研究论文

刺梨的适钙类型及对高钙生境的适应性

展开
  • 贵州大学农学院, 国家林业和草原局刺梨工程技术研究中心, 贵阳 550025

收稿日期: 2022-04-29

  录用日期: 2022-08-22

  网络出版日期: 2022-10-13

Calcium-tolerance type and adaptability to high-calcium habitats of Rosa roxburghii

Expand
  • College of Agriculture, Guizhou University, Engineering Technology Research Centre for Rosa roxburghii of National Forestry and Grassland Administration, Guiyang 550025, China

Received date: 2022-04-29

  Accepted date: 2022-08-22

  Online published: 2022-10-13

摘要

刺梨(Rosa roxburghii)是原产中国西南地区的特色经济树种, 贵州将其作为喀斯特山区重点发展的果树。迄今, 刺梨能否适应喀斯特地区高钙生境尚不清楚。明确刺梨的适钙类型及其对高钙生境的适应性, 旨在为刺梨种植区域的确定提供科学依据。该研究对贵州喀斯特地区不同钙生境下50个野生刺梨植株的不同器官和立地土壤进行取样, 测定土壤的pH、交换性钙、镁含量和植株不同器官中总钙、草酸钙及叶中的钙和镁的含量, 明确不同器官中草酸钙含量占总钙含量的比例, 分析土壤交换性钙、镁含量与不同器官总钙、叶片钙和镁含量的相关性关系, 观察低钙和高钙生境下不同器官中及叶表面草酸钙晶体的分布。对土壤的分析结果表明: 喀斯特地区野生刺梨立地土壤的pH高, 交换性钙、镁的含量高且差异大。在不同钙生境下, 野生刺梨不同器官中的总钙含量与土壤中交换性钙含量呈显著正相关关系, 叶片中总钙和镁的含量与土壤中交换性钙、镁含量的相关性也是如此。刺梨枝、叶是富集钙最多的器官, 根和果实中钙的含量相对较少, 所有样本叶片中总钙和镁的含量在1.71%-2.73%之间, 枝和叶中草酸钙含量占总钙含量的比例分别为55.81%和52.76%, 而根和果实中只占29.34%和34.30%。在高钙生境中, 野生刺梨枝、叶中和叶片气孔边缘有大量草酸钙棱晶, 果实中有少量针晶; 而在低钙生境中, 野生刺梨的根和果实中及叶片气孔边缘均无草酸钙晶体分布。该研究明确了刺梨的适钙类型属于中间型, 对喀斯特地区不同钙生境均有较强的适应性, 枝、叶中大量储存草酸钙和通过叶片气孔排钙的生理特性, 对降低刺梨体内钙离子浓度和缓解高钙胁迫对自身的伤害具有重要作用。研究结果对喀斯特地区刺梨种植区域的确定具有重要指导意义。

本文引用格式

孟庆静, 樊卫国 . 刺梨的适钙类型及对高钙生境的适应性[J]. 植物生态学报, 2022 , 46(12) : 1562 -1572 . DOI: 10.17521/cjpe.2022.0172

Abstract

Aims Rosa roxburghii is a special economic tree species native to southwest China, and it has been taken as a key fruit tree in karst mountainous areas of Guizhou Province. However, it is unclear whether R. roxburghii can adapt to high-calcium habitats in the karst areas. To provide scientific evidence for determining the potential planting sites of R. roxburghii, the calcium-tolerance type and adaptability to high-calcium habitats of R. roxburghii were needed to be clarified.

Methods In this study, different organs from 50 R. roxburghii individuals and different calcareous soils where R. roxburghii grew were sampled in karst areas of Guizhou. The pH, exchangeable calcium and magnesium contents in the soil, total calcium and calcium oxalate contents in the plant organs, and calcium and magnesium contents in the leaves were determined, and the proportion of calcium oxalate in different organs to total calcium content was calculated. Then, the correlations between the exchangeable calcium and magnesium content in the soil with total calcium in different organs, and calcium and magnesium content in the leaves were analyzed. In addition, the distribution of calcium oxalate crystals in different organs as well as on the leaf surface was observed in samples collected from low-calcium and high-calcium habitats.

