Launiainen S (2010). Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest. Biogeosciences, 7, 3921-3940. |
[21] | Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, et al. (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97-120. |
[22] | Liu CF (2007). Study on Energy and Water Balance of Poplar Plantation in Beijing. PhD dissertation, Beijing Forestry University, Beijing. |
[22] | [ 刘晨峰 (2007). 北京地区杨树人工林能量和水量平衡研究. 博士学位论文, 北京林业大学, 北京.] |
[23] | Ma J, Jia X, Zha T, Bourque CPA, Tian Y, Bai Y, Liu P, Yang R, Li C, Li C, Xie J, Yu HQ, Zhang F, Zhou C (2019). Ecosystem water use efficiency in a young plantation in Northern China and its relationship to drought. Agricultural and Forest Meteorology, 275, 1-10. |
[24] | Ma JY, Zha TS, Jia X, Tian Y, Charles PA, Liu P, Bai YJ, Wu YJ, Ren C, Yu HQ, Zhang F, Zhou CX, Chen WJ (2018). Energy and water vapor exchange over a young plantation in northern China. Agricultural and Forest Meteorology, 263, 334-345. |
[25] | Matsumoto K, Ohta T, Nakai T, Kuwada T, Daikoku K, Iida S, Yabuki H, Kononov AV, van der Molen MK, Kodama Y, Maximov TC, Dolman AJ, Hattori S (2008). Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agricultural and Forest Meteorology, 148, 1978-1989. |
[26] | Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013). A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agricultural and Forest Meteorology, 169, 122-135. |
[27] | McCaughey JH, Pejam MR, Arain MA, Cameron DA (2006). Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada. Agricultural and Forest Meteorology, 140, 79-96. |
[28] | Ng EKW, Chan JCL (2012). Geophysical applications of partial wavelet coherence and multiple wavelet coherence. Journal of Atmospheric and Oceanic Technology, 29, 1845-1853. |
[29] | Ouyang ZT, Chen JQ, Becker R, Chu HS, Xie J, Shao CL, John R (2014). Disentangling the confounding effects of PAR and air temperature on net ecosystem exchange at multiple time scales. Ecological Complexity, 19, 46-58. |
[30] | Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006). Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583. |
[31] | Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439. |
[32] | Ren C, Wu Y, Zha T, Jia X, Tian Y, Bai Y, Bourque CPA, Ma J, Feng W (2018). Seasonal changes in photosynthetic energy utilization in a desert shrub ( Artemisia ordosica Krasch.) during its different phenophases. Forests, 9, 176. DOI: 10.3390/f9040176. |
[33] | Rotenberg E, Yakir D (2010). Contribution of semi-arid forests to the climate system. Science, 327, 451-454. |
[34] | Stoy PC, Katul GG, Siqueira MBS, Juang JY, McCarthy HR, Kim HS, Oishi AC, Oren R (2005). Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis. Tree Physiology, 25, 887-902. |
[35] | Tong XJ, Zhang JS, Meng P, Li J, Zheng N (2014). Ecosystem water use efficiency in a warm-temperate mixed plantation in the North China. Journal of Hydrology, 512, 221-228. |
[36] | Torrence C, Compo GP (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61-78. |
[37] | Vargas R, Collins SL, Thomey ML, Johnson JE, Brown RF, Natvig DO, Friggens MT (2012). Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Global Change Biology, 18, 1401-1411. |
[38] | Vargas R, Detto M, Baldocchi DD, Allen MF (2010). Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Global Change Biology, 16, 1589-1605. |
[39] | Wang ZY (2008). Energy Balance and Water Vapor Flux of Snail Control and Schistosomiasis Prevention Forests Ecosystem in Yangtze Rive Beach Land. PhD dissertation, Chinese Academy of Forestry, Beijing. |
[39] | [ 王昭艳 (2008). 长江滩地抑螺防病林生态系统能量平衡与水汽通量研究. 博士学位论文, 中国林业科学研究院, 北京.] |
[40] | Wilson KB, Baldocchi DD, Aubinet M, Berbigier P, Bernhofer C, Dolman H, Falge E, Field C, Goldstein A, Granier A, Grelle A, Halldor T, Hollinger D, Katul G, Law BE, et al. (2002). Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research, 38, 1294. DOI: 10.1029/2001WR000989. |
[41] | Wu JB, Guan DX, Han SJ, Shi TT, Jin CJ, Pei TF, Yu GR (2007). Energy budget above a temperate mixed forest in northeastern China. Hydrological Processes, 21, 2425-2434. |
[42] | Wu X, Liu H, Li X, Ciais P, Babst F, Guo W, Zhang C, Magliulo V, Pavelka M, Liu S, Huang Y, Wang P, Shi C, Ma Y (2018a). Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology, 24, 504-516. |
[43] | Wu YJ, Ren C, Tian Y, Zha TS, Liu P, Bai YJ, Ma JY, Lai ZR, Bourque CPA (2018b). Photosynthetic gas-exchange and PSII photochemical acclimation to drought in a native and non-native xerophytic species (Artemisia ordosica and Salix psammophila). Ecological Indicators, 94, 130-138. |
[44] | Xiao J, Liu S, Stoy PC (2016). Preface: impacts of extreme climate events and disturbances on carbon dynamics. Biogeosciences, 13, 3665-3675. |
[45] | Xie J, Zha T, Zhou C, Jia X, Yu H, Yang B, Chen J, Zhang F, Wang B, Bourque CPA, Sun G, Ma H, Liu H, Peltola H (2016). Seasonal variation in ecosystem water use efficiency in an urban-forest reserve affected by periodic drought. Agricultural and Forest Meteorology, 221, 142-151. |
[46] | Yan C, Zhao W, Wang Y, Yang Q, Zhang Q, Qiu GY (2017). Effects of forest evapotranspiration on soil water budget and energy flux partitioning in a subalpine valley of China. Agricultural and Forest Meteorology, 246, 207-217. |
[47] | Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, Wen XF, Li XR, Zhang LM, Zhang L, Su W, Li SG, Sun XM, Zhang YP, Zhang JH, Yan JH, et al. (2013). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19, 798-810. |
[48] | Zha TS, Barr AG, Black TA, McCaughey JH, Bhatti J, Hawthorne I, Krishnan P, Kidston J, Saigusa N, Shashkov A, Nesic Z (2009). Carbon sequestration in boreal jack pine stands following harvesting. Global Change Biology, 15, 1475-1487. |
[49] | Zhang Y (2010). Energy and Water Budget of Poplar Plantation in Suburban Beijing. PhD dissertation, Beijing Forestry University, Beijing. |
[49] | [ 张燕 (2010). 北京地区杨树人工林能量平衡和水量平衡. 博士学位论文, 北京林业大学, 北京.] |
[50] | Zhang YY, Zhao WZ, He JH, Zhang K (2016). Energy exchange and evapotranspiration over irrigated seed maize agroecosystems in a desert-oasis region, northwest China. Agricultural and Forest Meteorology, 223, 48-59. |
/
〈 |
|
〉 |