研究论文

东北温带针阔混交林32个树种非结构性碳水化合物的器官间变化与协同

  • 胡晓慧 ,
  • 王兴昌 ,
  • 董涵君 ,
  • 刘玉龙 ,
  • 苑丹阳 ,
  • 柳荻 ,
  • 王晓春
展开
  • 1东北林业大学生态学院, 森林生态系统可持续经营教育部重点实验室, 哈尔滨 150040
    2黑龙江省生态研究所, 哈尔滨 150040
* 王兴昌(xcwang_cer@nefu.edu.cn)

收稿日期: 2024-02-23

  录用日期: 2024-08-23

  网络出版日期: 2024-08-26

基金资助

国家自然科学基金(32171765);国家自然科学基金(42177421)

Variation and coordination of non-structural carbohydrates among organs in 32 tree species from a temperate conifer-broadleaf mixed forest in Northeast China

  • HU Xiao-Hui ,
  • WANG Xing-Chang ,
  • DONG Han-Jun ,
  • LIU Yu-Long ,
  • YUAN Dan-Yang ,
  • LIU Di ,
  • WANG Xiao-Chun
Expand
  • 1School of Ecology, Key Laboratory of Sustainable Forestry Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
    2Heilongjiang Ecological Institute, Harbin 150040, China
* WANG Xing-Chang(xcwang_cer@nefu.edu.cn)

Received date: 2024-02-23

  Accepted date: 2024-08-23

  Online published: 2024-08-26

Supported by

National Natural Science Foundation of China(32171765);National Natural Science Foundation of China(42177421)

摘要

探索非结构性碳水化合物(NSC)在树种和器官之间的变化特征以及树木功能类群之间的差异, 是深入理解植物碳分配特征的重要课题。该研究在黑龙江省老爷岭的典型温带针阔混交林中选择32个树种, 系统性分析了叶、枝、树皮、边材、心材、树桩、粗根和细根8种器官NSC浓度随器官的变化特征及其与木材孔性的关系。结果显示: (1) NSC及其组分浓度在器官间的变异大于树种间的变异。由碳源器官(叶)向碳汇器官(树皮和粗根)、慢速周转器官(树干木材)浓度逐渐减小, 快速周转器官(叶和细根)的可溶性糖:淀粉比值最高。(2)大多数树种的NSC及其组分浓度在器官之间不存在相关关系, 而且大部分器官的可溶性糖和淀粉浓度之间也不存在显著的相关关系。(3)木材孔性对NSC及其组分浓度有显著影响。从无孔材、散孔材到环孔材, 树皮可溶性糖浓度逐渐降低, 除心材外的各器官淀粉浓度以及边材和地下器官的总NSC浓度逐渐升高。环孔材树种将更多NSC运输到非光合器官而保持较低的叶NSC浓度, 这是保证其整树充足碳供应的重要策略。这些结果表明典型温带树种不同器官存储NSC的功能分化明显, 木材孔性对多器官NSC及其组分浓度有不可忽视的影响。

本文引用格式

胡晓慧 , 王兴昌 , 董涵君 , 刘玉龙 , 苑丹阳 , 柳荻 , 王晓春 . 东北温带针阔混交林32个树种非结构性碳水化合物的器官间变化与协同[J]. 植物生态学报, 2025 , 49(3) : 432 -445 . DOI: 10.17521/cjpe.2024.0053

