不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素
收稿日期: 2022-11-28
录用日期: 2023-04-26
网络出版日期: 2023-05-04
基金资助
内蒙古自治区科技计划项目(2022YFHH0131);中央高校基本科研业务费项目(2021ZY47)
Species composition and driving factors of the ectomycorrhizal fungal community associated with Pinus sylvestris var. mongolica at different growth periods
Received date: 2022-11-28
Accepted date: 2023-04-26
Online published: 2023-05-04
Supported by
Science and Technology Project of Nei Mongol Autonomous Region(2022YFHH0131);Fundamental Research Funds for the Central Universities(2021ZY47)
阐明不同生长期樟子松(Pinus sylvestris var. mongolica)外生菌根真菌群落物种组成、分子生态网络特征及其驱动因子, 可为樟子松人工林可持续经营管理提供理论依据。该研究以毛乌素沙地不同树龄(23、33和44年)樟子松为研究对象, 采用野外调查取样、Illumina MiSeq技术和分子生态网络等生物信息学分析相结合的方法, 比较分析生长季初期(4月)、生长旺盛期(7月)和生长季末期(9月)外生菌根真菌群落物种组成、菌群间相互作用关系及群落变化主要影响因子。主要结果有: 1)生长期对樟子松外生菌根真菌丰富度和Chao1指数影响显著, 生长旺盛期Chao1指数和Simpson多样性指数显著高于其他两个生长期; 树龄对外生菌根真菌多样性没有显著影响。2)毛乌素沙地樟子松根尖共鉴定到外生菌根真菌2门4纲7目18科28属; 生长季初期、旺盛期和末期的优势类群分别为棉革菌属(Tomentella)、丝盖伞属(Inocybe)和地孔菌属(Geopora), 不同树龄优势类群均为地孔菌属; 优势类群棉革菌属和丝盖伞属为生长旺盛期和生长季末期的共有指示菌属。3)生长季末期外生菌根真菌网络节点数、边数最大, 其群落结构更加复杂, 菌种间存在较强的相互作用。4)土壤pH和年平均相对湿度是显著影响樟子松外生菌根真菌群落物种组成差异的环境因子。结论: 生长期和树龄均对樟子松外生菌根真菌多样性与群落物种组成产生影响, 其中生长期的作用强于树龄; 外生菌根真菌季节动态分布主要取决于土壤性质和气候条件。
任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶 . 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023 , 47(9) : 1298 -1309 . DOI: 10.17521/cjpe.2022.0480
Aims This study aimed to illustrate community structure, molecular ecological network and driving factors of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica at different growth periods, and provide a theoretical basis for sustainable management of P. sylvestris var. mongolica plantation.
Methods Pinus sylvestris var. mongolica with different tree ages (23, 33 and 44 a) in Mau Us Sandy Land were targeted. The species compositions, interaction and main drivers of ectomycorrhizal fungi at the early growth period (Apr.), vigorous growth period (July) and the late growth period (Sept.) were identified by field investigation and sampling, illumina high-throughput sequencing and molecular ecological network analysis, respectively.
Important findings 1) The growth period had significant effect on the richness and Chao1 index of ectomycorrhizal fungi, with significantly higher Chao1 and Simpson diversity index in vigorous growth period than in early and late growth periods. The tree age had no significant effect on the ectomycorrhizal fungal diversity index. 2) In Mau Us Sandy Land, the ectomycorrhizal fungi associated with P. sylvestris var. mongolica were identified into 2 phyla, 4 classes, 7 orders, 18 families, and 28 genera. The dominant genera were Tomentella, Inocybe and Geopora at the early, vigorous and late growth periods, respectively. The Tomentella and Inocybe were the common indicator genera in both vigorous and late growth periods. 3) At the end of the growing season, the nodes and edges of the ectomycorrhizal fungal networks were the largest, indicating that the ectomycorrhizal fungal community was more complex and there was strong interaction between fungal species. 4) Soil pH and annual relative humidity were the key environmental factors that significantly affected the community composition of ectomycorrhizal fungi. Our results demonstrated that the diversity and community composition of ectomycorrhizal fungi were affected by the growth stage and tree age, with a stronger effect in growth stage than in tree age. The seasonal dynamic distribution of ectomycorrhizal fungi mainly depended on soil properties and climate conditions.
