植物生态学报, 2007, 31(5): 804-813 DOI: 10.17521/cjpe.2007.0102

论文

植物体内水分长距离运输的生理生态学机制

万贤崇,1, 孟平2

1 中国林业科学研究院新技术研究所,北京 100091

2 中国林业科学院林业研究所,北京 100091

PHYSIOLOGICAL AND ECOLOGICAL MECHANISMS OF LONG-DISTANCE WATER TRANSPORT IN PLANTS: A REVIEW OF RECENT ISSUES

WAN Xian-Chong,1, Meng Ping2

1Institute of New Forest Technology, Chinese Academy of Forestry, Beijing 100091, China

2Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

编委: 曹坤芳

责任编辑: 李敏

收稿日期: 2006-10-20   接受日期: 2007-01-11   网络出版日期: 2007-09-30

基金资助: 十一五国家科技支撑计划.  2006BADO3A05
十一五国家科技支撑计划.  2006BADO3A11
十一五国家科技支撑计划.  2006BAD19B0201

Received: 2006-10-20   Accepted: 2007-01-11   Online: 2007-09-30

作者简介 About authors

摘要

植物体内长距离水分运输是植物生理生态学研究中的一个重要问题,长期为植物生理学家和生理生态学家所关注。木质部探针技术的问世,掀起了近年来植物生理学界最为激烈的一场争论。提出了已经有100多年,风行40年的内聚力-张力(Cohesion-Tension, C-T)学说受到质疑。随后维护派和质疑派围绕木质部探针技术、压力室技术(C-T理论的主要支撑实验技术)的可靠性展开辩论。进一步从物理学原理和各种实验上就C-T理论的3个支柱(木质部导管或管胞中巨大的张力、沿树高的压力梯度、连续水柱)进行争论。这场争论似暂告一段落,C-T理论没有被推翻,但仍留有问题期待以后的研究。

关键词: 内聚力-张力 ; 木质部探针 ; 压力室 ; 水分长距离运输 ; 木质部空穴化

Abstract

Long-distance water transport in plants is an important issue in plant physiology and eco-physiology. The recent development of the Xylem Pressure Probe for direct measurement of pressure in individual xylem elements of intact, transpiring plants elicited challenges to the long-standing, widely accepted Cohesion-Tension (C-T) Theory. These challenges instigated debate in the field of plant physiology over mechanisms of long-distance water transport. The challengers and proponents of the C-T theory mutually criticized the Pressure Bomb and the Xylem Pressure Probe technology, and they debated over all three elements of C-T theory (high tension in xylem units; pressure gradients over tree height; the continuous water column in xylem vessels) by reviewing literature and providing physical bases. The debate has cooled down. As a result, the C-T theory has not been discredited while the raised questions in the debate remain mainly unanswered and call for future researches.

Keywords: cohesion-tension theory ; xylem pressure probe ; pressure bomb ; long-distance water transport ; xylem cavitation

PDF (354KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

万贤崇, 孟平. 植物体内水分长距离运输的生理生态学机制. 植物生态学报[J], 2007, 31(5): 804-813 DOI:10.17521/cjpe.2007.0102

WAN Xian-Chong, Meng Ping. PHYSIOLOGICAL AND ECOLOGICAL MECHANISMS OF LONG-DISTANCE WATER TRANSPORT IN PLANTS: A REVIEW OF RECENT ISSUES. Chinese Journal of Plant Ecology[J], 2007, 31(5): 804-813 DOI:10.17521/cjpe.2007.0102

