研究论文

不同大小刨花楠细根功能性状与根际微环境关系

  • 刘瑶 ,
  • 钟全林 ,
  • 徐朝斌 ,
  • 程栋梁 ,
  • 郑跃芳 ,
  • 邹宇星 ,
  • 张雪 ,
  • 郑新杰 ,
  • 周云若
展开
  • 1福建师范大学地理科学学院, 福州 350007
    2湿润亚热带山地生态国家重点实验室培育基地, 福建师范大学福建省植物生理生态重点实验室, 福州 350007

收稿日期: 2023-09-27

  录用日期: 2024-02-08

  网络出版日期: 2024-03-12

基金资助

国家自然科学基金(32371859);国家自然科学基金(31971643);国家自然科学基金(32071555);中央财政林业科技推广示范项目(2023TG29);福建省科技厅高校产学合作项目(2023N5006);福建省林业局科技项目(2021FKJ29);福建省林业局科技项目(2023FKJ29)

Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes

  • LIU Yao ,
  • ZHONG Quan-Lin ,
  • XU Chao-Bin ,
  • CHENG Dong-Liang ,
  • ZHENG Yue-Fang ,
  • ZOU Yu-Xing ,
  • ZHANG Xue ,
  • ZHENG Xin-Jie ,
  • ZHOU Yun-Ruo
Expand
  • 1College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
    2State Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, Fujian Province Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou 350007, China

Received date: 2023-09-27

  Accepted date: 2024-02-08

  Online published: 2024-03-12

Supported by

National Natural Science Foundation of China(32371859);National Natural Science Foundation of China(31971643);National Natural Science Foundation of China(32071555);Central Finance Forestry Science and Technology Demonstration Project of Fujian Province(2023TG29);Industry-University Cooperation Project of Fujian Science and Technology Department(2023N5006);Forestry Bureau Project of Fujian Provincial(2021FKJ29);Forestry Bureau Project of Fujian Provincial(2023FKJ29)

摘要

个体大小反映林木径向生长状况, 细根对根际土壤环境变化具有高度敏感性, 探讨不同大小个体的林木细根功能性状与根际土壤微环境之间的关系, 有助于从个体水平揭示林木地下生态系统内的相互作用机制。该研究以11年生刨花楠(正名: 刨花润楠, Machilus pauhoi)为对象, 基于不同大小个体进行细根与根际土壤取样, 分析不同大小刨花楠个体细根功能性状与根际土壤养分含量、微生物群落结构及酶活性的关系。结果表明: 1)不同大小林木个体细根功能性状与根际微环境均存在差异, 其中细根生物量、比根长、根长密度、根体积密度、根组织密度、根氮含量和根磷含量等指标差异显著, 除比根面积和根组织密度外, 其他各细根功能性状均以中等个体为最大, 根际土壤碳氮磷含量也以中等个体刨花楠为最高。2)不同大小刨花楠个体细根比根长、根体积密度、细根生物量及根际土壤真菌、放线菌含量等性状变异系数较大, 其中中等刨花楠个体变异系数相对较大, 而小刨花楠个体相对较小, 各大小个体都倾向于通过调节根体积密度、细根生物量及根际土壤真菌含量、硝态氮含量等性状以适应环境变化。3)不同大小个体细根采取的资源利用策略不同, 中等刨花楠个体具有较大的比根长、根氮含量、根磷含量, 采取资源获取型策略以优化其对养分的获取能力, 根组织密度较大的小个体细根采取资源保守型策略以提升其应对环境胁迫的能力, 而大个体细根则采取地上、地下协同生长的资源权衡策略。4)根际土壤微环境中的土壤全碳含量、微生物生物量碳含量、放线菌含量、铵态氮含量、酸性磷酸酶活性和微生物生物量氮含量是影响刨花楠细根功能性状的主要因子。不同大小刨花楠个体细根功能性状与根际微环境间关系存在差异。小刨花楠个体细根主要受根际土壤养分的影响; 中等刨花楠个体细根主要受根际土壤中放线菌含量及酸性磷酸酶活性影响; 而大刨花楠个体细根性状表现出既受根际土壤养分影响又受根际土壤微生物群落结构中细菌、放线菌含量影响的特征。研究结果可为开展刨花楠微地形造林、精确制定其人工林抚育间伐措施、培育大径材人工林等提供理论依据。