Abstract

Aims Exploring the variations of non-structural carbohydrates (NSC) among tree species and organs, as well as the differences in NSC among tree functional groups, is an important topic for a deeper understanding of the carbon allocation characteristics of plants.
Methods 32 tree species were selected from a typical conifer-broadleaf mixed forest in Laoyeling, Heilongjiang Province, and nine organs were collected to systematically analyze the changes in NSC concentration with organs and wood porosity.
Important findings (1) The effect of organs on concentrations of NSC and its components was greater than that of tree species. Among different organs, there was a gradual decrease in NSC from carbon source organs (leaf) to storage organs (bark and coarse root) and slow turnover organs (trunk wood); the sugar starch ratio was highest in fast turnover organs (leaf and fine root). (2) There were no significant correlations of the concentration(s) of NSC or its components between organs for most tree species; and there were no significant correlations between the concentrations of soluble sugar and starch in most organs. (3) Wood porosity had a significant effect on the concentrations of NSC and its components. From non-porous wood, diffuse-porous wood to ring-porous wood species, the soluble sugar concentration in bark gradually decreased; while the starch concentration in all organs except heartwood, as well as the total NSC concentration in sapwood and belowground organs, gradually increased. Transporting a greater proportion of NSC to non-photosynthetic organs, and thus keeping low concentrations of NSC in leaves, is an important strategy to ensure adequate carbon supply to the whole tree. These results indicate the obvious functional differentiation of NSC storage in different organs of typical temperate forest tree species, and the significant effect of wood porosity on the concentrations of NSC and its components in multi-organs.

