降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响
收稿日期: 2021-06-03
录用日期: 2021-08-18
网络出版日期: 2021-10-15
基金资助
国家自然科学基金(U20A2008);国家自然科学基金(31870407);第二次青藏高原综合科学考察研究项目(2019QZKK0302)
Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow
Received date: 2021-06-03
Accepted date: 2021-08-18
Online published: 2021-10-15
Supported by
National Natural Science Foundation of China(U20A2008);National Natural Science Foundation of China(31870407);Second Tibetan Plateau Scientific Expedition and Research (STEP) Program(2019QZKK0302)
凋落物分解是生态系统物质循环的重要过程, 探究降雨变化对高寒草甸不同植物功能群凋落物分解的影响, 有助于了解高寒草甸物质循环对降雨变化的响应规律和机制。该研究设置减雨90% (Pr-90)、减雨50% (Pr-50)、减雨30% (Pr-30)、自然降雨(CK)和增雨50% (Pr+50) 5个降雨处理, 采用网袋分解法, 对青藏高原东部高寒草甸的3种植物功能群(禾本科、莎草科、杂类草)及群落凋落物的化学性质、质量损失和养分释放动态进行研究。结果表明: 1)减雨处理(Pr-90、Pr-50和Pr-30)显著增加禾本科凋落物的初始氮(N)含量, 显著降低碳氮比(C:N)和木质素氮比(木质素:N); 增雨处理(Pr+50)显著增加各类型凋落物初始磷(P)含量。2)根据Olson负指数模型拟合, 不同降雨处理下, 杂类草凋落物分解最快, 分解95%的时间为3.49-7.45年; 群落和莎草科次之, 分别为4.07-8.05和4.65-7.74年; 禾本科分解最慢, 为5.84-11.18年。3)极端减雨(Pr-90)抑制各类型凋落物分解, 适度降雨变化(Pr-50、Pr-30和Pr+50)抑制禾本科分解而对莎草科、杂类草和群落无显著影响, 仅增雨(Pr+50)明显促进杂类草分解。4)各类型凋落物C释放在减雨(Pr-90和Pr-30)下受到抑制, 增雨或减雨均促进禾本科N和P释放, 对于莎草科、杂类草和群落凋落物而言, Pr-30促进N释放, Pr-90抑制P释放, Pr+50促进P释放。5)结构方程模型(SEM)表明, 质量和养分残留率受降雨量的直接负效应, 也受凋落物初始C、N、P和木质素、纤维素、半纤维素含量的间接影响。综上所述, 高寒草甸凋落物质量损失及养分释放受凋落物类型和降雨量的共同影响。考虑到禾本科分解最慢且对降雨变化的响应最为敏感, 未来应关注气候变化尤其是极端减雨下禾本科的质量损失及养分释放对高寒草甸有机质输入及C、N、P循环的影响。
杨德春, 胡雷, 宋小艳, 王长庭 . 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021 , 45(12) : 1314 -1328 . DOI: 10.17521/cjpe.2021.0211
Aims Litter decomposition plays a vital role in material cycling of ecosystems. However, the responses of litter decomposition to changing precipitation in alpine meadows and the mechanisms underlying these responses are still not clear. Thus this study was designed to address the effect of changing precipitation on litter decomposition of different plant functional groups in alpine meadows.
Methods We used the litter bag method to investigate changes of initial nutrient content, mass loss and nutrient release in the litter of three plant functional groups (grass, sedge and forb) and in communities in an alpine meadow of Eastern Qingzang Plateau, in response to five precipitation treatments, including 90%, 50% and 30% decrease (Pr-90, Pr-50, Pr-30), ambient control (CK) and 50% increase (Pr+50).