Important findings The soil at R. roxburghii sites in karst areas had a high pH, and the content of exchangeable calcium and magnesium was abundant and varies greatly. In different calcareous habitats, the total calcium content in different organs of R. roxburghii was significantly and positively correlated with the exchangeable calcium content in the soil. Similarly, the contents of total calcium and magnesium in the leaves were correlated with those in the soil. The branches and leaves were the organs that accumulated the most calcium, whereas the calcium enrichment in the roots and fruit were relatively low. The total calcium and magnesium contents of all the sample leaves ranged from 1.71% to 2.73%, among which, the proportions of calcium oxalate in branches and leaves were 55.81% and 52.76% of the total calcium, respectively; while only 29.34% and 34.30% were in roots and fruit. In samples from a high-calcium habitats, calcium oxalate prismatic crystals were abundant in the branches, leaves, and around stomatal pores, while few needle crystals were observed in the fruits. However, in samples from a low-calcium environment, no calcium oxalate crystals were observed in the roots, fruit, and leaf stomatal pores. In this study, we clarified that the R. roxburghii is an intermediate type of calcium-tolerance, which has strong adaptability to different calcium habitats in karst areas. The physiological characteristics of storing abundant calcium oxalate crystals in branches and leaves, and excreting calcium through leaf stomata play important roles in reducing the calcium concentration in R. roxburghii tissues and alleviating damages from high-calcium stress. The results of this study provide important guidance for the determination of suitable planting sites for R. roxburghii in karst areas.