本文引用格式

刘瑶 , 钟全林 , 徐朝斌 , 程栋梁 , 郑跃芳 , 邹宇星 , 张雪 , 郑新杰 , 周云若 . 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024 , 48(6) : 744 -759 . DOI: 10.17521/cjpe.2023.0280

Abstract

Aims Individual size reflects the radial growth of trees, while fine roots are highly sensitive to changes in the rhizosphere soil environment. Investigating the relationship between functional traits of fine root and the microenvironment of rhizosphere soil in trees at different sizes can contribute to elucidating interaction mechanisms within the forest subsurface ecosystem of trees at the individual level.

Methods In this study, fine roots and rhizosphere soil sampling were conducted based on Machilus pauhoi individuals of different sizes in an 11-year-old plantation. The aim is to analyze the relationship between fine root functional traits, rhizosphere soil nutrients content, microbial community structure, and enzyme activities of M. pauhoi individuals of different sizes.

Important findings The results indicate that: 1) There are differences in fine root functional traits and rhizosphere microenvironment among trees of different sizes. Significant differences were observed in traits such as fine root biomass, specific root length, root length density, root volume density, root tissue density, root nitrogen content and root phosphorus content. Except for the specific root area and root tissue density, other fine roots functional traits were highest in the medium-sized individuals, and rhizosphere soil carbon, nitrogen, and phosphorus contents were also highest in medium-sized M. pauhoi. 2) Variability coefficients of fine root traits such as specific root length, root volume density, fine root biomass, and rhizosphere soil fungal and actinomycete contents were relatively large among M. pauhoi individuals of different sizes, particularly pronounced in medium- sized individuals and relatively low in small-sized individuals. All individuals tend to adapt to environmental changes by adjusting traits such as root volume density, fine root biomass, rhizosphere soil fungal contents and nitrate nitrogen content. 3) The fine roots at different individual sizes adopted different resource utilization strategies. Medium-sized M. pauhoi exhibited larger specific root length, root nitrogen content, and root phosphorus content, indicating a resource acquisition strategy to optimize nutrient acquisition capacity. Small-sized individuals with larger root tissue density adopted a resource conservation strategy to enhance their ability to cope with environmental stress, while large individuals exhibited a balanced strategy between above-ground and below-ground growth. 4) Soil total carbon content, microbial biomass carbon content, actinomycete content, ammonium nitrogen content, acid phosphatase activity, and microbial biomass nitrogen content in the rhizosphere soil microenvironment were identified as the main factors influencing fine root functional traits of M. pauhoi. The relationship between fine root functional traits and rhizosphere microenvironment varied among individuals of different sizes. Fine roots of small-sized M. pauhoi individuals were mainly affected by rhizosphere soil nutrients, while those of medium-sized M. pauhoi individuals were primarily influenced by the content of actinomycete and acid phosphatase activity in the rhizosphere soil. Fine root traits of large-sized individuals were affected by both rhizosphere soil nutrients and soil microbial community structure, including bacteria and actinomycete content. The finding provide theoretical insights for implementing afforestation of M. pauhoi on a microtopographic scale, precisely developing artificial forest tending and thinning measures, and cultivating large-diameter timber plantations.