参考文献

[1] Baas P, Ewers FW, Davis SD, Wheeler EA (2004). Evolution of xylem physiology//Hemsley AR, Poole I. The Evolution of Plant Physiology. Elsevier, Amsterdam. 273-295.
[2] Baber O, Slot M, Celis G, Kitajima K (2014). Diel patterns of leaf carbohydrate concentrations differ between seedlings and mature trees of two sympatric oak species. Botany, 92, 535-540.
[3] Bansal S, Germino MJ (2009). Temporal variation of nonstructural carbohydrates in montane conifers: similarities and differences among developmental stages, species and environmental conditions. Tree Physiology, 29, 559-568.
[4] Barbaroux C, Bréda N (2002). Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology, 22, 1201-1210.
[5] Barbaroux C, Bréda N, Dufrêne E (2003). Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytologist, 157, 605-615.
[6] Bazot S, Barthes L, Blanot D, Fresneau C (2013). Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages. Trees, 27, 1023-1034.
[7] Blumstein M, Gersony J, Martínez-Vilalta J, Sala AN (2023). Global variation in nonstructural carbohydrate stores in response to climate. Global Change Biology, 29, 1854-1869.
[8] Blumstein M, Sala AN, Weston DJ, Holbrook NM, Hopkins R (2022). Plant carbohydrate storage: intra-and inter-specific trade-offs reveal a major life history trait. New Phytologist, 235, 2211-2222.
[9] Bussotti F, Pollastrini M, Gessler A, Luo ZB (2018). Experiments with trees: from seedlings to ecosystems. Environmental and Experimental Botany, 152, 1-6.
[10] Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG, Xu XM, Richardson AD (2013). Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytologist, 200, 1145-1155.
[11] Chapin III FS, Schulze E, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423-447
[12] Chen YQ, Ke M, Peng ZT, Yu YH, Mo QF (2021). Effects of nitrogen and phosphorus additions on concentrations of leaf non-structural carbohydrates, nitrogen, and phosphorus in Clerodendrum cyrtophyllum in a tropical forest. Chinese Journal of Applied and Environmental Biology, 27, 389-397.
  [陈轶群, 柯梦, 彭钟通, 于耀泓, 莫其锋 (2021). 热带乡土植物大青叶片非结构性碳水化合物及氮磷含量对氮磷添加的响应. 应用与环境生物学报, 27, 389-397.]
[13] Cheng FY, Wang CK (2015). Estimating nonstructural carbon content of tree crown considering its spatial variability: a case study on Juglans mandshurica and Ulmus japonica. Chinese Journal of Applied Ecology, 26, 2253-2264.
  [成方妍, 王传宽 (2015). 基于空间变异性的树冠非结构性碳含量估算: 以胡桃楸和春榆为例. 应用生态学报, 26, 2253-2264.]
[14] Dong HJ, Wang XC, Yuan DY, Liu D, Liu YL, Sang Y, Wang XC (2022). Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest. Chinese Journal of Plant Ecology, 46, 722-734.
  [董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春 (2022). 温带不同材性树种树干非结构性碳水化合物的径向分配差异. 植物生态学报, 46, 722-734.]
[15] Fan ZY, Chen K, Li JR, Wang HJ, Pan KW (2022). Spatiotemporal dynamic characteristics of non-structural carbohydrates of Abies georgei var. smithii in Sygera Mountain. Forest Research, 35(5), 123-133.
  [樊志颖, 陈康, 李江荣, 汪汉驹, 潘开文 (2022). 藏东南色季拉山急尖长苞冷杉非结构性碳水化合物时空动态特征. 林业科学研究, 35(5), 123-133.]
[16] Fatichi S, Leuzinger S, K?rner C (2014). Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytologist, 201, 1086-1095.
[17] Furze ME, Huggett BA, Aubrecht DM, Stolz CD, Carbone MS, Richardson AD (2019). Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytologist, 221, 1466-1477.
[18] Furze ME, Huggett BA, Chamberlain CJ, Wieringa MM, Aubrecht DM, Carbone MS, Walker JC, Xu XM, Czimczik CI, Richardson AD (2020). Seasonal fluctuation of nonstructural carbohydrates reveals the metabolic availability of stemwood reserves in temperate trees with contrasting wood anatomy. Tree Physiology, 40, 1355-1365.
[19] Furze ME, Trumbore S, Hartmann H (2018). Detours on the phloem sugar highway: stem carbon storage and remobilization. Current Opinion in Plant Biology, 43, 89-95.
[20] Guo LY, Shi M, Wu YF, Zhou Q, Zhu ZL (2018). Shading responses to leaf color and physiology during discoloration period of Carpinus betulus. Journal of Central South University of Forestry & Technology, 38(8), 26-34.
  [郭力宇, 施曼, 吴驭帆, 周琦, 祝遵凌 (2018). 遮阴对欧洲鹅耳枥变色期叶色及生理的影响. 中南林业科技大学学报, 38(8), 26-34.]
[21] Hacke UG, Sperry JS, Wheeler JK, Castro L (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26, 689-701.