参考文献

[1] Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. 152-199.
[1] [ 鲍士旦(2000). 土壤农化分析. 3版. 中国农业出版社, 北京. 152-199.]
[2] Borer CH, Hamby MN, Hutchinson LH (2012). Plant tolerance of a high calcium environment via foliar partitioning and sequestration. Journal of Arid Environments, 85, 128-131.
[3] Clark CJ, Smith GS, Walker GD (1987). The form, distribution and seasonal accumulation of calcium in kiwifruit leaves. New Phytologist, 105, 477-486.
[4] Fan WG, Gong FF (2019). Effects of exogenous oxalic acid on nutrient environment of calcareous yellow soil and the growth, physiological characteristics of Rosa roxburghii seedlings. Journal of Guizhou University (Natural Sciences), 36(3), 1-8.
[4] [ 樊卫国, 龚芳芳 (2019). 外源草酸对钙质黄壤营养环境和刺梨苗生长及生理特性的影响. 贵州大学学报(自然科学版), 36(3), 1-8.]
[5] Fan WG, Liu JP (1997). Response of elements deficiency stress in Rosa roxburghii Tratt. Journal of Guizhou Agriculture College, 16(3), 43-47.
[5] [ 樊卫国, 刘进平 (1997). 刺梨对缺素胁迫的反应. 贵州农学院学报, 16(3), 43-47.]
[6] Franceschi VR, Horner HT (1980). Calcium oxalate crystals in plants. The Botanical Review, 46, 361-427.
[7] Fu R, Meng XX, Chai SF (2019). Research progress on the relationship between plants and calcium environment. Northern Horticulture, (3), 161-166.
[7] [ 付嵘, 孟小暇, 柴胜丰 (2019). 植物与钙环境关系的研究进展. 北方园艺, (3), 161-166.]
[8] Gong FF (2018). The Organic Acids in the Rezosphere Soil of Rosa roxburghii Tratt. Growing on Calcareous Soil and the Function Verification of Principal Components of Those Organic Acids—The Effects of Exogenous Importing of Low Molecular Weight Organic Acids on Soil Nutrient Release and the Growth of Rosa roxburghii. Master degree dissertation, Guizhou University, Guiyang.
[8] [ 龚芳芳 (2018). 石灰性土壤上刺梨根际土壤低分子量有机酸及其主成分的功能验证——基于低分子量有机酸外源导入对土壤养分释放及刺梨生长的作用. 硕士学位论文, 贵州大学, 贵阳.]
[9] He HH, Veneklaas EJ, Kuo J, Lambers H (2014). Physiological and ecological significance of biomineralization in plants. Trends in Plant Science, 19, 166-174.
[10] He ZF, Xiong LY, Guo XM, Niu AZ (1988). A study on the content of nutrients in Rosa roxburghii Tratt. fruit. Acta Nutrimenta Sinica, 10, 262-266.
[10] [ 何照范, 熊绿芸, 国兴民, 牛爱珍 (1988). 刺梨果实的营养成分. 营养学报, 10, 262-266.]
[11] Hong WJ (2016). The Adaptive Mechanisms with Drought and Calcium of Two Species Suitable Growing in Limestone Mountain. Master degree dissertation, South China Agricultural University, Guangzhou.
[11] [ 洪文君 (2016). 两种石灰岩适生树种耐旱和钙适应性机理研究. 硕士学位论文, 华南农业大学, 广州.]
[12] Huang YF, Huang YY, Chen GF, Liu YX, Pan LP, Xiong LM (2017). Investigation and evaluation of soil nutrients in pitaya orchard in Guangxi. Southwest China Journal of Agricultural Sciences, 30, 2035-2040.
[12] [ 黄雁飞, 黄玉溢, 陈桂芬, 刘永贤, 潘丽萍, 熊柳梅 (2017). 广西主要火龙果园土壤养分调查及评价. 西南农业学报, 30, 2035-2040.]
[13] Islam MN, Islam S, Kawasaki M (2018). Evaluation of calcium regulating role of calcium oxalate crystals in eddo corms in hydroponic solution containing calcium at different concentrations. Asian Research Journal of Agriculture, 10(2), 1-12.
[14] Islam MN, Kawasaki M (2015). Evaluation of calcium regulating roles of guttation and calcium oxalate crystals in leaf blades and petioles of hydroponically grown eddo. Plant Production Science, 18(1), 11-21.
