不同种源刨花楠苗木生长与主要功能性状对氮添加的响应
收稿日期: 2022-07-20
录用日期: 2023-01-31
网络出版日期: 2023-02-03
基金资助
国家自然科学基金(31971643);国家自然科学基金(32071555);福建省科技厅高校产学合作项目(2019N5009和2020N5008(2019N5009);福建省科技厅高校产学合作项目(2019N5009和2020N5008(2020N5008)
Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances
Received date: 2022-07-20
Accepted date: 2023-01-31
Online published: 2023-02-03
Supported by
National Natural Science Foundation of China(31971643);National Natural Science Foundation of China(32071555);Industry-University Cooperation Project of Fujian Science and Technology Department(2019N5009);Industry-University Cooperation Project of Fujian Science and Technology Department(2020N5008)
氮是影响植物生长的重要营养物质元素, 生物量分配模式和功能性状反映植物在不同环境中的适应性策略, 揭示不同种源个体对氮沉降的生态响应, 有助于阐明植物对氮沉降的适应机制。该研究以刨花楠(也称刨花润楠, Machilus pauhoi)典型分布区福建万木林、福建茫荡山、江西遂川、浙江建德、湖南茶陵、江西安福6个种源地的刨花楠苗木为对象, 通过设置施肥和不施肥处理, 探讨氮添加、种源及其交互作用对刨花楠苗木生物量分配与功能性状的影响。结果表明: 1)氮添加会显著促进刨花楠苗木的生物量累积及其相对生长速率, 建德种源苗木在施氮处理后长势最好; 氮添加对各种源苗木生物量分配的影响表现不同, 添加氮会显著增加建德和安福种源苗木叶质量分数及万木林和安福种源苗木的叶茎比。2)氮添加对各种源苗木叶性状的影响存在差异; 施氮会显著降低建德、茶陵和安福种源苗木的比叶面积, 增加茶陵种源苗木的叶面积及叶片氮磷比。3)各种源苗木细根主要功能性状对氮添加的响应也存在差异; 施氮会显著降低建德种源苗木的细根平均直径及遂川、建德和安福种源苗木的根组织密度, 但却会增加万木林种源苗木根组织密度、茫荡山和建德种源苗木的比根长及遂川和建德种源苗木的细根比表面积; 氮添加显著增加安福种源苗木的细根氮含量, 降低万木林、茫荡山和遂川种源苗木的细根磷含量, 并使各种源苗木细根氮磷比均显著高于对照。4)不同种源间刨花楠苗木细根和与生物量分配相关的表型可塑性相对高于叶片表型可塑性, 其中建德种源苗木的表型可塑性最高, 遂川种源苗木表型可塑性最低。5)结构方程模型表明, 种源与氮添加对刨花楠苗木生长影响显著, 氮添加通过影响叶茎比和叶片氮磷比进而对生长产生影响, 种源则通过影响其比叶面积与细根比表面积进而影响其生长。不同种源间刨花楠苗木生长、生物量分配及主要功能性状对氮添加的生态适应策略具有差异性, 其中建德种源苗木更适应外界环境的变化, 这是其长期适应种源地环境的结果。研究结果可为我国受氮沉降影响的亚热带区域开展刨花楠优良种源选择等提供理论依据。
安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕 . 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023 , 47(12) : 1693 -1707 . DOI: 10.17521/cjpe.2022.0301
Aims Nitrogen (N) is an important nutrient element affecting plant growth, biomass allocation and functional trait strategies. Revealing the ecological responses of different provenances to N deposition can help elucidate the adaptation mechanisms of plant species.
Methods In this study, Machilus pauhoi seedlings from 6 provenances in Wanmulin, Fujian Province (WML), Mangdang Mountain, Fujian Province (MDS), Suichuan, Jiangxi Province (SC), Jiande, Zhejiang Province (JD), Chaling, Hunan Province (CL) and Anfu, Jiangxi Province (AF) were selected as our study objects. By setting two treatments of fertilization and no fertilization, we investigated the effects of N addition, provenance and their interactions on biomass allocation and functional traits of M. pauhoi seedlings.