[22] Hartmann H, Adams HD, Hammond WM, Hoch G, Landh?usser SM, Wiley E, Zaehle S (2018). Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests. Environmental and Experimental Botany, 152, 7-18.
[23] Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytologist, 211, 386-403.
[24] Hoch G, K?rner C (2012). Global patterns of mobile carbon stores in trees at the high-elevation tree line. Global Ecology and Biogeography, 21, 861-871.
[25] Hoch G, Richter A, K?rner C (2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment, 26, 1067-1081.
[26] Huang XY, Guo WJ, Yang L, Zou ZG, Zhang XY, Addo-Danso SD, Zhou LL, Li SB (2023). Effects of drought stress on non-structural carbohydrates in different organs of Cunninghamia lanceolata. Plants, 12, 2477. DOI:10.3390/plants12132477.
[27] Ju PJ, Huang CB (2020). Estimation of nonstructural carbohydrates storage in different organs of tree species in Tiantong Mountain hardwood forest. Southwest China Journal of Agricultural Sciences, 33, 408-414.
  [鞠鹏杰, 黄长兵 (2020). 天童山阔叶林不同树种各器官非结构性碳水化合物储量及分配. 西南农业学报, 33, 408-414.]
[28] Kozlowski TT (1992). Carbohydrate sources and sinks in woody plants. The Botanical Review, 58, 107-222.
[29] Lenz A, Vitasse Y, Hoch G, K?rner C (2014). Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit. Journal of Ecology, 102, 1537-1548.
[30] Li NN, He NP, Yu GR (2016). Evaluation of leaf non-structural carbohydrate contents in typical forest ecosystems in Northeast China. Acta Ecologica Sinica, 36, 430-438.
  [李娜妮, 何念鹏, 于贵瑞 (2016). 中国东北典型森林生态系统植物叶片的非结构性碳水化合物研究. 生态学报, 36, 430-438.]
[31] Li TT, Xue JQ, Wang SL, Xue YQ, Hu FR, Zhang XX (2018). Research advances in the metabolism and transport of non-structural carbohydrates in plants. Plant Physiology Journal, 54, 25-35.
  [李婷婷, 薛璟祺, 王顺利, 薛玉前, 胡凤荣, 张秀新 (2018). 植物非结构性碳水化合物代谢及体内转运研究进展. 植物生理学报, 54, 25-35.]
[32] Li YY, Zhou GY, Liu JX (2017). Different growth and physiological responses of six subtropical tree species to warming. Frontiers in Plant Science, 8, 1511. DOI: 10.3389/fpls.2017.01511.
[33] Liu CC, He NP, Li Y, Zhang JH, Yan P, Wang RM, Wang RL (2024). Current and future trends of plant functional traits in macro-ecology. Chinese Journal of Plant Ecology, 48, 21-40.
  [刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽 (2024). 宏观生态学中的植物功能性状研究: 历史与发展趋势. 植物生态学报, 48, 21-40.]
[34] Liu WD, Su JR, Li SF, Lang XD, Huang XB, Zhang ZJ (2017). Variation of non-structural carbohydrates for the dominant species in a monsoon broad-leaved evergreen forest in Pu’Er, Yunnan Province. Scientia Silvae Sinicae, 53(6), 1-9.
  [刘万德, 苏建荣, 李帅锋, 郎学东, 黄小波, 张志钧 (2017). 云南普洱季风常绿阔叶林主要树种非结构性碳水化合物变异分析. 林业科学, 53(6), 1-9.]
[35] Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, Palacio S, Piper FI, Lloret F (2016). Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs, 86, 495-516.
[36] Moinet GYK, Moinet M, Hunt JE, Rumpel C, Chabbi A, Millard P (2020). Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Science of the Total Environment, 704, 135460. DOI: 10.1016/j.scitotenv.2019.135460.
[37] Ouyang M, Yang QP, Qi HY, Liu J, Ma SQ, Song QN (2014). A comparison of seasonal dynamics of nonstructural carbohydrates for deciduous and evergreen landscape trees in subtropical region, China. Journal of Nanjing Forestry University (Natural Sciences Edition), 38(2), 105-110.
  [欧阳明, 杨清培, 祁红艳, 刘骏, 马思琪, 宋庆妮 (2014). 亚热带落叶与常绿园林树种非结构性碳水化合物的季节动态比较. 南京林业大学学报(自然科学版), 38(2), 105-110.]
[38] Paul MJ, Foyer CH (2001). Sink regulation of photosynthesis. Journal of Experimental Botany, 52, 1383-1400.
[39] Piper FI (2011). Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Annals of Forest Science, 68, 415-424.
[40] Richardson AD, Carbone MS, Huggett BA, Furze ME, Czimczik CI, Walker JC, Xu XM, Schaberg PG, Murakami P (2015). Distribution and mixing of old and new nonstructural carbon in two temperate trees. New Phytologist, 206, 590-597.
[41] Rosell JA (2019). Bark in woody plants: understanding the diversity of a multifunctional structure. Integrative and Comparative Biology, 59, 535-547.
[42] Sala A, Mencuccini M (2014). Plump trees win under drought. Nature Climate Change, 4, 666-667.
[43] Sala AN, Woodruff DR, Meinzer FC (2012). Carbon dynamics in trees: feast or famine? Tree Physiology, 32, 764-775.
