研究论文

长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响

  • 黄玲 ,
  • 王榛 ,
  • 马泽 ,
  • 杨发林 ,
  • 李岚 ,
  • SEREKPAYEV Nurlan ,
  • NOGAYEV Adilbek ,
  • 侯扶江
展开
  • 1草种创新与草地农业生态系统全国重点实验室, 农业农村部草牧业创新重点实验室, 国家林业草原西北退化草原生态修复与利用工程技术研究中心,兰州大学草地农业科技学院, 兰州 730020
    2宁夏回族自治区草原工作站, 银川 750002
    3Department of Agriculture and Plant Growing, Saken Seifullin Kazakh Agrotechnical University, Astana 010011, Kazakhstan

收稿日期: 2023-03-29

  录用日期: 2023-09-12

  网络出版日期: 2023-09-12

基金资助

科技部对发展中国家科技援助项目(KY202002011);教育部创新团队发展计划项目(IRT-17R50)

Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau

  • HUANG Ling ,
  • WANG Zhen ,
  • MA Ze ,
  • YANG Fa-Lin ,
  • LI Lan ,
  • SEREKPAYEV Nurlan ,
  • NOGAYEV Adilbek ,
  • HOU Fu-Jiang
Expand
  • 1State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
    2Grassland Workstation of Ningxia Huizu Autonomous Region, Yinchuan 750002, China
    3Department of Agriculture and Plant Growing, Saken Seifullin Kazakh Agrotechnical University, Astana 010011, Kazakhstan

Received date: 2023-03-29

  Accepted date: 2023-09-12

  Online published: 2023-09-12

Supported by

National Program for S&T Collaboration of Developing Countries(KY202002011);Innovative Research Team Program of the Ministry of Education(IRT-17R50)

摘要

种群是草原生态系统结构、功能形成和发展的基础。然而, 长期放牧伴随着全球气候变化深刻影响着种群的生长和繁殖。长芒草(Stipa bungeana)是黄土高原典型草原的优势种, 具有较高的生态和经济价值。该研究依托黄土高原典型草原长期滩羊轮牧实验平台, 采用完全随机的裂区实验设计, 以放牧率(0、2.7、5.3、8.7 sheep·hm-2)作为主因子, 氮添加水平(0、5、10、20 g·m-2)作为副因子, 探究放牧、氮添加及其交互作用对长芒草的形态性状、地上生物量及其占群落生物量比例的作用。结果表明: 随放牧率的增加, 长芒草的株高、冠幅直径、分蘖密度、实生苗密度、地上生物量和生物量占比呈“单峰”曲线变化趋势, 种群密度降低。而氮添加增加长芒草的株高、冠幅直径、生殖枝密度、分蘖密度、地上生物量和生物量占比; 实生苗密度随氮添加的增加呈先增后减的趋势。相比氮添加, 放牧对长芒草地上生物量和生物量占比的总效应小, 放牧对地上生物量有直接的负效应, 并通过调控分蘖密度、种群密度及地上生物量影响其生物量占比; 氮添加不仅对地上生物量有直接的积极效应, 还通过株高、生殖枝密度对地上生物量有间接的正效应, 同时通过调控种群密度、冠幅直径、分蘖密度和生殖枝密度影响生物量占比。总体上, 氮添加增加长芒草的冠幅直径和生殖枝密度(相比株高和分蘖密度), 放牧增加实生苗密度(相比种群密度), 而放牧和氮添加的交互作用显著影响生殖枝密度。放牧率为4.10和5.29 sheep·hm-2时长芒草具有最大地上生物量及其群落占比。上述结果表明放牧和氮添加通过影响长芒草种群的形态特征来调控其地上生物量和群落地位。

本文引用格式

黄玲 , 王榛 , 马泽 , 杨发林 , 李岚 , SEREKPAYEV Nurlan , NOGAYEV Adilbek , 侯扶江 . 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024 , 48(3) : 317 -330 . DOI: 10.17521/cjpe.2023.0086

Abstract

Aims Populations are the basis for the formation and development of the structure and function of grassland ecosystems. However, long-term grazing and global climate change like nitrogen addition profoundly impact the growth and reproduction of populations, such as Stipa bungeana, a dominant species in typical steppe of the Loess Plateau that has a high ecological and economic value. This study investigated how grazing and nitrogen addition affect the growth of S. bungeana.