参考文献

[1] Ali A (2019). Forest stand structure and functioning: current knowledge and future challenges. Ecological Indicators, 98, 665-677.
[2] Bao SD (2000). Soil Agro-Chemistrical Analysis. 3rd ed. China Agriculture Press, Beijing.
  [鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.]
[3] Bongers FJ, Schmid B, Sun Z, Li Y, H?rdtle W, von Oheimb G, Li Y, Li S, Staab M, Ma K, Liu X (2020). Growth trait relationships in subtropical forest are stronger at higher diversity. Journal of Ecology, 108, 256-266.
[4] Bossio DA, Scow KM (1998). Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 35, 265-278.
[5] Bulgarelli D, Rott M, Schlaeppi K, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488, 91-95.
[6] Chen LJ, Zhong QL, Li BY, Yao XM, Xu CB, Cheng DL, Zheng YF, Yu H (2019). Relationship between the main functional traits of fine root and the rhizosphere soil nutrients of different diameter classes in Zenia insignis plantation. Chinese Journal of Applied Ecology, 30, 3627-3634.
  [陈柳娟, 钟全林, 李宝银, 姚湘明, 徐朝斌, 程栋梁, 郑跃芳, 余华 (2019). 翅荚木人工林不同径阶间细根主要功能性状与根际土壤养分的关系. 应用生态学报, 30, 3627-3634.]
[7] Chen XL, Chen YP, Li WH, Wang YY (2018). Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions. Plant Science Journal, 36, 45-53.
  [陈晓林, 陈亚鹏, 李卫红, 王玉阳 (2018). 干旱区不同地下水埋深下胡杨细根空间分布特征. 植物科学学报, 36, 45-53.]
[8] Chen XP, Guo BQ, Zhong QL, Wang MT, Li M, Yang FC, Cheng DL (2018). Response of fine root carbon, nitrogen and phosphorus stoichiometry to soil nutrients in Pinus taiwanensis along an elevation gradient in the Wuyi Mountains. Acta Ecologica Sinica, 38, 273-281.
  [陈晓萍, 郭炳桥, 钟全林, 王满堂, 李曼, 杨福春, 程栋梁 (2018). 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应. 生态学报, 38, 273-281.]
[9] Cheng JR, Zhong QL, Zou YX, Chang YN, Liao PH (2023). Effects of different ratios of nitrogen and phosphorus addition on the relationship between relative growth rate and fine root traits of Machilus pauhoi seedlings. Chinese Journal of Ecology, 42, 1811-1819.
  [程洁茹, 钟全林, 邹宇星, 常云妮, 廖鹏辉 (2023). 氮磷配施对刨花楠幼苗相对生长速率与细根性状关系的影响. 生态学杂志, 42, 1811-1819.]
[10] Deng XY (2017). Influence Mechanism of Light and Nitrogen on the Growth and Leaf Traits of Machilus pauhoi Seedling from Different Provenances. Master degree dissertation, Fujian Normal University, Fuzhou.
  [邓兴宇 (2017). 光、氮处理对不同种源刨花楠苗木生长与叶片性状的影响机制. 硕士学位论文, 福建师范大学, 福州.]
[11] Dijkstra P, Lambers H (1989). Analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate. New Phytologist, 113, 283-290.
[12] Dinnage R, Simonsen AK, Barrett LG, Cardillo M, Raisbeck-Brown N, Thrall PH, Prober SM (2019). Larger plants promote a greater diversity of symbiotic nitrogen-fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 107, 977-991.
[13] Enagbonma BJ, Fadiji AE, Ayangbenro AS, Babalola OO (2023). Communication between plants and rhizosphere microbiome: exploring the root microbiome for sustainable agriculture. Microorganisms, 11, 2003. DOI: 10.3390/microorganisms11082003.
[14] Fei L, Zhong QL, Cheng DL, Xu CB, Zhang ZR, Zhang LL (2015). Effect of nitrogen and phosphorus spraying on leaf nutrient resorption efficiency of Machilus pauhoi. Chinese Journal of Applied and Environmental Biology, 21, 295-300.
  [费玲, 钟全林, 程栋梁, 徐朝斌, 张中瑞, 张蕾蕾 (2015). 氮磷喷施对刨花楠叶片养分再吸收效率的影响. 应用与环境生物学报, 21, 295-300.]