Important findings 1) Nitrogen addition significantly promoted total biomass accumulation and the relative growth rate of M. pauhoi seedlings, with the greatest response observed for JD seedlings. However, the effect of N addition on biomass allocation varied by provenance, with JD and AF seeding showing increased leaf mass fraction, and WML and AF seedlings showing increased leaf stem ratio. 2) The effects of N addition on leaf traits of seedlings also varied by provenance. N application significantly reduced the specific leaf area of JD, CL and AF seedlings, but increased the leaf area and leaf N:phosphorus (P) of CL seedling. 3) The response of major functional traits of fine roots to N addition also varied by provenance. N addition significantly decreased the average root diameter and root tissue density of SC, JD and AF seedlings, but increased the root tissue density of WML seedling, the specific root length of MDS and JD seedlings, and the specific surface area of SC and JD seedlings. N addition significantly increased the fine root N content of AF seedling, but decreased the fine root P content of WML, MDS and SC seedlings, and the fine root N:P of all provenances were significantly higher in fertilization treatments than in the control. 4) We observed higher phenotypic plasticity in fine root and biomass-related phenotypes than in leaf traits among different provenances, with the highest phenotypic plasticity in the JD seedling and the lowest phenotypic plasticity in the SC seedling. 5) Structural equation modeling showed that N addition and provenance had significant effects on the growth of M. pauhoi seedlings, with N addition influencing growth by affecting leaf stem ratio and leaf N:P, and provenance influencing growth by affecting specific leaf area and fine root surface area. The growth, biomass and functional traits of M. pauhoi seedlings from different provenances have different ecological adaptation strategies to N addition. Among them, JD seedlings is more adaptable to changes in the external environment, which may account for its long-term adaptation to the provenance environment. Our results provide a theoretical basis for the selection of optimal provenance of M. pauhoi in subtropical regions of China that affected by N deposition.
Key words: provenances; nitrogen addition; functional trait; growth; Machilus pauhoi
[1] | An HL, Xie QJ, Liu C, Xia XL, Yin WL (2015). Effects of water stress and provenance on leaf functional traits of Salix gordejevii. Scientia Silvae Sinicae, 51(10), 75-84. |
[ 安海龙, 谢乾瑾, 刘超, 夏新莉, 尹伟伦 (2015). 水分胁迫和种源对黄柳叶功能性状的影响. 林业科学, 51(10), 75-84.] | |
[2] | Bae K, Fahey TJ, Yanai RD, Fisk M (2015). Soil nitrogen availability affects belowground carbon allocation and soil respiration in northern hardwood forests of few hampshire. Ecosystems, 18, 1179-1191. |
[3] | Báez S, Homeier J (2018). Functional traits determine tree growth and ecosystem productivity of a tropical montane forest: insights from a long-term nutrient manipulation experiment. Global Change Biology, 24, 399-409. |
[4] | Bloom AJ, Chapin III FS, Mooney HA (1985). Resource limitation in plants—An economic analogy. Annual Review of Ecology and Systematics, 16, 363-392. |