[1] | Adamo I, Casta?o C, Bonet JA, Colinas C, Alday JG (2021). Soil physicochemical properties have a greater effect on soil fungi than host species in mediterranean pure and mixed pine forests. Soil Biology & Biochemistry, 160, 108320. DOI: 10.1016/j.soilbio.2021.108320. |
[2] | Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM (2021). Habitat specialization controls ectomycorrhizal fungi above the treeline in the European Alps. New Phytologist, 229, 2901-2916. |
[3] | Awad A, Majcherczyk A, Schall P, Schr?ter K, Sch?ning I, Schrumpf M, Ehbrecht M, Boch S, Kahl T, Bauhus J, Seidel D, Ammer C, Fischer M, Kües U, Pena R (2019). Ectomycorrhizal and saprotrophic soil fungal biomass are driven by different factors and vary among broadleaf and coniferous temperate forests. Soil Biology & Biochemistry, 131, 9-18. |
[4] | Barbeta A, Mejía-Chang M, Ogaya R, Voltas J, Dawson TE, Pe?uelas J (2015). The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 21, 1213-1225. |
[5] | Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, 355, 181-184. |
[6] | Boeraeve M, Honnay O, Jacquemyn H (2018). Effects of host species, environmental filtering and forest age on community assembly of ectomycorrhizal fungi in fragmented forests. Fungal Ecology, 36, 89-98. |
[7] | Chen FL, Zhang K, Xiang D, Wu AP, Li YZ, Zou DS, Zheng H (2019). Impacts of litter decomposition of eucalyptus on soil microbial community: a microcosm study. Acta Pedologica Sinica, 56, 432-442. |
[7] | [陈法霖, 张凯, 向丹, 吴爱平, 李有志, 邹冬生, 郑华 (2019). 桉树凋落物对土壤微生物群落的影响: 基于控制实验研究. 土壤学报, 56, 432-442.] |
[8] | Corrales A, Turner BL, Tedersoo L, Anslan S, Dalling JW (2017). Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fungal Ecology, 27, 14-23. |
[9] | Courty PE, Franc A, Pierrat JC, Garbaye J (2008). Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Applied and Environmental Microbiology, 74, 5792-5801. |
[10] | Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Pe?uelas J, Reich PB, Schuur EAG, et al. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183, 980-992. |
[11] | Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ (2012). Molecular ecological network analyses. BMC Bioinformatics, 13, 113. DOI: 10.1186/1471-2105-13-113. |
[12] | Druebert C, Lang C, Valtanen K, Polle A (2009). Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant, Cell & Environment, 32, 992-1003. |
[13] | Edgar RC (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461. |
[14] | Fang XM, Yu DP, Zhou WM, Zhou L, Dai LM (2016). The effects of forest type on soil microbial activity in Changbai Mountain, northeast China. Annals of Forest Science, 73, 473-482. |
[15] | Frey-Klett P, Garbaye J, Tarkka M (2007). The mycorrhiza helper bacteria revisited. New Phytologist, 176, 22-36. |
[16] | Goldmann K, Schr?ter K, Pena R, Sch?ning I, Schrumpf M, Buscot F, Polle A, Wubet T (2016). Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Scientific Reports, 6, 31439. DOI: 10.1038/srep31439. |
[17] | Gong S, Feng B, Jian SP, Wang GS, Ge ZW, Yang ZL (2022). Elevation matters more than season in shaping the heterogeneity of soil and root associated ectomycorrhizal fungal community. Microbiology Spectrum, 10, e01950-21. DOI: 10.1128/spectrum.01950-21. |
[18] | Griffiths RP, Baham JE, Caldwell BA (1994). Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biology & Biochemistry, 26, 331-337. |
[19] | Guo MS, Gao GL, Ding GD, Zhang Y (2020). Drivers of ectomycorrhizal fungal community structure associated with Pinus sylvestris var. mongolica differ at regional vs. local spatial scales in Northern China. Forests, 11, 323. DOI: 10.3390/F11030323. |