[15] Finér L, Ohashi M, Noguchi K, Hirano Y (2011). Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management, 262, 2008-2023.
[16] Guo C, Sheng MY, He Y, Wang LJ, Shi QL, Luo NN (2023). Effects of land use types on soil carbon, nitrogen, phosphorus stoichiometric characteristics and enzyme activities in the karst area of southwest China. Chinese Journal of Soil Science, 54, 382-391.
  [郭超, 盛茂银, 何宇, 王霖娇, 石庆龙, 罗娜娜 (2023). 土地利用方式对西南喀斯特土壤碳、氮、磷化学计量特征及酶活性的影响. 土壤通报, 54, 382-391.]
[17] Guo LH, Wang DJ, Zhang YH, Chen D (2010). Distribution of soil nutrients in a Leucaena leucocephala plantation in Jiangjiagou and its relationship with fine roots. Soil and Water Conservation in China, (12), 46-49.
  [郭灵辉, 王道杰, 张云红, 陈东 (2010). 蒋家沟新银合欢人工林土壤养分分布及其与细根的关系. 中国水土保持, (12), 46-49.]
[18] Guo ZK (2014). Study on the Growth and Soil Changes of the Three Kinds of Firs at Different Ages Fertilized with NPK+Cu and Zn. Master degree dissertation, Fujian Agriculture and Forestry University, Fuzhou.
  [郭泽昆 (2014). 三种不同林龄杉木施用NPK+Cu、Zn肥的生长情况及土壤理化性质变化研究. 硕士学位论文, 福建农林大学, 福州.]
[19] Hall SJ, Matson PA (1999). Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature, 400, 152-155.
[20] Han MG, Chen Y, Sun LJ, Yu M, Li R, Li SF, Su JR, Zhu B (2023). Linking rhizosphere soil microbial activity and plant resource acquisition strategy. Journal of Ecology, 111, 875-888.
[21] Harper JL, Jones M, Sackville Hamilton NR (1991). The evolution of roots and the problems of analyzing their behavior. Special Publication Series of the British Ecological Society, 10, 3-22.
[22] He RT, Zhong QL, Li BY, Cheng DL, Xu CB, Wang Y, Yu H, Chang YN (2022). Effects of combined nitrogen and phosphorus addition on fine root traits of young Machilus pauhoi forest. Chinese Journal of Applied Ecology, 33, 337-343.
  [何睿橦, 钟全林, 李宝银, 程栋梁, 徐朝斌, 王艳, 余华, 常云妮 (2022). 氮磷配施对刨花楠幼林细根性状的影响. 应用生态学报, 33, 337-343.]
[23] Huang AM, Fang Y, Sun J, Li JL, Hu DD, Zhong QL, Cheng DL (2023). Fine root traits of Phyllostachys edulis at different altitudes in Wuyi Mountain. Acta Ecologica Sinica, 43, 398-407.
  [黄爱梅, 方毅, 孙俊, 李锦隆, 胡丹丹, 钟全林, 程栋梁 (2023). 武夷山不同海拔毛竹细根功能性状. 生态学报, 43, 398-407.]
[24] Iida Y, Kohyama TS, Swenson NG, Su S, Chen C, Chiang JM, Sun I (2014). Linking functional traits and demographic rates in a subtropical tree community: the importance of size dependency. Journal of Ecology, 102, 641-650.
[25] Inubushi K, Brookes PC, Jenkinson DS (1991). Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biology & Biochemistry, 23, 737-741.
[26] Joergensen RG, Mueller T (1996). The fumigation-extraction method to estimate soil microbial biomass: calibration of the KEN value. Soil Biology & Biochemistry, 28, 33-37.
[27] Kong DL, Wang JJ, Wu HF, Valverde-Barrantes OJ, Wang RL, Zeng H, Kardol P, Zhang HY, Feng YL (2019). Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 10, 2203. DOI: 10.1038/s41467-019-10245-6.
[28] Li Y, Tian DS, Yang H, Niu SL (2018). Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Functional Ecology, 32, 95-105.
[29] Li YT, Zhong QL, Li BY, Liao PH, Cheng DL, Zou YX, Xu CB, Yu H, Pei P (2023). Leaf traits of Machilus pauhoi growing in the same period differ between the common garden and the provenances. Acta Ecologica Sinica, 43, 5956-5966.
  [李雨亭, 钟全林, 李宝银, 廖鹏辉, 程栋梁, 邹宇星, 徐朝斌, 余华, 裴盼 (2023). 同期生长在种源地与异地同质园刨花楠叶性状分析. 生态学报, 43, 5956-5966.]