Methods The study was based on a long-term rotational sheep grazing experiment in the typical steppe of the Loess Plateau. A completely randomized split-plot experimental design was employed, with stocking rate (0, 2.7, 5.3, 8.7 sheep·hm-2) as the main factor and nitrogen addition levels (0, 5, 10, 20 g·m-2) as the secondary factor. Morphological traits, aboveground biomass, the proportion of population biomass to total community aboveground biomass (PPB) and the relationship between them in S. bungeana were examined to investigate the effects of stocking rate, nitrogen addition and their interaction.

Important findings As the stocking rate increased, the plant height, canopy diameter, tiller density, seedlings, aboveground biomass, and PPB all followed a “single peak” curve trend, while the population density decreased. Nitrogen addition increased the plant height, canopy diameter, reproductive branch density, tiller density, aboveground biomass and PPB, while density of seedlings initially increased and then decreased as the nitrogen addition levels rose. The total effect of grazing on population aboveground biomass and the PPB was small compared with that of nitrogen addition. Specifically, grazing had a direct negative effect on aboveground biomass and affected PPB by regulating tiller density, population density and aboveground biomass. Nitrogen addition had a positive effect on aboveground biomass, both directly and indirectly through increasing plant height, reproductive branch density. It also impacted the PPB through regulating population density, canopy diameter, tiller density, and reproductive branch density. Overall, nitrogen addition increased canopy diameter and reproductive branch density and grazing increased density of seedings. The interaction of grazing and nitrogen addition significantly affected reproductive branch density. Stipa bungeana had maximum aboveground biomass or community status at a stocking rate of 4.10 or 5.29 sheep·hm-2. These results indicated that grazing and nitrogen addition regulated the aboveground biomass and community status of S. bungeana through affecting its morphological characteristics, providing a basis for the scientific management and sustainable development of grassland populations.