[5] | de Kroon H, Schieving F (1991). Resource allocation patterns as a function of clonal morphology: a general model applied to a foraging clonal plant. Journal of Ecology, 79, 519-530. |
[6] | Deng XY (2017). Influence Mechanism of Light and Nitrogen on the Growth and Leaf Traits of Machilus pauhoi Seedling from Different Provenances. Master degree dissertation, Fujian Normal University, Fuzhou. |
[ 邓兴宇 (2017). 光、氮处理对不同种源刨花楠苗木生长与叶片性状的影响机制. 硕士学位论文, 福建师范大学, 福州.] | |
[7] | Eissenstat DM (1992). Costs and benefits of constructing roots of small diameter. Journal of Plant Nutrition, 15, 763-782. |
[8] | Fan YM, Li W, Wen ZM, Guo Q, Liu J, Yang X, Zheng C, Yang YT, Jiang YM, Zhang B (2021). Responses of grassland community biomass and root-shoot ratio to nitrogen addition in different restoration years on the Loess Plateau. Acta Ecologica Sinica, 41, 9824-9835. |
[ 樊勇明, 李伟, 温仲明, 郭倩, 刘晶, 杨雪, 郑诚, 杨玉婷, 姜艳敏, 张博 (2021). 黄土区不同恢复年限草地群落生物量及根冠比对氮添加的响应. 生态学报, 41, 9824- 9835.] | |
[9] | Feng CY, Zheng CY, Tian D (2019). Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms. Chinese Journal of Plant Ecology, 43, 185-196. |
[ 冯婵莹, 郑成洋, 田地 (2019). 氮添加对森林植物磷含量的影响及其机制. 植物生态学报, 43, 185-196.] | |
[10] | Fort F, Volaire F, Guilioni L, Barkaoui K, Navas ML, Roumet C (2017). Root traits are related to plant water-use among rangeland Mediterranean species. Functional Ecology, 31, 1700-1709. |
[11] | Freschet GT, Swart EM, Cornelissen JHC (2015). Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction. New Phytologist, 206, 1247-1260. |
[12] | Gong L, Zhao J (2019). The response of fine root morphological and physiological traits to added nitrogen in Schrenk’s spruce (Picea schrenkiana) of the Tianshan Mountains, China. PeerJ, 7, e8194. DOI: 10.7717/peerj.8194. |
[13] | Gu J, Xu Y, Dong X, Wang H, Wang Z (2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology, 34, 415-425. |
[14] | Guo RQ, Xiong DC, Song TT, Cai YY, Chen TT, Chen WY, Zheng X, Chen GS (2018). Effects of simulated nitrogen deposition on stoichiometry of fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 38, 6101-6110. |
[ 郭润泉, 熊德成, 宋涛涛, 蔡瑛莹, 陈廷廷, 陈望远, 郑欣, 陈光水 (2018). 模拟氮沉降对杉木幼苗细根化学计量学特征的影响. 生态学报, 38, 6101-6110.] | |
[15] | Guo XX, Zuo XA, Yue P, Li XY, Hu Y, Chen M, Yu Q (2022). Direct and indirect effects of precipitation change and nutrients addition on desert steppe productivity in Inner Mongolia, Northern China. Plant and Soil, 471, 527-540. |
[16] | Hao XC, Zhou S, Han LJ, Zhai Y, Chen TC (2021). Variation of seed and sapling indexes of Quercus liaotungensis from different provenances and related analyses. Journal of Plant Resources and Environment, 30, 1-11. |
[ 郝向春, 周帅, 韩丽君, 翟瑜, 陈天成 (2021). 不同种源辽东栎种子和幼树指标变异及相关分析. 植物资源与环境学报, 30, 1-11.] | |
[17] | Huo XY, Wang DX, Luo JR, Lv XY, Li PH (2022). Increased survival rate of Quercus aliena var. acuteserrata seedlings via nitrogen addition for the succession of pine and pine-oak mixed forests to oak forest. Forest Ecology and Management, 508, 120051. DOI: 10.1016/j.foreco.2022. 120051. |
[18] | Isaac ME, Martin AR, de Melo Virginio Filho E, Rapidel B, Roupsard O,van den Meersche K (2017). Intraspecific trait variation and coordination: root and leaf economics spectra in coffee across environmental gradients. Frontiers in Plant Science, 8, 1196. DOI: 10.3389/fpls.2017.01196. |