[30] Lin DY (2002). Soil Science. China Forestry Publishing House, Beijing.
  [林大仪 (2002). 土壤学. 中国林业出版社, 北京 ]
[31] Liu FD, Yang WJ, Wang ZS, Xu Z, Liu H, Zhang M, Liu YH, An SQ, Sun SC (2010). Plant size effects on the relationships among specific leaf area, leaf nutrient content, and photosynthetic capacity in tropical woody species. Acta Oecologica, 36, 149-159.
[32] Liu JY, Yang GB, Wang QL, Li XW, Xiao HD, Shi WM, Yu M (2023). Effects of combined application of medium and trace fertilizers on yield and quality of wax gourd. Soils, 55, 30-36.
  [刘家友, 杨国宝, 王齐龙, 李学文, 萧洪东, 施卫明, 喻敏 (2023). 减氮配施中微量元素肥对冬瓜产量和品质的影响. 土壤, 55, 30-36.]
[33] Liu S, Xu GX, Chen M, Chen J, Feng QH, Shi ZM (2023). Effects of slope aspect on soil enzyme activity and microbial nutrient limitation in subalpine region of western Sichuan, China. Chinese Journal of Applied Ecology, 34, 2993-3002.
  [刘顺, 许格希, 陈淼, 陈健, 冯秋红, 史作民 (2023). 坡向对川西亚高山土壤酶活性和微生物养分限制的影响. 应用生态学报, 34, 2993-3002.]
[34] Liu ZL, Hikosaka K, Li FR, Jin GZ (2020). Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors. Functional Ecology, 34, 458-467.
[35] Liu ZL, Hikosaka K, Li FR, Zhu LJ, Jin GZ (2021). Plant size, environmental factors and functional traits jointly shape the stem radius growth rate in an evergreen coniferous species across ontogenetic stages. Journal of Plant Ecology, 14, 257-269.
[36] Lu FH, Shayiban W, Liu SS, Xu GQ (2021). Rooting depth determined physiological response of Haloxylon ammodendron to summer drought. Acta Ecologica Sinica, 41, 3178-3189.
  [卢福浩, 沙衣班·吾布力, 刘深思, 徐贵青 (2021). 根深决定不同个体大小梭梭对夏季干旱生理响应的差异. 生态学报, 41, 3178-3189.]
[37] Makarieva AM, Gorshkov VG, Li B, Chown SL, Reich PB, Gavrilov VM (2008). Mean mass-specific metabolic rates are strikingly similar across life’s major domains: evidence for life’s metabolic optimum. Proceedings of the National Academy of Sciences of the United States of America, 105, 16994-16999.
[38] Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Chinese Journal of Plant Ecology, 31, 150-165.
  [孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
[39] Neumann G, Bott S, Ohler MA, Mock HP, Lippmann R, Grosch R, Smalla K (2014). Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Frontiers in Microbiology, 5, 2. DOI: 10.3389/fmicb.2014.00002.
[40] Ni HJ, Su WH, Fan SH, Chu HY (2021). Effects of intensive management practices on rhizosphere soil properties, root growth, and nutrient uptake in Moso bamboo plantations in subtropical China. Forest Ecology and Management, 493, 119083. DOI: 10.1016/j.foreco.2021.119083.
[41] Pei P, Zhong QL, Cheng DL, Xu CB, Zhang ZR (2016). The effect of nitrogen and phosphorus foliage spray on the growth of young free growing Machilus pauhoi plantations. Chinese Journal Applied and Environmental Biology, 22, 831-838.
  [裴盼, 钟全林, 程栋梁, 徐朝斌, 张中瑞 (2016). 氮磷叶片喷施对未郁闭刨花楠人工幼林生长的影响. 应用与环境生物学报, 22, 831-838.]
[42] Phillips RP, Fahey TJ (2008). The influence of soil fertility on rhizosphere effects in northern hardwood forest soils. Soil Science Society of America Journal, 72, 453-461.
[43] Phillips RP, Finzi AC, Bernhardt ES (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14, 187-194.