参考文献

[1] An H (2012). Effects of grazing disturbance on leaf traits and their interrelationships of plants in desert steppe. Chinese Journal of Applied Ecology, 23, 2991-2996.
  [安慧 (2012). 放牧干扰对荒漠草原植物叶性状及其相互关系的影响. 应用生态学报, 23, 2991-2996.]
[2] Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Global Change Biology, 16, 358-372.
[3] Carneiro da Silva S, Uebele MC, de Souza Congio GF, Carnevalli RA, Sbrissia AF (2021). Growth of Megathyrsus maximus cv. Momba?a as affected by grazing strategies and environmental seasonality. I. Tillering dynamics and population stability. Crop and Pasture Science, 72, 55-65.
[4] Chen Q, Hooper DU, Lin S (2011). Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PLoS ONE, 6, e16909. DOI: 10.1371/journal.pone.0016909.
[5] Chen T, Christensen M, Nan Z, Hou F (2017). The effects of different intensities of long-term grazing on the direction and strength of plant-soil feedback in a semiarid grassland of Northwest China. Plant and Soil, 413, 303-317.
[6] Chen X, Hou F, Matthew C, He X (2010). Stocking rate effects on metabolizable energy intake and grazing behaviour of Tan sheep in steppe grassland on the Loess Plateau of Northwest China. The Journal of Agricultural Science, 148, 709-721.
[7] Cheng J, Hu TM, Cheng JM (2010). Responses of vegetation restoration to climate change during the past 30 years in enclosed grassland of Yunwu Mountain in semi-arid region of the Loess Plateau. Acta Ecologica Sinica, 30, 2630-2638.
  [程杰, 呼天明, 程积民 (2010). 黄土高原半干旱区云雾山封禁草原30年植被恢复对气候变化的响应. 生态学报, 30, 2630-2638.]
[8] Cui SJ, Burenbayin, Zhu XX, Bai L, Wang SP (2014). Effects of seasonal moderate grazing on plant community of alpine meadow. Acta Botanica Boreali-Occidentalia Sinica, 34, 349-357.
  [崔树娟, 布仁巴音, 朱小雪, 白玲, 汪诗平 (2014). 不同季节适度放牧对高寒草甸植物群落特征的影响. 西北植物学报, 34, 349-357.]
[9] Gu C, Zhao TQ, Wang YT, Wang X, Jia LX, Zhao ML (2017). The response of growth and reproduction for Stipa breviflora to different stocking rates. Ecology and Environmental Sciences, 26, 36-42.
  [古琛, 赵天启, 王亚婷, 王玺, 贾丽欣, 赵萌莉 (2017). 短花针茅生长和繁殖策略对载畜率的响应. 生态环境学报, 26, 36-42.]
[10] Guo F, Li X, Yin J, Jimoh SO, Hou X (2021). Grazing-induced legacy effects enhance plant adaption to drought by larger root allocation plasticity. Journal of Plant Ecology, 14, 1024-1029.
[11] Guo LZ, Huang D, Zhang C, Li JH, Zhao H, Wang K (2019). Analysis of biomass allocation and allometric growth of Stellera chamaejasme in degraded typical steppe. Chinese Journal of Grassland, 41, 53-59.
  [郭丽珠, 黄顶, 张丛, 李佳欢, 赵欢, 王堃 (2019). 退化典型草原狼毒生物量分配及异速生长分析. 中国草地学报, 41, 53-59.]
[12] Guo Q, Major IT, Howe GA (2018). Resolution of growth- defense conflict: mechanistic insights from jasmonate signaling. Current Opinion in Plant Biology, 44, 72-81.
[13] Han BH, Shang ZY, Yuan XB, An Z, Wen HY, Li JB, Fu H, Niu DC (2016). Effects of N addition on photosynthetic characteristics and leaf senescence in Stipa bungeana of steppe grasslands in the Loess Plateau. Pratacultural Science, 33, 1070-1076.
  [韩炳宏, 尚振艳, 袁晓波, 安卓, 文海燕, 李金博, 傅华, 牛得草 (2016). 氮素添加对黄土高原典型草原长芒草光合特性的影响. 草业科学, 33, 1070-1076.]
[14] He YY, Guo SL, Wang Z (2019). Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 43, 1021-1035.
  [何芸雨, 郭水良, 王喆 (2019). 植物功能性状权衡关系的研究进展. 植物生态学报, 43, 1021-1035.]
[15] Herrik AL, Mogensen N, Svenning JC, Buitenwerf R (2023). Rotational grazing with cattle-free zones supports the coexistence of cattle and wild herbivores in African rangelands. Journal of Applied Ecology, 60, 2154-2166.