[44] Smith MG, Miller RE, Arndt SK, Kasel S, Bennett LT (2018). Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees. Tree Physiology, 38, 570-581.
[45] Taneda H, Sperry JS (2008). A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiology, 28, 1641-1651.
[46] Taylor AM, Gartner BL, Morrell JJ (2002). Heartwood formation and natural durability—A review. Wood & Fiber Science, 34, 587-611.
[47] Thompson RA (2024). A neutral theory of plant carbon allocation. Tree Physiology, 44, tpad151. DOI: 10.1093/treephys/tpad151.
[48] Vanlerberghe GC, Dahal K, Alber NA, Chadee A (2020). Photosynthesis, respiration and growth: a carbon and energy balancing act for alternative oxidase. Mitochondrion, 52, 197-211.
[49] Wang KB, Jin GZ, Liu ZL (2023). Dynamic variation of non-structural carbohydrates in branches and leaves of temperate broad-leaved tree species over a complete life history. Frontiers in Forests and Global Change, 6, 1130604. DOI: 10.3389/ffgc.2023.1130604.
[50] Wang N, Li Q, Liu X, Yi SJ, Zhao MM, Sun XK, Song HJ, Peng XQ, Fan PX, Gao Q, Wang YT, Yu LQ, Wang H, Du N, Wang RQ (2021). Plant size plays an important role in plant responses to low water availability and defoliation in two woody Leguminosae species. Frontiers in Plant Science, 12, 643143. DOI: 10.3389/fpls.2021.643143.
[51] Wang ZG, Wang CK (2019). Mechanisms of carbon source-sink limitations to tree growth. Chinese Journal of Plant Ecology, 43, 1036-1047.
  [王兆国, 王传宽 (2019). 碳供给与碳利用对树木生长的限制机制. 植物生态学报, 43, 1036-1047.]
[52] Wang ZH, Zheng R, Yang LL, Tan TH, Li HB, Liu M (2022). Elevation gradient distribution of indices of tree population in a montane forest: the role of leaf traits and the environment. Forest Ecosystems, 9, 100012. DOI: 10.1016/j.fecs.2022.100012.
[53] Würth MKR, Peláez-Riedl S, Wright SJ, K?rner C (2005). Non-structural carbohydrate pools in a tropical forest. Oecologia, 143, 11-24.
[54] Xu JL, Zhu L, Shi ZQ, Wu J, Zhang YP (2021). Allocation of non-structural carbohydrates content in coarse roots and stems of Quercus variabilis. Scientia Silvae Sinicae, 57(1), 200-206.
  [徐军亮, 竹磊, 师志强, 武靖, 章异平 (2021). 栓皮栎粗根和茎干中非结构性碳水化合物含量的调配关系. 林业科学, 57(1), 200-206.]
[55] Yang QP, Zhang WD, Li RS, Xu M, Wang SL (2016). Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees, 30, 1863-1871.
[56] Yu LM, Wang CK, Wang XC (2011). Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255.
  [于丽敏, 王传宽, 王兴昌 (2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.]
[57] Zahnd C, Zehnder M, Arend M, Kahmen A, Hoch G (2024). Uniform carbon reserve dynamics along the vertical light gradient in mature tree crowns. Tree Physiology, 44, tpae005. DOI: 10.1093/treephys/tpae005.
[58] Zhang HY, Wang CK, Wang XC (2014). Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species. Trees, 28, 77-89.
[59] Zhang HY, Wang CK, Wang XC (2015). Within-crown variation in concentrations of non-structural carbohydrates of five temperate tree species. Acta Ecologica Sinica, 35, 6496-6506.
  [张海燕, 王传宽, 王兴昌 (2015). 5个温带树种冠层枝叶非结构性碳水化合物浓度的空间变异. 生态学报, 35, 6496-6506.]
[60] Zhang PP, Zhou XH, Fu YL, Shao JJ, Zhou LY, Li SS, Zhou GY, Hu ZH, Hu JQ, Bai SH, McDowell NG (2020). Differential effects of drought on nonstructural carbohydrate storage in seedlings and mature trees of four species in a subtropical forest. Forest Ecology and Management, 469, 118159. DOI: 10.1016/j.foreco.2020.118159.
[61] Zheng WH, Li RS, Yang QP, Zhang WD, Huang K, Guan X, Chen LC, Yu X, Wang QK, Wang SL (2023). Allocation patterns of nonstructural carbohydrates in response to CO2 elevation and nitrogen deposition in Cunninghamia lanceolata saplings. Journal of Forestry Research, 34, 87-98.
[62] Zhu WZ, Xiang JS, Wang SG, Li MH (2012). Resprouting ability and mobile carbohydrate reserves in an oak shrubland decline with increasing elevation on the eastern edge of the Qinghai-Tibet Plateau. Forest Ecology and Management, 278, 118-126.
[63] Zou QQ, Wang YS, Jiang ZY, Chen XW, Wang XW (2021). Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region. Journal of Beijing Forestry University, 43(10), 1-8.
  [邹青勤, 王奕淞, 蒋治岩, 陈祥伟, 王秀伟 (2021). 典型黑土区不同水土保持树种的非结构性碳水化合物特征及种间差异. 北京林业大学学报, 43(10), 1-8.]
文章导航

/