[15] Ji FT, Li N, Deng X (2009). Calcium contents and high calcium adaptation of plants in karst areas of China. Chinese Journal of Plant Ecology, 33, 926-935.
[15] [ 姬飞腾, 李楠, 邓馨 (2009). 喀斯特地区植物钙含量特征与高钙适应方式分析. 植物生态学报, 33, 926-935.]
[16] Jing YR (2017). Common Plants and Their High Calcium Adaptation in Rocky Desertification Area Southwestern Hunan. Master degree dissertation, Central South University of Forestry & Technology, Changsha.
[16] [ 景宜然 (2017). 湘西南石漠化地区常见植物及其对土壤高钙适应方式分析. 硕士学位论文, 中南林业科技大学, 长沙.]
[17] Lersten NR, Horner HT (2008). Subepidermal idioblasts and crystal macropattern in leaves of Ticodendron (Ticodendraceae). Plant Systematics and Evolution, 276, 255-260.
[18] Li HP (2009). Plant Microscopic Techniques. 2nd ed. Science Press, Beijing. 85-90.
[18] [ 李和平 (2009). 植物显微技术. 2版. 科学出版社, 北京. 85-90.]
[19] Li Q, Yu LJ, Deng Y, Li W, Li MT, Cao JH (2007). Leaf epidermal characters of Lonicera japonica and Lonicera confuse and their ecology adaptation. Journal of Forestry Research, 18, 103-108.
[20] Li XL, Zhang WJ, Lu JW, Wang LJ (2012). Calcium oxalate biomineralization in plants. Chinese Science Bulletin, 57, 2443-2455.
[20] [ 李秀丽, 张文君, 鲁剑巍, 王荔军 (2012). 植物体内草酸钙的生物矿化. 科学通报, 57, 2443-2455.]
[21] Li XX, Zhang DZ, Lynch-Holm VJ, Okita TW, Franceschi VR (2003). Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. Plant Physiology, 133, 549-559.
[22] Luo XQ, Wang CY, Yang HY, Liao XR (2012). Studies on adaptive mechanisms of karst dominant plant species to drought and high calcium stress. Chinese Agricultural Science Bulletin, 28(16), 1-5.
[22] [ 罗绪强, 王程媛, 杨鸿雁, 廖昕荣 (2012). 喀斯特优势植物种干旱和高钙适应性机制研究进展. 中国农学通报, 28(16), 1-5.]
[23] Mazen AMA (2004). Calcium oxalate deposits in leaves of Corchorus olitorius as related to accumulation of toxic metals. Russian Journal of Plant Physiology, 51, 281-285.
[24] Ohat Y, Yamamoto K, Deguchi M (1970). Chemical fractionation of calcium in the fresh rice leaf blade and influences of deficiency or oversupply of calcium and age of leaf on the content of each calcium fraction: chemical fractionation of calcium in some plant species (Part 1). Journal of the Science of Soil and Manure, 41, 19-26.
[25] Qi QW, Hao Z, Tao JJ, Kang M (2013). Diversity of calcium speciation in leaves of Primulina species (Gesneriaceae). Biodiversity Science, 21, 715-722.
[25] [ 齐清文, 郝转, 陶俊杰, 康明 (2013). 报春苣苔属植物钙形态多样性. 生物多样性, 21, 715-722.]
[26] Tang SB, Zhang LL, Kuang YW, Yan JH, Chen FL (2017). Leaf construction costs of 34 dominant species in karst forest, Guizhou. Earth and Environment, 45(3), 18-24.
[26] [ 汤松波, 张玲玲, 旷远文, 闫俊华, 陈丰林 (2017). 贵州喀斯特森林34个优势种叶片构建成本特征. 地球与环境, 45(3), 18-24.]
[27] Tu YL (1995). Analysis of flora and ecological characteristics of karst scrubs in Guizhou Province. Journal of Guizhou Normal University (Natural Science), 13(3), 1-8.
[27] [ 屠玉麟 (1995). 贵州喀斯特灌丛区系与生态特征分析. 贵州师范大学学报(自然科学版), 13(3), 1-8.]
[28] Wang CM, Yi Y (2014). Physiological activity and calcium content of calciphile, ubiquists and calcifuge under nature environment. Hubei Agricultural Sciences, 53, 3840-3844.
[28] [ 王传明, 乙引 (2014). 自然生长下喜钙植物、随遇植物和嫌钙植物生理活性特征及钙含量特征的研究. 湖北农业科学, 53, 3840-3844.]
[29] Wang CY, Wang SJ, Rong L, Luo XQ (2011). Analyzing about characteristics of calcium content and mechanisms of high calcium adaptation of common pteridophyte in Maolan karst area of China. Chinese Journal of Plant Ecology, 35, 1061-1069.