中国科学院植物研究所张文浩研究员帮助通读全文,并提出许多建设性的意见

植物体内长距离水分运输植物生理生态学研究中的一个重要问题,其关系到植物水分平衡、气孔调节、光合作用(Tyree & Ewers, 1991)、植物对不同环境适应(Mencuccini, 2003),甚至规定树木的极限高度(Ryan & Yoder, 1997)。过去几十年来,植物生理学家普遍运用C-T(Cohesion-Tension, C-T)学说来解释植物体内长距离水分运输中的现象。但近年来,在国际上围绕C-T学说展开了一场非常激烈的争论。国内虽有不少人对植物长距离水分运输感兴趣(安锋等,2002;李吉跃和高丽洪,2002;樊大勇和谢宗强,2004),但没有人卷入到这场争论中去。此文将概要地介绍近年有关内聚力-张力学说这场争论,以及本人的一些观点。参加这场争论的几乎都是植物水分生理学领域的著名学者,不少是长者。争论固然是维护自己的观点。本人私下感觉他们也将这种争论作为一种学术兴奋剂,激发出新的热情。尤其对于年长的学者,争论可以焕发科学青春。这场争论甚至发展到两位著名的德国植物生理学家在Wuerzburg大学展开了一场有组织的、公开的、面对面的辩论。这种学术风气令人钦佩。争论从客观上促进了科学发展,使读者了解到这个理论发展的来龙去脉,以及存在的疑问,从一定程度上指出了该领域的发展方向。迄今为此,争论的双方都没有完全说服对方,然而都意识到在该领域的学术上仍有许多工作要做。

C-T学说是Dixon和Joly (1894)提出来的。即叶面的蒸腾所产生的低水势(张力)提供一个吸力,通过木质部中的连续水柱将张力逐渐传递至根部,致使根表面有足够低的水势可从土壤中吸收水分。并将水提升到树冠部分。像其它很多学说一样,自提出后,不时地出现赞成和反对的意见。下面介绍几个关键的研究以及随之引发的争论:1)根据C-T理论,长距离水分运输的动力来自于叶片蒸腾,水在运输过程中要克服重力和摩擦阻力,所以木质部需要承受很大的负压。这么大的负压是否实际存在一直有争议。Renner(1925)用蒸腾计(Potometer)间接地证明木质部存在C-T理论所需负压。其用一根带叶枝条,基部接到蒸腾计上,读出液面移动速度。然后,将枝条上的所有叶子和顶梢都去掉,顶部和真空泵相接,再从蒸腾计上读其液面移动速度。Renner用这种办法推测出枝条木质部的负压;2)Preston(1952) 做了一个“双割”试验,即用锯从两个对着的方向将树干横向各锯开一大半,切割面交叉重叠。结果这棵树仍然可以存活。这个试验证木质部中的水分运输并不需要连续的水柱。而这一现象是有悖于C-T学说的;3)再往后,Scholander等(1965)用他们设计的压力室(Pressure bomb,or Scholander pressure bomb)测到了C-T理论所预测的各种负压。此后,C-T理论被植物生理学界广泛接受; 然而,4)另一个技术,木质部压力探针(Xylem pressure probe,XPP)技术的问世(Balling和Zimmermann, 1990), Zimmermann等(1993) 的出击,引起了近年来植物生理学界一场最激烈的争论(Canny, 1995; Milburn, 1996; Tyree, 1997; Steudle, 2001; Zimmermann et al., 2004)。这场争论牵涉到一个基本理论问题,更关系到半个世纪以来水分生理研究结果的解释。传统的C-T学说受到质疑。C-T理论认为植物是靠蒸腾所产生的巨大负压,经木质部的连续水柱将水分从土壤、根部提升到树冠顶部。这个理论的3个关键支柱是:1) 木质部中有一个巨大的负压(或张力),可以达到负十几个 MPa;2)沿树高呈现张力梯度;3)木质部导管中的水必须形成连续水柱。木质部压力探针测得木质部导管中最低只可达负0.6 MPa,其不足以作为驱动力将水直接提升到高大树木的顶部。而传统的压力室技术测出的离体植物材料可达负十几个 MPa。另外,Zimmermann的实验室用木质部压力探针也没有测到C-T理论所预测的压力梯度(Benkert et al., 1995)。理论需要实验的证实,随之两派也围绕这两种方法的正确性展开激烈争论。攻击对方没有具有说服力的校订措施,各不相让。随后双方开始争论到C-T理论的另一支柱——连续水柱。在温带和亚热带,由于水分的冻融交替,植物越冬过程木质部导管管胞中会产生气泡、发生气穴化(Cavitation)而导致栓塞(Embolism)。在严重干旱植物木质部导管管胞中也会产生气穴化。一旦产生气穴栓塞,水分就不能长距离运输(根据C-T理论)。连续水柱是否必需,以及气泡栓塞之后如何修复也就成为当前研究的热点问题。木质部导管管胞是否存在连续水柱是当前争论焦点之一。 Zimmermann等(2004)是对C-T理论提出疑问的代表人物,他们认为连续水柱似不存在,也没有必要。水提升到树冠不单靠蒸腾拉力,有其它的因素参与水的提升。他承认在C-T理论中所提出的蒸腾拉力的作用,但不认为这是唯一的驱动力。并认为C-T理论所需要的几个到十几个 MPa负压存在于导管管胞是难以想象的。这么大的负压下,水呈亚稳状态(Metastable),就像过热(Superheated)水一样很容易汽化,水柱将被气泡阻断,失去连续性。