[19] | Kou L, Chen WW, Gao WL, Yang H, Wang HM, Li SG (2015). Effects of mixture of branch order-based roots and nitrogen addition on root decay in a subtropical pine plantation. Biology and Fertility of Soils, 51, 947-957. |
[20] | Li JX, Sun XM, Liu N, Li L, Chen NL (2021). Response and plasticity of functional traits in Lycium ruthenicum to N and P addition. Chinese Journal of Applied Ecology, 32, 1279-1288. |
[ 李金霞, 孙小妹, 刘娜, 李良, 陈年来 (2021). 黑果枸杞功能性状对氮磷添加的响应及其可塑性. 应用生态学报, 32, 1279-1288.] | |
[21] | Li W, Shi YF, Zhu DD, Wang WQ, Liu HW, Li JY, Shi NN, Ma L, Fu SL (2021). Fine root biomass and morphology in a temperate forest are influenced more by the nitrogen treatment approach than the rate. Ecological Indicators, 130, 108031. DOI: 10.1016/j.ecolind.2021.108031. |
[22] | Liu B, Li H, Zhu B, Koide RT, Eissenstat DM, Guo D (2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136. |
[23] | Liu Y, Zhang J, Chen YM, Chen L, Liu Q (2013). Effect of nitrogen and phosphorus fertilization on biomass allocation and C:N:P stoichiometric characteristics of Eucalyptus grandis seedlings. Chinese Journal of Plant Ecology, 37, 933-941. |
[ 刘洋, 张健, 陈亚梅, 陈磊, 刘强 (2013). 氮磷添加对巨桉幼苗生物量分配和C:N:P化学计量特征的影响. 植物生态学报, 37, 933-941.] | |
[24] | Liu ZG, Dong N, Zhang HX, Zhao M, Ren TT, Liu CC, Westerband A, He NP (2021). Divergent long- and short- term responses to environmental gradients in specific leaf area of grassland species. Ecological Indicators, 130, 108058. DOI: 10.1016/j.ecolind.2021.108058. |
[25] | Lu XK, Mo JM, Gilliam FS, Fang H, Zhu FF, Fang YT, Zhang W, Huang J (2012). Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in Southern China. Biotropica, 44, 302-311. |
[26] | Lu XM, Zhou CF, An SQ, Fang C, Zhao H, Yang Q, Yan C (2007). Phenotypic plasticity, allometry and invasiveness of plants. Chinese Journal of Ecology, 26, 1438-1444. |
[ 陆霞梅, 周长芳, 安树青, 方超, 赵晖, 杨茜, 颜超 (2007). 植物的表型可塑性、异速生长及其入侵能力. 生态学杂志, 26, 1438-1444.] | |
[27] | Luo J, Qin J, He F, Li H, Liu T, Polle A, Peng C, Luo ZB (2013). Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta, 237, 919-931. |
[28] | Manzanedo RD, Schanz FR, Fischer M, Allan E (2018). Fagus sylvatica seedlings show provenance differentiation rather than adaptation to soil in a transplant experiment. BMC Ecology, 18, 42. DOI: 10.1186/s12898-018-0197-5. |
[29] | Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704. |
[30] | McCormack ML, Guo D, Iversen CM, Chen W, Eissenstat DM, Fernandez CW, Li L, Ma C, Ma Z, Poorter H, Reich PB, Zadworny M, Zanne A (2017). Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytologist, 215, 27-37. |
[31] | Meller S, Frossard E, Spohn M, Luster J (2020). Plant nutritional status explains the modifying effect of provenance on the response of beech sapling root traits to differences in soil nutrient supply. Frontiers in Forests and Global Change, 3, 535117. DOI: 10.3389/ffgc.2020. 535117. |
[32] | Messier J, McGill BJ, Lechowicz MJ (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848. |