[44] Qiu J, Han AX, He CM, Yin QL, Jia SH, Luo Y, Li CL, Hao ZQ (2022). Spatial distribution pattern and intraspecific association of dominant species Quercus aliena var. acutiserrata in Qinling Mountains, China. Chinese Journal of Applied Ecology, 33, 2035-2042.
  [邱婧, 韩安霞, 何春梅, 尹秋龙, 贾仕宏, 罗颖, 李晨璐, 郝占庆 (2022). 秦岭优势乔木锐齿槲栎的空间分布格局及种内关联. 应用生态学报, 33, 2035-2042.]
[45] Ren J, Fang S, Wang Q, Liu H, Lin F, Ye J, Hao Z, Wang X, Fortunel C (2023). Ontogeny influences tree growth response to soil fertility and neighbourhood crowding in an old-growth temperate forest. Annals of Botany, 131, 1061-1072.
[46] Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao K, Stokes A (2016). Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytologist, 210, 815-826.
[47] Salazar PC, Navarro-Cerrillo RM, Grados N, Cruz G, Barrón V, Villar R (2019). Tree size and leaf traits determine the fertility island effect in Prosopis pallida dryland forest in Northern Peru. Plant and Soil, 437, 117-135.
[48] Shao QY, Dong CB, Han YF, Liang ZQ (2021). Research progress in the rhizosphere microbiome of plants. Journal of Plant Nutrition and Fertilizers, 27, 144-152.
  [邵秋雨, 董醇波, 韩燕峰, 梁宗琦 (2021). 植物根际微生物组的研究进展. 植物营养与肥料学报, 27, 144-152.]
[49] Toberman H, Chen CR, Xu ZH (2011). Rhizosphere effects on soil nutrient dynamics and microbial activity in an Australian tropical lowland rainforest. Soil Research, 49, 652-660.
[50] Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
[51] Wan XH, Chen XL, Huang ZQ, Chen HYH (2021). Contribution of root traits to variations in soil microbial biomass and community composition. Plant and Soil, 460, 483-495.
[52] Wang JZ (2020). Functional Traits of the Leaves and Roots of Dicranopteris dichotoma and Their Relationship with Soil Factors Under Different Ages of Erosion Restoration in Southeast China. Master degree dissertation, Fujian Normal University, Fuzhou.
  [王敬哲 (2020). 南方红壤侵蚀区不同治理年限下芒萁叶片与根系功能性状及其与土壤因子的关系. 硕士学位论文, 福建师范大学, 福州.]
[53] Wang QT, Gao MY, Liu ML, Wang HT, Dong YF, Wang YP (2017). Illumina Miseq sequencing-based fungal community of rhizosphere soils along root orders of poplar plantation. Chinese Journal of Applied Ecology, 28, 1177-1183.
  [汪其同, 高明宇, 刘梦玲, 王华田, 董玉峰, 王延平 (2017). 基于高通量测序的杨树人工林根际土壤真菌群落结构. 应用生态学报, 28, 1177-1183.]
[54] Wang WN, Wang Y, Hoch G, Wang ZQ, Gu JC (2018). Linkage of root morphology to anatomy with increasing nitrogen availability in six temperate tree species. Plant and Soil, 425, 189-200.
[55] Wang Y, Zhong QL, Xu CB, Zhang ZR, Cheng DL (2018). Effect of adding a combination of nitrogen and phosphorus on fine root morphology and soil microbes of Machilus pauhoi seedling. Acta Ecologica Sinica, 38, 2271-2278.
  [王艳, 钟全林, 徐朝斌, 张中瑞, 程栋梁 (2018). 短期氮磷配施对刨花楠细根形态及其土壤微生物的影响. 生态学报, 38, 2271-2278.]
[56] Wei XH, Wang J, Feng ZK (2013). Estimating diameter at breast height for thirteen common tree species in Beijing. Journal of Beijing Forestry University, 35(5), 56-63.
  [韦雪花, 王佳, 冯仲科 (2013). 北京市13个常见树种胸径估测研究. 北京林业大学学报, 35(5), 56-63.]
[57] Weidner S, Koller R, Latz E, Kowalchuk G, Bonkowski M, Scheu S, Jousset A (2015). Bacterial diversity amplifies nutrient-based plant-soil feedbacks. Functional Ecology, 29, 1341-1349.
[58] Wurzburger N, Wright SJ (2015). Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology, 96, 2137-2146.