Important findings The results showed that: 1) Precipitation decrease (Pr-90, Pr-50, Pr-30) significantly increased the initial nitrogen (N) content, carbon (C):N and lignin:N ratios of grass litters, while precipitation increase (Pr+50) significantly increased the initial phosphorus (P) content of all litter types. 2) According to the Olson negative exponential model, under different precipitation, the forbs decomposed the fastest, with the 95% decomposition time of 3.49-7.45 a; the decomposition of the communities and of the sedge species were the second fastest, with the 95% decomposition time of 4.07-8.05 and 4.65-7.74 a, respectively; grasses decomposed most slowly, 5.84-11.18 a. 3) Extreme precipitation decrease (Pr-90) inhibited the decomposition of all litter types, while moderate precipitation change (Pr-50, Pr-30, Pr+50) inhibited the decomposition of grass litter, but had no significant effects on sedge, forb and community litter, only precipitation increase (Pr+50) promoted the decomposition of forb litter. 4) C release was inhibited under precipitation decrease (Pr-90, Pr-30) in all litter types. N and P release of grass litters were promoted under both precipitation increase and decrease. Pr-30 promoted N release, Pr-90 inhibited P release and Pr+50 promoted P release in sedge, forb and community litters. 5) Structural equation models (SEM) showed that the mass and nutrient remaining rate were directly negatively affected by precipitation, and indirectly affected by litter types through initial C, N, P, lignin, cellulose and hemicellulose content. In conclusion, both litter types and precipitation can affect the mass loss and nutrient release of litters in an alpine meadow. Decomposition was slower and the response to precipitation was more sensitive in grass than that in other litter types. In the future, we should pay attention to the effects of mass loss and nutrient release of grass litter under climate change, especially extreme precipitation decrease, on organic matter input and C, N and P cycling in an alpine meadow.
Key words: litter decomposition; precipitation; nutrient release; alpine meadow
[1] | Austin AT, Vitousek PM (2000). Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawaii. Journal of Ecology, 88, 129-138. |
[2] | Bloor JMG, Bardgett RD (2012). Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspectives in Plant Ecology, Evolution and Systematics, 14, 193-204. |
[3] | Chapin III FS, Matson PA, Vitouseh PM (2011). Principles of Terrestrial Ecosystem Ecology. Springer, New York. 6-137. |
[4] | Chen SL, Cai JS, Lin CF, Song HW, Yang YS (2020). Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest. Chinese Journal of Plant Ecology, 44, 214-227. |
[4] | [ 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛 (2020). 亚热带不同树种凋落叶分解对氮添加的响应. 植物生态学报, 44, 214-227.] |
[5] | Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071. |
[6] | Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779. |
[7] | Cromack K, Monk CD (1975). Litter production, decomposition and nutrient cycling in a mixed hardwood watershed and a white pine watershed//Howell FG, Gentry JB, Smith MH. Mineral Cycling in Southeastern Ecosystems. Energy Research and Development Administration, Washington D.C. 609-624. |