[33] | Niu S, Classen AT, Dukes JS, Kardol P, Liu L, Luo Y, Rustad L, Sun J, Tang J, Templer PH, Thomas RQ, Tian D, Vicca S, Wang YP, Xia J, Zaehle S (2016). Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 19, 697-709. |
[34] | Noguchi K, Nagakura J, Kaneko S (2013). Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization. Frontiers in Plant Science, 4, 347. DOI: 10.3389/fpls.2013.00347. |
[35] | Palmroth S, Bach LH, Nordin A, Palmqvist K (2014). Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs. Oecologia, 175, 457-470. |
[36] | Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733-1743. |
[37] | Rodríguez-García E, Bravo F (2013). Plasticity in Pinus pinaster populations of diverse origins: comparative seedling responses to light and nitrogen availability. Forest Ecology and Management, 307, 196-205. |
[38] | Saenger P, West PW (2018). Phenotypic variation of the mangrove species Avicennia marina (Forssk.) Vierh. from seven provenances around Australia. Aquatic ound Australia. Aquatic Botany, 149, 28-32. |
[39] | Salazar Zarzosa P, Diaz Herraiz A, Olmo M, Ruiz-Benito P, Barrón V, Bastias CC, de la Riva EG, Villar R (2021). Linking functional traits with tree growth and forest productivity in Quercus ilex forests along a climatic gradient. The Science of the Total Environment, 786, 147468. DOI: 10.1016/j.scitotenv.2021.147468. |
[40] | Song ZP, He NP, Hou JH (2018). Effect of nitrogen addition on leaf nitrogen and phosphorus stoichiometric characteristics of different provenance Acer mono seedlings. Acta Ecologica Sinica, 38, 254-262. |
[ 宋沼鹏, 何念鹏, 侯继华 (2018). 不同种源五角枫幼苗叶片N、P化学计量学特征对氮添加的响应. 生态学报, 38, 254-262.] | |
[41] | Tian D, Du EZ, Jiang L, Ma SH, Zeng WJ, Zou AL, Feng CY, Xu LC, Xing AJ, Wang W, Zheng CY, Ji CJ, Shen HH, Fang JY (2018). Responses of forest ecosystems to increasing N deposition in China: a critical review. Environmental Pollution, 243, 75-86. |
[42] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[43] | Wang XM, Yan BG, Shi LT, Liu GC (2020). Different responses of biomass allocation and leaf traits of Dodonaea viscosa to concentrations of nitrogen and phosphorus. Chinese Journal of Plant Ecology, 44, 1247-1261. |
[ 王雪梅, 闫帮国, 史亮涛, 刘刚才 (2020). 车桑子幼苗生物量分配与叶性状对氮磷浓度的响应差异. 植物生态学报, 44, 1247-1261.] | |
[44] | Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169. |
[45] | Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227. |
[46] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[47] | Xiao D, Wang XJ, Zhang K, Kang FF, He NP, Hou JH (2015). Effects of simulated nitrogen deposition on growth of Acer mono seedlings. Journal of Beijing Forestry University, 37(10), 50-57. |
[ 肖迪, 王晓洁, 张凯, 康峰峰, 何念鹏, 侯继华 (2015). 模拟氮沉降对五角枫幼苗生长的影响. 北京林业大学学报, 37(10), 50-57.] | |
[48] | Yang T, Zhong QL, Li BY, Cheng DL, Xu CB, Zou YX, Zhang X, Zhou ZZ (2022). Effects of short-term combined application of ammonium nitrogen and nitrate nitrogen on the growth and leaf traits of Machilus pauhoi seedlings. Chinese Journal of Applied Ecology, 33, 25-32. |
[ 杨婷, 钟全林, 李宝银, 程栋梁, 徐朝斌, 邹宇星, 张雪, 周宗哲 (2022). 短期铵态氮与硝态氮配施对刨花楠幼苗生长及叶片性状的影响. 应用生态学报, 33, 25-32.] | |
[49] | Yao JB, Chu XL, Zhou ZC, Tong JS, Wang H, Yu JZ (2017). Different responses of growth and root development of Schima superba provenance to the adjacent plant competition in different nutrient conditions. Chinese Journal of Applied Ecology, 28, 1087-1093. |