[20] | Han QS, Huang J, Long DF, Wang XB, Liu JJ (2017). Diversity and community structure of ectomycorrhizal fungi associated with Larix chinensis across the alpine treeline ecotone of Taibai Mountain. Mycorrhiza, 27, 487-497. |
[21] | Hayward J, Horton TR, Nu?ez MA (2015). Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. New Phytologist, 208, 497-506. |
[22] | Hupperts SF, Karst J, Pritsch K, Landh?usser SM (2017). Host phenology and potential saprotrophism of ectomycorrhizal fungi in the boreal forest. Functional Ecology, 31, 116-126. |
[23] | Koizumi T, Nara K (2020). Ectomycorrhizal fungal communities in ice-age relict forests of Pinus pumila on nine moutains correspond to summer temperature. The ISME Journal, 14, 189-201. |
[24] | Kutszegi G, Siller I, Dima B, Takács K, Merényi Z, Varga T, Turcsányi G, Bidló A, ódor P (2015). Drivers of macrofungal species composition in temperate forests, West Hungary: functional groups compared. Fungal Ecology, 17, 69-83. |
[25] | Li M, Gao XH (2021). Community structure and driving factors for rhizosphere ectomycorrhizal fungi of Betula platyphylla in Daqing Mountain. Chinese Journal of Ecology, 40, 1244-1252. |
[25] | [李敏, 高秀宏 (2021). 大青山白桦根围外生菌根真菌群落结构及其驱动因素. 生态学杂志, 40, 1244-1252.] |
[26] | Li M, Lü GF, Niu YF, Meng ZY, Yang XJ (2022). Ectomycorrhizal community structure and driving factors of Betula platyphylla in different climate zones in Inner Mongolia. Acta Ecologica Sinica, 12, 4847-4860. |
[26] | [李敏, 吕桂芬, 牛艳芳, 孟兆云, 杨勋爵 (2022). 内蒙古不同气候带白桦外生菌根真菌群落结构及影响因素. 生态学报, 12, 4847-4860.] |
[27] | Long DF, Liu JJ, Han QS, Wang XB, Huang J (2016). Ectomycorrhizal fungal communities associated with Populus simonii and Pinus tabuliformis in the hilly-gully region of the Loess Plateau, China. Scientific Reports, 6, 24336. DOI: 10.1038/srep24336. |
[28] | Mason PA, Wilson J, Last FT, Walker C (1983). The concept of succession in relation to the spread of sheathing mycorrhizal fungi on inoculated tree seedlings growing in unsterile soils. Plant and Soil, 71, 247-256. |
[29] | Miyamoto Y, Terashima Y, Nara K (2018). Temperature niche position and breadth of ectomycorrhizal fungi: reduced diversity under warming predicted by a nested community structure. Global Change Biology, 24, 5724-5737. |
[30] | Mundra S, Bahram M, Tedersoo L, Kauserud H, Halvorsen R, Eidesen P (2015). Temporal variation of Bistorta vivipara-associated ectomycorrhizal fungal communities in the High Arctic. Molecular Ecology, 24, 6289-6302. |
[31] | Ren Y, Gao GL, Ding GD, Zhang Y, Guo MS, Cao HY, Su M (2019). Stoichiometric characteristics of nitrogen and phosphorus in leaf-litter-soil system of Pinus sylvestris var. mongolica plantations. Chinese Journal of Applied Ecology, 30, 743-750. |
[31] | [任悦, 高广磊, 丁国栋, 张英, 郭米山, 曹红雨, 苏敏 (2019). 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征. 应用生态学报, 30, 743-750.] |
[32] | Ren Y, Guo MS, Ding GD, Wang Y (2022). Ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica were altered by soil environments with aging plantation in a semi-arid desert. Frontiers in Environmental Science, 10, 858452. DOI: 10.3389/fenvs.2022.858452. |
[33] | Sebastiana M, da Silva AB, Matos AR, Alcantara A, Silvestre S, Malhó R (2018). Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak. Mycorrhiza, 28, 247-258. |
[34] | Siles JA, Margesin R (2017). Seasonal soil microbial responses are limited to changes in functionality at two alpine forest sites differing in altitude and vegetation. Scientific Reports, 7, 2204. DOI: 10.1038/s41598-017-02363-2. |