[8] | Deng RJ, Yang WQ, Feng RF, Hu JL, Qin JL, Xiong XJ (2009). Mass loss and element release of litter in the subalpine forest over one freeze-thaw season. Acta Ecologica Sinica, 29, 5730-5735. |
[8] | [ 邓仁菊, 杨万勤, 冯瑞芳, 胡建利, 秦嘉励, 熊雪晶 (2009). 季节性冻融期间亚高山森林凋落物的质量损失及元素释放. 生态学报, 29, 5730-5735.] |
[9] | Ding XH, Luo SZ, Liu JW, Li K, Liu GH (2012). Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeir. Acta Ecologica Sinica, 32, 3467-3476. |
[9] | [ 丁小慧, 罗淑政, 刘金巍, 李魁, 刘国华 (2012). 呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化. 生态学报, 32, 3467-3476.] |
[10] | Du NN, Li WR, Qiu LP, Zhang YJ, Wei XR, Zhang XC (2020). Mass loss and nutrient release during the decomposition of sixteen types of plant litter with contrasting quality under three precipitation regimes. Ecology and Evolution, 10, 3367-3382. |
[11] | Duan JC, Wang SP, Zhang ZH, Xu GP, Luo CY, Chang XF, Zhu XX, Cui SJ, Zhao XQ, Wang WY, Du MY (2013). Non-additive effect of species diversity and temperature sensitivity of mixed litter decomposition in the alpine meadow on Tibetan Plateau. Soil Biology & Biochemistry, 57, 841-847. |
[12] | Fan CR, Zhang CF, Shi XH, Sun B (2020). Nitrogen loss in surface runoff from Hulun Buir steppe in different grazing systems. Ecology and Environmental Sciences, 29, 951-960. |
[12] | [ 樊才睿, 张成福, 史小红, 孙标 (2020). 不同放牧制度草地径流中氮流失及模拟研究. 生态环境学报, 29, 951-960.] |
[13] | García-Palacios P, Prieto I, Ourcival JM, Hättenschwiler S (2016). Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall. Ecosystems, 19, 490-503. |
[14] | Gavazov KS (2010). Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 337, 19-32. |
[15] | Gu LC, Wang GL, Jing H, Yao X (2017). Response of decomposition and nutrient release in different diameter fine roots of Pinus tabuliformis plantation to N addition. Chinese Journal of Applied Ecology, 28, 2771-2777. |
[15] | [ 谷利茶, 王国梁, 景航, 姚旭 (2017). 氮添加对油松不同径级细根分解及其养分释放的影响. 应用生态学报, 28, 2771-2777.] |
[16] | Guo GX, Kong WD, Liu JB, Zhao JX, Du HD, Zhang XZ, Xia PH (2015). Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Applied Microbiology and Biotechnology, 99, 8765-8776. |
[17] | He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122. |
[18] | Hu N, Fan YL, Ding SY, Liao BH (2008). Progress in researches on plant functional groups of terrestrial ecosystems. Acta Ecologica Sinica, 28, 3302-3311. |
[18] | [ 胡楠, 范玉龙, 丁圣彦, 廖秉华 (2008). 陆地生态系统植物功能群研究进展. 生态学报, 28, 3302-3311.] |
[19] | Huang JY, Yu HL, Liu JL, Ma F, Han L (2018). Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China. Acta Ecologica Sinica, 38, 5362-5373. |
[19] | [ 黄菊莹, 余海龙, 刘吉利, 马飞, 韩磊 (2018). 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响. 生态学报, 38, 5362-5373.] |
[20] | Huo LX, Hong M, Zhao B, Gao HY, Ye H (2019). Effects of increased nitrogen deposition and changing rainfall patterns on litter decomposition in a desert grassland. Acta Ecologica Sinica, 39, 2139-2146. |
[20] | [ 霍利霞, 红梅, 赵巴音那木拉, 高海燕, 叶贺 (2019). 氮沉降和降雨变化对荒漠草原凋落物分解的影响. 生态学报, 39, 2139-2146.] |