维护C-T理论的植物生理学家相对较多,其中如M. Tyree、J. Sperry、M. Holbrook和E. Steudle认为C-T理论已很成熟,符合物理学原理,也经过试验的证实(Tyree, 1997)。然而,他们也意识到水柱的连续性有点问题,近年来一直在致力于气泡栓塞的修复研究。大家都观察到导管管胞是很容易发生气泡栓塞的, 如干旱、低温、风吹、正常的蒸腾作用,及植食性动物的侵害都可以造成气泡栓塞。而气泡栓塞又是C-T理论的软肋,如果水柱不连续,则水如何被提到几十米高空?

1 木质部中是否存在巨大负压及测定所用方法

巨大的负压是否存在需要有物理学方法将其测定出来。前面我们已经提到Renner的带叶枝条/真空泵技术、Scholander的压力室技术,以及Zimmermann的木质部压力探针技术,是迄今为止用于测定木质部压力的主要方法。其中Renner的方法问世较早,由于这个方法的精度不是很高(Milburn, 1996),Renner(1911,1925)的测定结果出现前后不一致,从1~2 MPa到0.2~0.4 MPa。其结果被争论双方所引用来证明自己的观点(Milburn, 1996; Steudle, 2001; Zimmermann et al., 2004)。最近这场争论主要焦点之一是围绕后两种方法及其测定结果。介绍及分析如下:

1.1 压力室(Pressure bomb)技术

压力室技术是Scholander等(1965)在改良前人(Dixon, 1914)的设计基础上发展而来的。该方法简便易操作,所以特别流行。剪取一根带叶枝条,或叶片,将切口端经橡皮塞中部的孔口伸出到压力室外面,其余部分封入压力室中。加压加到植物材料中的汁液经木质部出现在切口时,外压的读数称作木质部平衡压。用以计算张力或水势。在剪取样品时,木质部汁液会被回吸,其和空气所形成的弯月面退至该被剪导管管胞底部(Tyree & Zimmermann, 2002)。在压力室测定时,外加压力必须克服毛细管张力将水推出。这样一来,测得结果就可能高估了木质部平衡压。假如样本在取样之前导管管胞中以及叶肉细胞间隙就已经产生有气泡,外加压力就势必要将细胞内水挤出,并且克服毛细管张力,填充这些空隙。所以需要更大的平衡压(Zimmermann et al., 2004)。另外,植物器官存在压力梯度,剪取前和测定时其梯度正好相反。剪取前,切口处压力最高,而测定时,切口处压力最低。由于植物枝条是一个多组织器官,压力的传导比较复杂。切口处的平衡压和压力室所施加的压力不完全一样,往往压力室的压力要高出一些(Balling & Zimmermann, 1990)。总之,压力室技术可能高估木质部平衡压。我们还要记住的是压力室技术测定的是一个平均的平衡压,而不是测定枝条被剪取的那一瞬间枝条切口处那一点的平衡压(Tyree & Zimmermann, 2002)。支持者认为压力室技术是可靠的,其先后经过根部加压技术(Root pressurization)( Passioura & Munns, 1984)和干湿球水势仪(Psychrometer)(Dixon & Tyree, 1984)的验证。而Zimmermann 等(2004)反驳说,这后两种技术本身也没有在标准实验中校准过。Melcher等(1998)比较两片相邻甘蔗和玉米叶片,其中一片在凌晨用铝箔纸完全包起来,另一片暴露。根据木质部导管管胞中水柱的连续性,这两片叶片水势应该是相同的。但在中午强烈的阳光下,用压力室测出暴露的叶片水势比遮光叶的低1倍。Wei等(1999b)解释道:在强度蒸腾下,水势梯度就可能是很大的。Tyree(1997)重申C-T理论不是依赖压力室测定的精确度,而是靠它测定的范围。

另外,Wei等(1999a,1999b)用木质部压力探针来试图验证压力室测定的可靠性。他们将完整玉米植株的根系密封在一压力罐中,给根系加压,与此同时用压力探针检测叶片中脉导管的压力变化。结果得出了压力室和压力探针之间压力变化是1∶1的关系。因而声称压力室的测定是可靠的。但Zimmermann等(2004)指出他们实验中的一个重大缺陷:在根部加压之后,原本在导管中的气穴栓塞被水重新填满了,只有在这种情况下,才可能测出两者压力同步的变化,但这是一种实验假象。

1.2 木质部压力探针(Xylem pressure probe)技术

压力探针直接测定导管管胞中的压力, 原理上应该没有什么问题, 而且其部件明了,工作原理很直观。该技术是从先前测定细胞膨压及其它水分指标的版本发展而来的(Steudle, 1993)。国内已经有几个实验室引进了这种技术。不过应该指出, 压力探针技术需要较长时间的训练和琢磨才能掌握(Wan et al., 2004), 对实验室环境的要求高。探针的探头是一根拉细的玻璃毛细管,顶端的开口直径5 μm左右(Wei et al., 1999b)或稍宽一些 (Balling & Zimmermann, 1990)。毛细管借助一精密显微操纵器插入细胞中。当插入到活细胞时,膨压使得细胞膜和插入的毛细管尖端弥合,密封较好。而当插入木质部导管管胞时,毛细管只能和细胞壁弥合。细胞壁在毛细管挤压下容易产生裂痕,加之处于蒸腾状态下导管管胞内通常是负压,给密封带来很大困难。如需测定-1 MPa压力,细胞壁在毛细管的缝隙要小于0.3 μm(Tyree & Zimmermann, 2002)。这或许也是为什么木质部压力探针技术一直没有测到很低压力的原因。迄今,木质部压力探针一般只能在木质部测到0.6~0.7 MPa 负压,而且不稳定(Balling & Zimmermann, 1990; Wei et al., 1999b)。即使避开探头和细胞壁之间的密封性不谈, 探针自身内部的液体和金属或塑料的界面之间的气种(Air seeds)也限制压力探针承受负压能力(Balling & Zimmermann, 1990;Wei et al., 1999b)。Zimmermann实验室用的是灌水探针,而Steudle实验室用的是灌硅油探针。他们声称各自的探针自身可以分别经受1.0和1.4 MPa张力。根据木质部压力探针技术测得的结果,Zimmermann等(2004) 相信导管管胞内不存在很大的负压。也没有必要研制能够测出更低水势的压力探针。但压力探针技术在测定木质部负压时确实有其局限性(Sperry et al., 1996; Milburn, 1996; Wei et al., 1999b)。试想,如果实际导管负压很大,当探针插入导管时,由于气种的存在,立刻产生气穴化(Cavitation),或在毛细管和导管细胞壁之间产生泄漏,压力转换器所反映的读数都是零。这也是Balling和Zimmermann(1990)报道中常见的一种结果。但实质上,这种测定结果可能是一种假象。又如,Wei等(1999a) 描述他们曾测到-1 MPa的张力,但这一测定曲线并没有展示在发表的文章中。据作者的经验,Wei等(1990a)观察到的这个测定值可能是一个瞬间值,由于气穴化或泄漏张力立刻回到零,所以该测定曲线不具有很好的代表性。