[ 姚甲宝, 楚秀丽, 周志春, 童建设, 王晖, 余家中 (2017). 不同养分环境下木荷种源生长和根系发育对邻株竞争响应的差异. 应用生态学报, 28, 1087-1093.] | |
[50] | Yin QL, Tian TT, Han XH, Xu JS, Chai YF, Mo J, Lei ML, Wang L, Yue M (2019). The relationships between biomass allocation and plant functional trait. Ecological Indicators, 102, 302-308. |
[51] | Yu H, Zhong QL, Cheng DL, Zhang ZR, Xu CB, Zheng WT, Pei P (2018a). Leaf C, N, P stoichiometry of Machilus pauhoi understory seedlings of different provenances. Scientia Silvae Sinicae, 54(12), 22-32. |
[ 余华, 钟全林, 程栋梁, 张中瑞, 徐朝斌, 郑文婷, 裴盼 (2018a). 不同种源刨花楠林下幼苗叶片碳氮磷化学计量特征. 林业科学, 54(12), 22-32.] | |
[52] | Yu H, Zhong QL, Huang YB, Cheng DL, Pei P, Zhang ZR, Xu CB, Zheng WT (2018b). Relationships between leaf functional traits of Machilus pauhoi understory seedlings from different provenances and geographical environmental factors. Chinese Journal of Applied Ecology, 29, 449-458. |
[ 余华, 钟全林, 黄云波, 程栋梁, 裴盼, 张中瑞, 徐朝斌, 郑文婷 (2018b). 不同种源刨花楠林下幼苗叶功能性状与地理环境的关系. 应用生态学报, 29, 449-458.] | |
[53] | Yuan HJ, Cheng XR, Yu MK, Wang YD, Tai JW, Zhang CX (2021). Geographical variation of growth traits among different Quercus acutissima provenances. Chinese Journal of Applied Ecology, 32, 2791-2799. |
[ 苑海静, 成向荣, 虞木奎, 汪阳东, 邰建武, 张春祥 (2021). 不同种源麻栎生长性状的地理变异. 应用生态学报, 32, 2791-2799.] | |
[54] | Yue K, Fornara DA, Li W, Ni XY, Peng Y, Liao S, Tan SY, Wang DY, Wu FZ, Yang YS (2020). Nitrogen addition affects plant biomass allocation but not allometric relationships among different organs across the globe. Journal of Plant Ecology, 14, 361-371. |
[55] | Zhang JH, He NP, Liu CC, Xu L, Yu Q, Yu GR (2018). Allocation strategies for nitrogen and phosphorus in forest plants. Oikos, 127, 1506-1514. |
[56] | Zhao Q, Zeng DH (2019). Nitrogen addition effects on tree growth and soil properties mediated by soil phosphorus availability and tree species identity. Forest Ecology and Management, 449, 117478. DOI: 10.1016/j.foreco.2019. 117478. |
[57] | Zhao XT, Xia DA, Zeng FS, Yao SZ, Shang YL, Zhang GQ, Wang YX, Zhang TW, Zhan YG (2015). Provenances by sites interaction of growth traits and provenance selection of fraxinus mandshurica. Scientia Silvae Sinicae, 51(3), 140-147. |
赵兴堂, 夏德安, 曾凡锁, 姚盛智, 商永亮, 张桂芹, 王元兴, 张同伟, 詹亚光 (2015). 水曲柳生长性状种源与地点互作及优良种源选择. 林业科学, 51(3), 140-147. | |
[58] | Zheng ZM, Lu J, Su YQ, Yang QS, Lin YH, Liu HM, Yang J, Huang H, Wang XH (2020). Differential effects of N and P additions on foliar stoichiometry between species and community levels in a subtropical forest in Eastern China. Ecological Indicators, 117, 106537. DOI: 10.1016/j. ecolind.2020.106537. |
[59] | Zhong BY, Xiong DC, Shi SZ, Feng JX, Xu CS, Deng F, Chen YY, Chen GS (2016). Effects of precipitation exclusion on fine-root biomass and functional traits of Cunninghamia lanceolata seedlings. Chinese Journal of Applied Ecology, 27, 2807-2814. |
[ 钟波元, 熊德成, 史顺增, 冯建新, 许辰森, 邓飞, 陈云玉, 陈光水 (2016). 隔离降水对杉木幼苗细根生物量和功能特征的影响. 应用生态学报, 27, 2807-2814.] | |
[60] | Zou AL, Li XP, Ni XF, Ji CJ (2019). Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China. Chinese Journal of Plant Ecology, 43, 783-792. |
[ 邹安龙, 李修平, 倪晓凤, 吉成均 (2019). 模拟氮沉降对北京东灵山辽东栎林树木生长的影响. 植物生态学报, 43, 783-792.] |
/
〈 |
|
〉 |