[21] | Ji Q, Yang JP, Chen HJ (2018). Comprehensive analysis of the precipitation changes over the Tibetan Plateau during 1961-2015. Journal of Glaciology and Geocryology, 40, 1090-1099. |
[21] | [ 冀钦, 杨建平, 陈虹举 (2018). 1961-2015年青藏高原降水量变化综合分析. 冰川冻土, 40, 1090-1099.] |
[22] | Jiang Y, Yao Y, Wang Y (2012). Physiological response, cell wall components, and gene expression of switchgrass under short-term drought stress and recovery. Crop Science, 52, 2718-2727. |
[23] | Jiao M, Shen WJ (2014). Effects of seasonal precipitation variation on litter-fall in lower subtropical evergreen broad-leaved forest. Journal of Tropical and Subtropical Botany, 22, 549-557. |
[23] | [ 焦敏, 申卫军 (2014). 模拟降水分配季节变化对南亚热带常绿阔叶林凋落物的影响. 热带亚热带植物学报, 22, 549-557.] |
[24] | Li QL, Zeng H (2017). Leaf litter decomposition of ten plant species in a forested wetland in South Carolina, USA. Acta Ecologica Sinica, 37, 2342-2351. |
[24] | [ 李巧玲, 曾辉 (2017). 美国南卡罗来纳州森林湿地十种典型植物凋落叶的分解特征. 生态学报, 37, 2342-2351.] |
[25] | Li XF, Han SJ, Zhang Y (2007). Indirect effects of precipitation on litter decomposition of Quercus mongolica. Chinese Journal of Applied Ecology, 18, 261-266. |
[25] | [ 李雪峰, 韩士杰, 张岩 (2007). 降水量变化对蒙古栎落叶分解过程的间接影响. 应用生态学报, 18, 261-266.] |
[26] | Li YN, Zhou XM, Zhang NL, Ma KP (2016). The research of mixed litter effects on litter decomposition in terrestrial ecosystems. Acta Ecologica Sinica, 36, 4977-4987. |
[26] | [ 李宜浓, 周晓梅, 张乃莉, 马克平 (2016). 陆地生态系统混合凋落物分解研究进展. 生态学报, 36, 4977-4987.] |
[27] | Liu W, Wang LH, Liu L, Fu R, Wu XH, Huang CD (2017). Effects of increasing precipitation on leaf litter decomposition in Pinus yunnanensis plantation in Sichuan dry river valley. Journal of Northwest A&F University (Natural Science Edition), 45, 88-95. |
[27] | [ 刘尉, 王丽华, 刘林, 符饶, 吴小辉, 黄从德 (2017). 增加降水对四川干旱河谷区云南松人工林凋落叶分解的影响. 西北农林科技大学学报(自然科学版), 45, 88-95.] |
[28] | Lu RK (1999). Analysis Methods of Soil and Agricultural Chemistry. Chinese Agricultural Science and Technology Press, Beijing. 296-338. |
[28] | [ 鲁如坤 (1999). 土壤农业化学分析方法. 中国农业科技出版社, 北京. 296-338.] |
[29] | Ma ZL, Gao S, Yang WQ, Wu FZ (2015). Dynamics of nitrogen and phosphorus release in decomposing foliar litter at different rainy stages in the subtropical evergreen broad- leaved forest. Chinese Journal of Applied and Environmental Biology, 21, 308-315. |
[29] | [ 马志良, 高顺, 杨万勤, 吴福忠 (2015). 亚热带常绿阔叶林凋落叶分解过程中氮和磷在不同雨热季节的释放动态. 应用与环境生物学报, 21, 308-315.] |
[30] | Moore TR, Trofymow JA, Prescott CE, Titus BD, CIDET Working Group (2011). Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant and Soil, 339, 163-175. |
[31] | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331. |
[32] | Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364. |
[33] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B: Chemical and Physical Meteorology, 44, 81-99. |
[34] | Salamanca EF, Kaneko N, Katagiri S (2003). Rainfall manipulation effects on litter decomposition and the microbial biomass of the forest floor. Applied Soil Ecology, 22, 271-281. |
[35] | Schimel J, Balser TC, Wallenstein M (2007). Microbial stress- response physiology and its implications for ecosystem function. Ecology, 88, 1386-1394. |