2 水的内聚力及水柱的连续性

有关沿树高的压力梯度研究不是很多。Benkert等(1995)用木质部压力探针,以及用压力室方法都没能测到沿植物高度的压力梯度。所以得出结论是C-T理论预测的压力梯度是不存在的。然而Tyree(1997)指出在不知道沿高度的植物木质部水分导度(或阻力)因素情况下,仅凭木质部压力数据得出这样的结论是不对的。由于存在植物各部位不同的水分导度,情况比较复杂。

水柱的连续性和木质部巨大的张力联系在一起,其本身也是C-T理论的支柱之一,是当前一个热点问题。

2.1 物理学原理

在此论战中几位重量级人物如U. Zimmermann、E. Steudle和M. Tyree以前都有物理学的背景,具有深厚的物理学功底。

水承受张力的能力(即内聚力)是由其分子间力所决定的。从氢键中储存的能量来计算,水可以承受1 400 MPa负压,即使刨除分子间热运动因素,其抗张力强度远大于(C-T理论预测的)水在树木中运输所要承受的张力(Steudle, 2001)。另外,从物理化学中体积的变化引起其内能的改变来计算,水的抗张力强度是300 MPa(Steudle, 2001)。然而,Zimmermann从热力学的角度分析,水在室温下的平衡蒸气压是2 KPa,而C-T理论要求木质部中张力大于2 MPa。在如此负压下,水呈亚稳定状态,亦即水很容易气化(Zimmermann et al., 2004)。气化一旦发生,导管管胞产生气穴栓塞,水柱就不能连续。加之,导管并非完全密封的管子(Canny, 1995),在如此大的负压下很容易渗入空气产生气穴栓塞(Zimmermann et al., 1995)。Tyree(1997)则认为管壁上的小孔口有很大的毛细管张力,借此可以大大地降低空气进入的机会。

2.2 物理学实验

物理学家Berthelot(1850)在高温下,将水封入一石英管中。然后降低温度,管内水分的体积随温度的下降而收缩,到一定程度,管内水柱断开。实验结果表明管内的水柱能经得住5 MPa的张力。更为引人瞩目的是Briggs (1950)的实验,他用一根经仔细清洗过的Z型玻璃毛细管,加入经过滤和真空去气处理的去离子蒸馏水。将该管子安放在离心机上离心,直至将管内水柱拉断。发现在这种情况下水柱可以经受30 MPa的张力(Briggs, 1950)。这些实验都证明水是可以经受住树木中最大的蒸腾拉力。不过我们发现, 不同的方法测出的抗张力性是有很大的不同。后来Smith(1991, 1994)用Briggs的Z型管离心发现未经去气泡的蒸馏水空穴生成的张力阈值在0.2~0.3 MPa 之间。如水中含有杂质,阈值会变得更小。