[59] Xiao SY, Liu Q, Rong XM, Xie GX, Liao YL (2006). Effects of N applying rates on yield, quality of Asparagus lettuce and the N use efficiency. Plant Nutrition and Fertilizer Science, 12, 913-917.
  [肖时运, 刘强, 荣湘民, 谢桂先, 廖育林 (2006). 不同施氮水平对莴苣产量、品质及氮肥利用率的影响. 植物营养与肥料学报, 12, 913-917.]
[60] Xu HW, Qu Q, Li GW, Liu GB, Geissen V, Ritsema CJ, Xue S (2022). Impact of nitrogen addition on plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation. Soil Biology & Biochemistry, 170, 108834. DOI: 10.1016/j.soilbio.2022.108714.
[61] Xu Y, Deng L (2023). Relationships of fine root morphology and soil physicochemical properties in different mingling intensity of Picea crassifolia in Qilian Mountains. Research of Soil and Water Conservation, 30(3), 181-187.
  [徐莹, 邓磊 (2023). 祁连山不同混交度青海云杉林细根形态特征及与土壤理化性质的关系. 水土保持研究, 30(3), 181-187.]
[62] Yang LY, Li WH (2005). Fine root distribution and turnover in a broad-leaved and Korean pine climax forest of the Changbai Mountain in China. Journal of Beijing Forestry University, 27(2), 1-5.
  [杨丽韫, 李文华 (2005). 长白山原始阔叶红松林细根分布及其周转的研究. 北京林业大学学报, 27(2), 1-5.]
[63] Yang T, Zhong QL, Li BY, Cheng DL, Xu CB, Zou YX, Zhang X, Zhou ZZ (2022). Effects of short-term combined application of ammonium nitrogen and nitrate nitrogen on the growth and leaf traits of Machilus pauhoi seedlings. Chinese Journal of Applied Ecology, 33, 25-32.
  [杨婷, 钟全林, 李宝银, 程栋梁, 徐朝斌, 邹宇星, 张雪, 周宗哲 (2022). 短期铵态氮与硝态氮配施对刨花楠幼苗生长及叶片性状的影响. 应用生态学报, 33, 25-32.]
[64] Yin LM, Xiao W, Dijkstra FA, Zhu B, Wang P, Cheng WX (2020). Linking absorptive roots and their functional traits with rhizosphere priming of tree species. Soil Biology & Biochemistry, 150, 107997. DOI: 10.1016/j.soilbio.2020.107997.
[65] Zhang LL (2016). A Study on Nitrogen, Phosphorus Nutrient Use Efficiency and the Influence Mechanism of Machilus pauhoi Plantation. Master degree dissertation, Fujian Normal University, Fuzhou.
  [张蕾蕾 (2016). 刨花楠人工林氮磷养分利用效率及其影响机制研究. 硕士学位论文, 福建师范大学, 福州.]
[66] Zhang X, Dippold MA, Kuzyakov Y, Razavi BS (2019). Spatial pattern of enzyme activities depends on root exudate composition. Soil Biology & Biochemistry, 133, 83-93.
[67] Zhong QL, Hu B, Cheng JH, He LZ, Xiao SQ (2008). A study on planting technique of industrial raw material forest of Machilus pauhoi used in fragrant powder. Acta Agriculturae Universitatis Jiangxiensis, 30(2), 257-262.
  [钟全林, 胡滨, 程建华, 贺利中, 肖水清 (2008). 粉用刨花楠工业原料林栽培技术研究. 江西农业大学学报, 30(2), 257-262.]
[68] Zhou Y, Guan FY, Li Z, Zheng YX, Zhou X, Zhang X (2022). Effects of tree species on moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) fine root morphology, biomass, and soil properties in bamboo-broadleaf mixed forests. Forests, 13, 1834. DOI: 10.3390/f13111834.
[69] Zhu HY, Ma Y, Ke Y, Guo XC (2022). Soil nutrients, microbial quantities and enzyme activities in the pomegranate orchards with different age stages. Chinese Journal of Soil Science, 53, 588-595.
  [朱海云, 马瑜, 柯杨, 郭晓成 (2022). 不同年龄时期石榴园土壤养分、微生物量及酶活性. 土壤通报, 53, 588-595.]
[70] Zou YX, Zhong QL, You YL, Yu H, Zheng WT, Chen JJ, Cheng DL (2018). Short-term effects of nitrogen and water treatments on fine root order morphology of Machilus pauhoi seedlings. Chinese Journal of Applied Ecology, 29, 2323-2329.
  [邹宇星, 钟全林, 游雅玲, 余华, 郑文婷, 陈嘉静, 程栋梁 (2018). 短期氮-水处理对刨花楠幼苗细根根序形态的影响. 应用生态学报, 29, 2323-2329.]
文章导航

/