[36] | Schuster MJ (2016). Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie. Oecologia, 180, 645-655. |
[37] | Semmartin M, Aguiar MR, Distel RA, Moretto AS, Ghersa CM (2004). Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient. Oikos, 107, 148-160. |
[38] | Shi MM, Niu DC, Wang Y, Yuan XB, He L, Han BH, Zong WJ, Fu H (2017). Effect of fencing and grazing management on the plant functional traits and functional diversity in an alpine meadow on the Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 37, 1216-1225. |
[38] | [ 石明明, 牛得草, 王莹, 袁晓波, 贺磊, 韩炳宏, 宗文杰, 傅华 (2017). 围封与放牧管理对高寒草甸植物功能性状和功能多样性的影响. 西北植物学报, 37, 1216-1225.] |
[39] | Shu WW, Chen L, Liu SR, Zeng J, Li H, Zheng L, Chen WJ (2020). Effects of throughfall reduction on litter decomposition of Pinus massoniana plantation in subtropical China. Acta Ecologica Sinica, 40, 4538-4545. |
[39] | [ 舒韦维, 陈琳, 刘世荣, 曾冀, 李华, 郑路, 陈文军 (2020). 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报, 40, 4538-4545.] |
[40] | Song HW, Hong HB, Chen SL, Lin CF, Yang YS (2021). Effects of phosphorus addition on fine root decomposition of Castanopsis carlesii, Cunninghamia lanceolata and mixed. Journal of Forest and Environment, 41, 1-9. |
[40] | [ 宋豪威, 洪慧滨, 陈思路, 林成芳, 杨玉盛 (2021). 磷添加对米槠和杉木及其混合细根分解的影响. 森林与环境学报, 41, 1-9.] |
[41] | Sun Y, He XZ, Hou FJ, Wang ZF, Chang SH (2018). Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow. Biogeosciences, 15, 4233-4243. |
[42] | Suseela V, Tharayil N, Xing B, Dukes JS (2013). Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation. New Phytologist, 200, 122-133. |
[43] | Suzuki Y, Makino A, Mae T (2001). An efficient method for extraction of RNA from rice leaves at different ages using benzyl chloride. Journal of Experimental Botany, 52, 1575-1579. |
[44] | Van Soest PJ (1963). Use of detergents in analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists, 46, 829-835. |
[45] | Vigil MF, Kissel DE (1991). Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Science Society of America Journal, 55, 757-761. |
[46] | Vitousek P (1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572. |
[47] | Wang HL, Liu GC, Huang BB, Wang XC, Xing YJ, Wang QG (2021). Long-term nitrogen addition and precipitation reduction decrease soil nematode community diversity in a temperate forest. Applied Soil Ecology, 162, 103895. DOI: 10.1016/j.apsoil.2021.103895. |
[48] | Wang QB, Li LH, Bai YF, Xing XR (2000). Effects of simulated climate change on the decomposition of mixed litter in three steppe communities. Acta Phytoecologica Sinica, 24, 674-679. |
[48] | [ 王其兵, 李凌浩, 白永飞, 邢雪荣 (2000). 模拟气候变化对3种草原植物群落混合凋落物分解的影响. 植物生态学报, 24, 674-679.] |
[49] | Wang X, Xu Z, Lü X, Wang R, Cai J, Yang S, Li MH, Jiang Y (2017). Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 418, 241-253. |
[50] | Wang XE, Xue L, Xie TF (2009). A review on litter decomposition. Chinese Journal of Soil Science, 40, 1473-1478. |
[50] | [ 王相娥, 薛立, 谢腾芳 (2009). 凋落物分解研究综述. 土壤通报, 40, 1473-1478.] |
[51] | Wang XY, Zhao XY, Li YL, Lian J, Qu H, Yue XF (2013). Effects of environmental factors on litter decomposition in arid and semi-arid regions: a review. Chinese Journal of Applied Ecology, 24, 3300-3310. |