[16] Hou FJ, Chang SH, Yu YW, Lin HL (2004). A review on trampling by grazed livestock. Acta Ecologica Sinica, 24, 784-789.
  [侯扶江, 常生华, 于应文, 林慧龙 (2004). 放牧家畜的践踏作用研究评述. 生态学报, 24, 784-789.]
[17] Hou FJ, Yang ZY (2006). Effects of grazing of livestock on grassland. Acta Ecologica Sinica, 26, 244-264.
  [侯扶江, 杨中艺 (2006). 放牧对草地的作用. 生态学报, 26, 244-264.]
[18] Hu A, Zhang J, Chen X, Millner JP, Chang S, Bowatte S, Hou F (2019). The composition, richness, and evenness of seedlings from the soil seed bank of a semi-arid steppe in northern China are affected by long-term stocking rates of sheep and rainfall variation. The Rangeland Journal, 41, 23-32.
[19] Jan R, Aga FA, Bahar FA, Singh T, Lone R (2018). Effect of nitrogen and silicon on growth and yield attributes of transplanted rice (Oryza sativa L.) under Kashmir conditions. Journal of Pharmacognosy and Phytochemistry, 7, 328-332.
[20] Li L (2021). Effects of Tan-sheep Grazing on C:N:P Stoichiometry and Multifunctionality of Typical Steppe. PhD dissertation, Lanzhou university, Lanzhou. 17-18.
  [李岚 (2021). 滩羊放牧对典型草原生态化学计量特征和多功能性的影响. 博士学位论文, 兰州大学, 兰州. 17-18.]
[21] Li W, Zhang R, Liu S, Li W, Li J, Zhou H, Knops JM (2018). Effect of loss of plant functional group and simulated nitrogen deposition on subalpine ecosystem properties on the Tibetan Plateau. Science of the Total Environment, 631, 289-297.
[22] Li XL, Hou XY, Wu XH, Sa RL, Ji L, Chen HJ, Liu ZY, Ding Y (2014). Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 38, 440-451.
  [李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 38, 440-451.]
[23] Li Y, Gong JR, Liu M, Hou XY, Ding Y, Yang B, Zhang ZH, Wang B, Zhu CC (2020). Defense strategies of dominant plants under different grazing intensity in the typical temperate steppe of Nei Mongol, China. Chinese Journal of Plant Ecology, 44, 642-653.
  [李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁 (2020). 不同放牧强度下内蒙古温带典型草原优势种植物防御策略. 植物生态学报, 44, 642-653.]
[24] Li ZM, Liu JS, Wu JF, Wang DL (2021). Effects of nitrogen deposition on grassland plant reproduction strategies. Chinese Journal of Grassland, 43, 106-114.
  [李梓萌, 刘鞠善, 吴金凤, 王德利 (2021). 氮沉降对草地植物生殖策略的影响. 中国草地学报, 43, 106-114.]
[25] Liang T, Tong YA, Xu W, Wei Y, Lin W, Pang Y, Liu F, Liu XJ (2016). Atmospheric nitrogen deposition in the Loess area of China. Atmospheric Pollution Research, 7, 447-453.
[26] Liu J, Yang X, Zhang B, Yan XH, Wen ZM, Li W (2021). Effect of long-term fertilization on community stability of typical steppe and the underlying mechanisms on the Loess Plateau. Acta Botanica Boreali-Occidentalia Sinica, 41, 310-316.
  [刘晶, 杨雪, 张博, 晏昕辉, 温仲明, 李伟 (2021). 长期施肥对黄土高原典型草原群落稳定性的影响及机制研究. 西北植物学报, 41, 310-316.]
[27] Liu M, Gong JR, Li Y, Li XB, Yang B, Zhang ZH, Yang LL, Hou XY (2019). Growth-defense trade-off regulated by hormones in grass plants growing under different grazing intensities. Physiologia Plantarum, 166, 553-569.
[28] Liu WT, Wang FC, Yang XX, Liu YZ, Feng B, Yu Y, Zhang CP, Cao Q, Dong QM (2022). Effects of the traits of reproductive and vegetative branches of Kobresia humilis under different herbivore assemblage grazing in alpine grassland. Acta Agrestia Sinica, 30, 2231-2238.
  [刘文亭, 王芳草, 杨晓霞, 刘玉祯, 冯斌, 俞旸, 张春平, 曹铨, 董全民 (2022). 混合放牧对高寒草地矮生嵩草生殖枝与营养枝性状的影响. 草地学报, 30, 2231-2238.]
[29] Liu XD, Zhang ZL, Du GZ (2021). Response of dominant and common species flowering phenology to nitrogen addition in an alpine meadow. Pratacultural Science, 38, 1240-1249.