[29] [ 王程媛, 王世杰, 容丽, 罗绪强 (2011). 茂兰喀斯特地区常见蕨类植物的钙含量特征及高钙适应方式分析. 植物生态学报, 35, 1061-1069.]
[30] Wang GY, Qu HY, Cai LG, Ding YN, Wei J (2018). Research progress on mechanism of synthesis and degradation and function of calcium oxalate crystals in plants. Chinese Traditional and Herbal Drugs, 49, 1710-1715.
[30] [ 王光野, 曲红岩, 蔡立格, 丁亦男, 魏健 (2018). 植物草酸钙晶体合成、降解机制及功能研究进展. 中草药, 49, 1710-1715.]
[31] Wang JN, Feng HJ, Li BQ, Fang K, Shi JM (2018). Distribution, transportation and accumulation of mineral elements in a rock-soil-plant system of Phyllostachys glaucain limestone mountains. Carsologica Sinica, 37, 770-776.
[31] [ 王江南, 冯火炬, 李百球, 方楷, 施建敏(2018). 石灰岩山地淡竹林“岩石-土壤-植物”的元素分布与迁移积聚特征. 中国岩溶, 37, 770-776.]
[32] Wei SX, Huang LN, Xie ZS, Li ZY, Lin MX, Luo SR, Chen YY (2013). Analysis for soil fertility and recommendations for fertilization of main aged banana gardens in Zhangzhou. Chinese Journal of Tropical Crops, 34, 2336-2341.
[32] [ 魏守兴, 黄丽娜, 谢子四, 李志阳, 林敏霞, 罗石荣, 陈业渊 (2013). 漳州主要长期蕉园土壤肥力分析与施肥建议. 热带作物学报, 34, 2336-2341.]
[33] Wei ZJ, Zhang M, Wang C, Zhang XJ, Zeng JH, Chen T (2019). Macroscopic and microscopic characteristics of Urtica fissa herb. Lishizhen Medicine and Materia Medica Research, 30, 1401-1403.
[33] [ 卫子皎, 张敏, 王纯, 张小佳, 曾建红, 陈涛 (2019). 荨麻的性状和显微鉴别研究. 时珍国医国药, 30, 1401-1403.]
[34] White PJ, Broadley MR (2003). Calcium in plants. Annals of Botany, 92, 487-511.
[35] Wu G, Fu CH, Huang YW, Li W, Yu LJ, Li MT (2011). Calcium salt excreted by stoma and its biomineralization in Lonicera confusa under a calcium-rich environment. Chinese Bulletin of Botany, 46, 658-664.
[35] [ 吴耿, 付春华, 黄永伟, 李为, 余龙江, 栗茂腾 (2011). 岩溶环境下华南忍冬气孔泌钙及其生物矿化. 植物学通报, 46, 658-664.]
[36] Xu JJ, Ci HC, He XD, Xue PP, Zhao XL, Guo JT, Gao YB (2012). Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin. Chinese Journal of Applied Ecology, 23, 1247-1253.
[36] [ 徐静静, 慈华聪, 何兴东, 薛苹苹, 赵雪莱, 郭健潭, 高玉葆 (2012). 天津盐渍化生境54种植物钙晶体与钙组分特征. 应用生态学报, 23, 1247-1253.]
[37] Yang HR, Fan WG (2022). Effects of different calcium supply levels on growth, mineral element absorption and related physiological and biochemical characteristics of Rosa roxburghii seedlings. Journal of Fruit Science, 39, 1891-1902.
[37] [ 杨婳若, 樊卫国 (2022). 不同供钙水平对刺梨苗生长、矿质元素吸收及相关生理生化特性的影响. 果树学报, 39, 1891-1902.]
[38] Yang WH, Feng BH, Wei WX (2018). Survey of soil fertility and fertilizer recommendation in the main banana plantations in Nanning. Chinese Journal of Tropical Agriculture, 38(9), 6-13.
[38] [ 杨文慧, 封碧红, 韦文幸 (2018). 南宁主要香蕉种植基地土壤肥力调查与施肥建议. 热带农业科学, 38(9), 6-13.]
[39] Zhang FS (1993). Environmental Stress and Plant Nutrition. Agricultural Press, Beijing. 369-381.
[39] [ 张福锁 (1993). 环境胁迫与植物营养. 农业出版社, 北京. 369-381.]
[40] Zhang MJ, Wu Q, Wang LX (2021). Effects of calcium nitrate stress on physiological characteristics of tomato seedlings. Northern Horticulture, (23), 52-56.
[40] [ 张妙娟, 吴琼, 王丽霞 (2021). 硝酸钙胁迫对番茄幼苗生理特性的影响. 北方园艺, (23), 52-56.]
[41] Zhou YC (1997). A study on the part plants’ main nutrient elements content of Guizhou karst region. Journal of Guizhou Agriculture College, 16(1), 11-16.
[41] [ 周运超 (1997). 贵州喀斯特植被主要营养元素含量分析. 贵州农学院学报, 16(1), 11-16.]
文章导航

/