[51] | [ 王新源, 赵学勇, 李玉霖, 连杰, 曲浩, 岳祥飞 (2013). 环境因素对干旱半干旱区凋落物分解的影响研究进展. 应用生态学报, 24, 3300-3310.] |
[52] | Wang YX, Liu GY, Deng Q, Shi XR, Yuan ZY (2020). Leaf-litter decomposition of Robinia pseudoacacia and Pinus tabulaeformis planted forests at different rainy periods in the loess hilly region. Acta Ecologica Sinica, 40, 6872-6884. |
[52] | [ 王云霞, 刘桂要, 邓强, 时新荣, 袁志友 (2020). 黄土丘陵区人工林刺槐和油松凋落叶在不同降雨时期的分解特征. 生态学报, 40, 6872-6884.] |
[53] | Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633. |
[54] | Wei Q, Zhou HK, Yao BQ, Liu ZH, Tian LW, Wang WY, Zhao XQ (2013). Effects of fertilizer and water additions on the litter decomposition of four typical plants in Kobresia humilis meadow. Acta Agrestia Sinica, 21, 875-880. |
[54] | [ 魏晴, 周华坤, 姚步青, 刘泽华, 田林卫, 王文颖, 赵新全 (2013). 施肥和增雨雪对矮嵩草草甸4种典型植物凋落物分解的影响. 草地学报, 21, 875-880.] |
[55] | Wu JS, Li XJ, Shen ZX, Zhang XZ, Shi PL, Yu CQ, Wang JS, Zhou YT (2012). Species diversity distribution pattern of alpine grasslands communities along a precipitation gradient across Northern Tibetan Plateau. Acta Prataculturae Sinica, 21(3), 17-25. |
[55] | [ 武建双, 李晓佳, 沈振西, 张宪洲, 石培礼, 余成群, 王景升, 周宇庭 (2012). 藏北高寒草地样带物种多样性沿降水梯度的分布格局. 草业学报, 21(3), 17-25.] |
[56] | Xiang YB, Zhou SX, Xiao YX, Hu TX, Tu LH, Huang CD, Gao BD (2017). Effects of simulated nitrogen deposition and precipitation changes on litter decomposition in an evergreen broad-leaved forest in the rainy area of western China. Acta Ecologica Sinica, 37, 455-463. |
[56] | [ 向元彬, 周世兴, 肖永翔, 胡庭兴, 涂利华, 黄从德, 高保丹 (2017). 模拟氮沉降和降雨对华西雨屏区常绿阔叶林凋落物分解的影响. 生态学报, 37, 455-463.] |
[57] | Xiao WY, Chen C, Chen XL, Huang ZQ, Chen HYH (2020). Functional and phylogenetic diversity promote litter decomposition across terrestrial ecosystems. Global Ecology and Biogeography, 29, 2261-2272. |
[58] | Xu GP, Hu YG, Wang SP, Zhang ZH, Chang XF, Duan JC, Luo CY, Chao ZG, Su AL, Lin QY, Li YN, Du MY (2010). Effects of litter quality and climate change along an elevation gradient on litter mass loss in an alpine meadow ecosystem on the Tibetan Plateau. Plant Ecology, 209, 257-268. |
[59] | Yan HY, Gu XR, Shen H (2010). Microbial decomposition of forest litter: a review. Chinese Journal of Ecology, 29, 1827-1835. |
[59] | [ 严海元, 辜夕容, 申鸿 (2010). 森林凋落物的微生物分解. 生态学杂志, 29, 1827-1835.] |
[60] | Yan ZQ, Qi YC, Dong YS, Peng Q, Guo SF, He YL, Li ZL (2018). Precipitation and nitrogen deposition alter litter decomposition dynamics in semiarid temperate steppe in Inner Mongolia, China. Rangeland Ecology & Management, 71, 220-227. |
[61] | Yang G, Chen H, Wu N, Tian JQ, Peng CH, Zhu QA, Zhu D, He YX, Zheng QY, Zhang CB (2014). Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biology & Biochemistry, 78, 83-89. |
[62] | Yang YJ, Liu SR, Chen L, Wang H, Lu LH (2018). Short-term effects of manipulated throughfall reduction on the quantity and quality of litterfall in a Pinus massoniana plantation. Acta Ecologica Sinica, 38, 4770-4778. |
[62] | [ 杨予静, 刘世荣, 陈琳, 王晖, 卢立华 (2018). 模拟降雨减少对马尾松人工林凋落物量及其化学性质的短期影响. 生态学报, 38, 4770-4778.] |