Briggs的实验结果和Smith的实验结果的差别主要是气泡来源的不同。Briggs实验产生的气泡来自于液态水自身的汽化,被称之为同源气泡(Homogeneous bubble),而Simth实验的气泡来自于溶于水中的气种(Air seeds),属于异源气泡(Heterogeneous bubble)。具体分类请参阅Zimmermann(1983)或Tyree等(1994)的文献。同源气泡的产生所需的张力比较大,说明水的内聚力(Cohesion),以及水和亲水管壁之间的黏附力(Adhesion)都比较大。木质部能否承受巨大的张力关键是如何避免异源气泡的产生。Zimmermann(1983)提出了木质部形成气穴化的气种假说。气体是经壁上纹孔进入导管管胞的。植物进化形成的导管管胞上的纹孔具有很小的孔口,要经此孔口吸进空气需要很大的压力差(Steudle, 2001;Tyree & Zimmermann, 2002),所以防止轻易产生气穴化。另一方面,植物也“设计”气种泄漏(Zimmermann,1983),以传递水分信号,藉此调节气孔的开闭(Jones & Sutherland, 1991; Salleo et al., 2000;Buckley, 2005)。亦即,在水分匮缺时,使木质部输水阻力增加,将水分匮缺信号传递给气孔,使之关闭,减少蒸腾

2.3 木质部栓塞脆弱性(Vulnerability)研究

木质部中水是在负压条件下进行运输的,所以水很容易气穴化(Cavitation),进而产生气穴栓塞(Embolism)。近20年这方面的研究颇多(Tyree & Sperry, 1989)。从方法学上这种研究的技术分为两部分: 其一,用不同的措施创造木质部张力;其二,检测气穴栓塞及栓塞脆弱性。对于前者,最早用的是直接脱水法,即将剪取的枝条放在实验室的台子上任其失水。然后,在不同时间测定平衡压,以及枝条的水分导度。看看在多大的负压下枝条的水分导度会显著下降,绘制水分导度和木质部平衡压之间的关系曲线——脆弱性曲线。从而推测水柱断开,或木质部栓塞的木质部平衡压阈值。另一个方法是用压力室从枝条的一端吹气以造成气穴栓塞(Cochard,1992)。以后又发展到用外加压力法(Salleo et al., 1992;Cochard et al., 1992)。Salleo等采用一个特制压力室,圆筒形,两头都有开口。这个压力室像颈脖套子似的套在枝条的中间。枝条两端通过橡皮密封圈穿出压力室。所以这个装置就称谓压力脖套(Pressure collar)。然后将两端连上皮管,外加压力的同时测定水的流量。Cochard等用一根带叶的柳树枝条,弯成圆圈放入压力室中,枝条的两端从同一方向经橡皮密封圈穿出压力室。其工作原理和压力脖套一样。用于研究在多大压力差下能诱导木质部产生气穴栓塞,从而影响水分的运输。再后来,Holbrook等(1995)用一根中间带有一片叶子的枝条,巧妙地安放在离心机上,中间的叶片用一个罩子将其保护起来,然后离心。之后用压力室测定该叶片木质部平衡压。用这种方法他们得出叶片平衡压和离心所造成枝条中部张力之间1∶1的关系,这一关系一直维持到1.8 MPa的离心张力。超过1.8 MPa,水柱被拉断。Pockman等(1995)应用离心力创造张力,诱使枝条木质部产生气穴栓塞,之后测定其水分的导度。由于这种方法,张力的创造和水分导度的测定是分开来进行的,Canny(1998)认为离心机停下来后,张力就消失了。建立这种张力-水分导度的脆弱性曲线(Vulnerability curve)是不合逻辑的。因而最近Cochard 等(2002)又设计了一个更为精巧的离心装置。在创造张力的同时,可以测定水分导度。这个方法进了一大步,但仍不是完美的,具体问题另文再分析。检测气穴栓塞一般用测定水分流速及导度的办法,如上所述。此外,还有用超声波监听的方法。气穴化过程会发出声响,通过记录声响的频度来推测气穴化程度(Milburn & Johnson, 1966; Tyree & Dixon, 1983; Tyree & Sperry, 1989; Kikuta et al., 1997)。不过此方法受干扰比较严重(Grace, 1993)。近来,核磁共振影像法也被用来测定植物气穴栓塞的程度(Holbrook et al., 2001;Zimmermann et al., 2004),但这不是一种容易普及的技术。