  [刘旭东, 章志龙, 杜国祯 (2021). 高寒草甸主要组分种开花物候对氮素添加的响应. 草业科学, 38, 1240-1249.]
[30] Lu P, Hao TX, Li X, Wang H, Zhai XF, Tian QY, Bai MM, Stevens C, Zhang WH (2021). Ambient nitrogen deposition drives plant-diversity decline by nitrogen accumulation in a closed grassland ecosystem. Journal of Applied Ecology, 58, 1888-1898.
[31] Ma JJ, Liu YH, Sheng JD, Li N, Wu HQ, Jia HT, Sun ZJ, Cheng JH (2021). Changes of relationships between dominant species and their relative biomass along elevational gradients in Xinjiang grasslands. Acta Prataculturae Sinica, 30(8), 25-35.
  [马婧婧, 刘耘华, 盛建东, 李宁, 武红旗, 贾宏涛, 孙宗玖, 程军回 (2021). 新疆草地优势种植物相对生物量沿海拔梯度变化特征. 草业学报, 30(8), 25-35.]
[32] Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010). Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science, 327, 1642-1644.
[33] Ning J, Lou SN, Guo YR, Chang SH, Zhang C, Zhu WH, Hou FJ (2022). Appropriate N fertilizer addition mitigates N2O emissions from forage crop fields. Science of the Total Environment, 829, 154628. DOI: 10.1016/j.scitotenv.2022.154628.
[34] Pan QM, Bai YF, Wu JG, Han XG (2011). Hierarchical plant responses and diversity loss after nitrogen addition: testing three functionally-based hypotheses in the Inner Mongolia grassland. PLoS ONE, 6, e20078. DOI: 10.1371/journal.pone.0020078.
[35] Peng JT, Zhu ZY, Liang CZ, Liu ZL (2016). The study progress on the phylogeny and spatial differentiation of Stipa genus in China. Journal of Arid Land Resources and Environment, 30, 165-170.
  [彭江涛, 朱宗元, 梁存柱, 刘钟龄 (2016). 中国针茅属植物系统发育与空间分异研究进展. 干旱区资源与环境, 30, 165-170.]
[36] Plue J, Aavik T, Cousins SAO (2019). Grazing networks promote plant functional connectivity among isolated grassland communities. Diversity and Distributions, 25, 102-115.
[37] Qiao XG, Guo K, Zhao LQ, Wang Z, Liu CC (2020). Community characteristics of Stipa bungeana alliance in China. Chinese Journal of Plant Ecology, 44, 986-994.
  [乔鲜果, 郭柯, 赵利清, 王孜, 刘长成 (2020). 中国长芒草群系的群落特征. 植物生态学报, 44, 986-994.]
[38] Ren JZ, Hu ZZ, Zhao J, Zhang DG, Hou FJ, Lin HL, Mu XD (2008). A grassland classification system and its application in China. The Rangeland Journal, 30, 199-209.
[39] Shen ZB, Zhang YX, Pan DF, Wang JL, Deng B, Chen JS (2012). Effects of N application on seed yield and components of Leymus chinensis. Chinese Journal of Grassland, 34(5), 58-62.
  [申忠宝, 张月学, 潘多锋, 王建立, 邓波, 陈积山 (2012). 施氮对人工草地羊草种子产量和构成因素的影响. 中国草地学报, 34(5), 58-62.]
[40] Song ZP, Wang XL, Wang YL, Zhou XB, Xie LL (2022). Response of ecological niche of alpine meadow population to rest grazing time during green period in Three-River Source Region. Acta Agrestia Sinica, 30, 1651-1658.
  [宋志萍, 王晓丽, 王彦龙, 周选博, 谢乐乐 (2022). 三江源区高寒草甸植物种群生态位对返青期休牧时间的响应. 草地学报, 30, 1651-1658.]
[41] Spasojevic MJ, Suding KN (2012). Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology, 100, 652-661.
[42] Sun YM, Tian Q, Guo AX, Zhang SX, Lv P, Zuo XA (2021). Effects of grazing and nitrogen addition on functional traits of dominant species Cleistogenes squarrosa and community in semi-arid sandy grassland. Acta Agrestia Sinica, 29, 563-571.
  [孙一梅, 田青, 郭爱霞, 张森溪, 吕朋, 左小安 (2021). 放牧和氮添加对半干旱沙质草地优势种糙隐子草及群落功能性状的影响. 草地学报, 29, 563-571.]
[43] Wei ZJ, Liu WT, Lv SJ, Wang TL, Zhang S, Ding LJ (2017). Response of Stipa breviflora height to grazing in a desert grassland. Chinese Journal of Ecology, 36, 885-891.
  [卫智军, 刘文亭, 吕世杰, 王天乐, 张爽, 丁莉君 (2017). 短花针茅种群高度对放牧调控的响应. 生态学杂志, 36, 885-891.]