[63] | Yao TD, Zhu LP (2006). The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy. Advances in Earth Science, 21, 459-464. |
[63] | [ 姚檀栋, 朱立平 (2006). 青藏高原环境变化对全球变化的响应及其适应对策. 地球科学进展, 21, 459-464.] |
[64] | Yin NW, Li JN, Liu X, Lian JP, Fu C, Li W, Jiang JY, Xue YF, Wang J, Chai YR (2017). Lignification response and the difference between stem and root of Brassica napus under heat and drought compound stress. Acta Agronomica Sinica, 43, 1689-1695. |
[64] | [ 尹能文, 李加纳, 刘雪, 练剑平, 付春, 李威, 蒋佳怡, 薛雨飞, 王君, 柴友荣 (2017). 高温干旱下油菜的木质化应答及其在茎与根中的差异. 作物学报, 43, 1689-1695.] |
[65] | Yuan Z, Chen HYH (2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography, 18, 532-542. |
[66] | Yue XY, Zuo XA, Yu Q, Xu C, Lv P, Zhang J (2018). Effects of precipitation and short term extreme drought on leaf traits in Inner Mongolia typical steppe. Journal of Desert Research, 38, 1009-1016. |
[66] | [ 岳喜元, 左小安, 庾强, 徐翀, 吕朋, 张晶 (2018). 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis)叶性状的影响. 中国沙漠, 38, 1009-1016.] |
[67] | Zhang HZ, Shi LL, Fu SL (2020). Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest. Geoderma, 380, 114650. DOI: 10.1016/j.geoderma.2020.114650. |
[68] | Zhang RY, Shi XM, Li WJ, Guo R, Wang G (2015). Response of species homeostasis and biomass on a sub-alpine grassland. Pratacultural Science, 32, 1539-1547. |
[68] | [ 张仁懿, 史小明, 李文金, 郭睿, 王刚 (2015). 亚高寒草甸物种内稳性与生物量变化模式. 草业科学, 32, 1539-1547.] |
[69] | Zhang XY, Wang W (2015). Control of climate and litter quality on leaf litter decomposition in different climatic zones. Journal of Plant Research, 128, 791-802. |
[70] | Zhang ZG, Wei HX (2019). Variations of leaf construction cost and leaf traits within the species of Artemisia ordosica along a precipitation gradient in the Mau Us sandy land. Chinese Journal of Plant Ecology, 43, 979-987. |
[70] | [ 张治国, 魏海霞 (2019). 毛乌素沙地油蒿叶建成成本及相关叶性状沿降水梯度的变化. 植物生态学报, 43, 979-987.] |
[71] | Zheng HF, Chen YM, Liu Y, Heděnec P, Peng Y, Xu ZF, Tan B, Zhang L, Guo L, Wang LF, Vesterdal L (2021). Effects of litter quality diminish and effects of vegetation type develop during litter decomposition of two shrub species in an alpine treeline ecotone. Ecosystems, 24, 197-210. |
[72] | Zhou XQ, Wu FZ, Yang WQ, Zhu JX (2011). Dynamics of microbial biomass during litter decomposition in the alpine forest. Acta Ecologica Sinica, 31, 4144-4152. |
[72] | [ 周晓庆, 吴福忠, 杨万勤, 朱剑霄 (2011). 高山森林凋落物分解过程中的微生物生物量动态. 生态学报, 31, 4144-4152.] |
[73] | Zhu W, Wang J, Zhang Z, Ren F, Chen L, He JS (2016). Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai- Tibet Plateau. Scientific Reports, 6, 34290. DOI: 10.1038/ srep34290. |
[74] | Zhu XY, Li ZH, Lin QM, Li GT, Zhao XR (2020). Turnover of soil microbial biomass phosphorus in typical steppe under different simulated rainfalls during spring. Acta Ecologica Sinica, 40, 2655-2661. |
[74] | [ 朱晓亚, 李子豪, 林启美, 李贵桐, 赵小蓉 (2020). 模拟不同春季降雨量下典型草原土壤微生物磷周转特征. 生态学报, 40, 2655-2661.] |
[75] | Zi HB, Hu L, Wang CT, Wang GX, Wu PF, Lerdau M, Ade LJ (2018). Responses of soil bacterial community and enzyme activity to experimental warming of an alpine meadow. European Journal of Soil Science, 69, 429-438. |
/
〈 |
|
〉 |