[35] | Taylor DL, Bruns TD (1999). Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Molecular Ecology, 8, 1837-1850. |
[36] | Tang YS, Wang L, Jia JW, Fu XH, Le YQ, Chen XZ, Sun Y (2011). Response of soil microbial community in Jiuduansha wetland to different successional stages and its implications for soil microbial respiration and carbon turnover. Soil Biology & Biochemistry, 43, 638-646. |
[37] | Tamara C, Gerardo M, Anabela MA, Alejandro S (2015). Seasonal variations of ectomycorrhizal communities in declining Quercus ilex forests: interactions with topography, tree health status and Phytophthora cinnamomi infections. Forestry, 88, 257-266. |
[38] | Tedersoo L, Bahram M, Zobel M (2020). How mycorrhizal associations drive plant population and community biology. Science, 367, eaba1223. DOI: 10.1126/science.aba1223. |
[39] | van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N, de Vos B, Dietrich HP, Eichhorn J, Gehrmann J, Grebenc T, et al. (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. Nature, 558, 243-248. |
[40] | Wang HH, Chu HL, Dou Q, Feng H, Tang M, Zhang SX, Wang CY (2021). Seasonal changes in Pinus tabuliformis root-associated fungal microbiota drive N and P cycling in terrestrial ecosystem. Frontiers in Microbiology, 11, 526898. DOI: 10.3389/fmicb.2020.526898. |
[41] | Wang JY, Yin XL, Ren Y, Gao GL, Ding GD, Zhang Y, Zhao PS, Guo MS (2020). Diversity characteristics of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in the Mu Us sandy land. Microbiology China, 47, 3856-3867. |
[41] | [王家源, 殷小琳, 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 郭米山 (2020). 毛乌素沙地樟子松外生菌根真菌多样性特征. 微生物学通报, 47, 3856-3867.] |
[42] | Wang XQ, Wang CK, Zhang TD (2017). New perspectives on forest soil carbon and nitrogen cycling processes: roles of arbuscular mycorrhizal versus ectomycorrhizal tree species. Chinese Journal of Plant Ecology, 41, 1113-1125. |
[42] | [王薪琪, 王传宽, 张泰东 (2017). 森林土壤碳氮循环过程的新视角: 丛枝与外生菌根树种的作用. 植物生态学报, 41, 1113-1125.] |
[43] | Watts DJ, Strogatz SH (1998). Collective dynamics of “small-world” networks. Nature, 393, 440-442. |
[44] | Xia TZ, Li LS, Yang HQ (2022). Soil fungal community characteristics at the upper and lower altitudinal range limits of Cephalostachyum pingbianense. Chinese Journal of Plant Ecology, 46, 823-833. |
[44] | [夏体泽, 李露双, 杨汉奇 (2022). 屏边空竹分布区海拔上下边界的土壤真菌群落特征. 植物生态学报, 46, 823-833.] |
[45] | Yao F, Yang S, Wang ZR, Wang X, Ye J, Wang XG, de Bruyn JM, Feng X, Jiang Y, Li H (2017). Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient. Frontiers in Microbiology, 8, 2071. DOI: 10.3389/fmicb.2017.02071. |
[46] | Zhang Y, Cao HY, Zhao PS, Wei XS, Ding GD, Gao GL, Shi MC (2021). Vegetation restoration alters fungal community composition and functional groups in a desert ecosystem. Frontiers in Environmental Science, 9, 589068. DOI: 10.3389/fenvs.2021.589068. |
[47] | Zhao PS, Gao GL, Ding GD, Zhang Y, Wand JY (2022a). Biogeography and ecological functions of root-associated and soil fungi of Pinus sylvestris var. mongolica across different afforestation areas in desertified Northern China. Land Degradation & Development, 34, 313-326. |
[48] | Zhao PS, Gao GL, Ren Y, Ding GD, Zhang Y, Wang JY (2022b). Intra-annual variation of root-associated fungi of Pinus sylvestris var. mongolica: the role of climate and implications for host phenology. Applied Soil Ecology, 176, 104480. DOI: 10.1016/j.apsoil.2022.104480. |
/
〈 |
|
〉 |