[44] Wesche K, Ronnenberg K (2010). Effects of NPK fertilisation in arid southern Mongolian Desert steppes. Plant Ecology, 207, 93-105.
[45] Wu GL, Li W, Li XP, Shi ZH (2011). Grazing as a mediator for maintenance of offspring diversity: sexual and clonal recruitment in alpine grassland communities. Flora- Morphology, Distribution, Functional Ecology of Plants, 206, 241-245.
[46] Wu SY, Bao YTGT, Xu HB, Zhang L (2021). Effects of grazing intensities on functional traits of Cleistogenes squarrosa in a typical grassland of Inner Mongolia, China. Chinese Journal of Applied Ecology, 32, 392-398.
  [吴思雨, 宝音陶格涛, 许宏斌, 张璐 (2021). 放牧强度对内蒙古典型草原糙隐子草功能性状的影响. 应用生态学报, 32, 392-398.]
[47] Yang C, Zhu WY, Xu MY, Wang YL, Xu SX, Sun P (2022). Effects of different grazing intensities on plant seedling regeneration in an alpine meadow. Pratacultural Science, 39, 1869-1879.
  [杨畅, 朱文琰, 许明圆, 王娅琳, 徐世晓, 孙平 (2022). 不同放牧强度对高寒草甸植物实生苗更新的影响. 草业科学, 39, 1869-1879.]
[48] Yu BH, Hou FJ, Lin HL (2005). Short stage response of population growth to livestock trampling. Acta Prataculturae Sinica, 14(4), 119-124.
  [俞斌华, 侯扶江, 林慧龙 (2005). 牧草种群生长对家畜践踏的短期响应. 草业学报, 14(4), 119-124.]
[49] Zhang JH, Wang Z, Huang YM, Chen HY, Li ZY, Liang CZ (2021). Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe. Chinese Journal of Plant Ecology, 45, 818-833.
  [张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱 (2021). 草地利用方式对温性典型草原优势种植物功能性状的影响. 植物生态学报, 45, 818-833.]
[50] Zhang LT, Liu W, Liu DM, Dong RZ, Wang XL, Zhang M, Renzeng QZ, Bianba PC, Yang SH, Ma YS (2021). Biomass distribution characteristics of organs in the reproductive growth period of Pennisetum centrasiaticum on the Qinghai-Tibet Plateau. Acta Agrestia Sinica, 29, 2694-2702.
  [张力天, 刘炜, 刘德梅, 董瑞珍, 王晓丽, 张敏, 仁增曲扎, 边巴普尺, 杨时海, 马玉寿 (2021). 青藏高原白草生殖生长期植株器官生物量分配特征. 草地学报, 29, 2694-2702.]
[51] Zhang RY, Xu DH, Yuan JL, Li WJ, Aidexiecuo (2019). Using leaf mass fractions and height/mass ratios to explain the positive response of Gramineae to nitrogen addition on a sub-alpine meadow. Pratacultural Science, 36, 2631-2638.
  [张仁懿, 徐当会, 袁建立, 李文金, 艾得协措 (2019). 叶重比及株高质量比解释亚高寒草甸禾本科对氮素添加的积极响应. 草业科学, 36, 2631-2638.]
[52] Zhang S, Wei ZJ, Lü SJ, Liu HM, Wang TL, Sun SX (2017). Study on aboveground biomass and vegetation stability of main plant populations and community in Stipa breviflora desert steppe. Chinese Journal of Grassland, 39(6), 26-32.
  [张爽, 卫智军, 吕世杰, 刘红梅, 王天乐, 孙世贤 (2017). 放牧对短花针茅荒漠草原主要植物种群及群落地上现存量稳定性的影响. 中国草地学报, 39(6), 26-32.]
[53] Zhao DD, Ma HY, Li Y, Wei JP, Wang ZC (2019). Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis. Chinese Journal of Plant Ecology, 43, 501-511.
  [赵丹丹, 马红媛, 李阳, 魏继平, 王志春 (2019). 水分和养分添加对羊草功能性状和地上生物量的影响. 植物生态学报, 43, 501-511.]
[54] Zhou JY, An YF, Li DC, Zhang YW, Li L (2022). The study on the relationship between alpha diversity and productivity of alpine steppe in Qilian Mountains. Chinese Journal of Grassland, 44(3), 9-16.
  [周洁艳, 安玉峰, 李多才, 张育文, 李岚 (2022). 祁连山高寒草原α多样性与生产力关系的研究. 中国草地学报, 44(3), 9-16.]
[55] Zirbel CR, Bassett T, Grman E, Brudvig LA (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 54, 1070-1079.
[56] Zong N, Duan C, Geng SB, Chai X, Shi PL, He YT (2018). Effects of warming and nitrogen addition on community production and biomass allocation in an alpine meadow. Chinese Journal of Applied Ecology, 29, 59-67.
  [宗宁, 段呈, 耿守保, 柴曦, 石培礼, 何永涛 (2018). 增温施氮对高寒草甸生产力及生物量分配的影响. 应用生态学报, 29, 59-67.]
文章导航

/

005-264X/bottom_cn.htm"-->