木质部栓塞脆弱性曲线是维护C-T理论派提出的概念,并进行了许多这类研究(Tyree & Sperry, 1989; Sperry & Tyree, 1990; Cochard et al., 1992; Pockman et al., 1995; Alder et al., 1996)。C-T理论质疑派认为这个栓塞脆弱性概念所假设的气穴化就必然增加木质部输水阻力没有充分的根据(Zimmermann et al., 2004),因为有些气穴栓塞并不妨碍水分的输送(Wagner et al., 2000)。另外,这些试验方法也没有很好的物理学依据。

根据气种假说,在一定的压力差(≥2 MPa)下,气体从已栓塞的导管管胞管壁纹孔进入到未栓塞的导管管胞。因而,导管管胞对气穴栓塞脆弱性与它们管壁纹孔膜上的小孔孔径大小有密切关系(Sperry & Tyree,1988; Tyree & Zimmermann, 2002)。管壁纹孔膜上的小孔孔径大小和植物的生境密切相关,从湿润阴凉到干热环境管壁纹孔膜边缘越来越加厚,使之孔口越来越小(Jansen et al., 2004)。被子植物导管具有相对简单的纹孔结构,纹孔孔口较小,是水分输送的主要阻力所在。但导管管胞要长很多(1.7~3.4倍),需要经纹孔传输的机会较少(Sperry & Hacke, 2004;Hacke et al., 2004)。裸子植物仅靠管胞运输水分,管胞短,直径小,需要经过胞间纹孔的次数多,其输水能力似远不及导管。不过裸子植物管胞纹孔膜上的TorusMargo结构对于缓和气穴化栓塞和提高水力导度起着重要作用(Hacke et al., 2004)。Torus纹孔膜中央的圆凸,其细胞壁结构保持较完好,而它周围的壁结构大多消失,剩下网状的纤维束,称之为Margo,它的透水性很好(Tyree & Zimmermann, 2002)。当纹孔两侧压力差很大时,整个纹孔膜弯向低压一侧,Margo贴着纹孔次生加厚的外缘,而Torus正好将外缘的孔口堵住,起到阻挡气体-水的界面通过的作用。这一结构使得裸子植物管胞运输水分能力接近被子植物导管并很好地防止其气穴栓塞(Hacke et al., 2004)。

2.4 气穴栓塞的修复

最近几年,气穴栓塞的修复是两派共同关心的一个热点。以前一般认为气穴栓塞是不可修复的,或需要很长时间(数周或数月)(Sperry, 1995)。传统上认为气穴栓塞的修复是通过根压或茎压(Tyree et al., 1986;Sperry & Tyree, 1988)来完成的。不过,人们很早就发现根压无法解释高大树木气穴栓塞的修复现象(Tyree & Zimmermann, 2002)。近来发现,迅速修复被气穴栓塞的导管是一个常见的现象,既发生在木本植物,也发生在草本植物(Sobrado et al., 1992; Edwards et al., 1994)。Salleo等(1996)证明Laurus nobilis可以在20 min内修复好被外加压力诱导产生的气穴栓塞。修复可以在木质部张力条件下进行(Canny, 1997)。为此,Canny提出组织压(Tissue pressure)假说(Canny, 1995,1997)。但遭到众多的反对(Comstock, 1999; Tyree, 1999;Zimmermann et al., 2004),以至于Holbrook 和Zwieniecki(1999)及Tyree等(1999)设法解释这种奇迹。Holbrook等提出水孔蛋白(Aquaporins)的主动输水,但这种假设有待于进一步证实。Tyree等原设想是从木质部薄壁细胞分泌的渗透质产生的渗透压所至,但最后没有得到实验的证实(Tyree et al., 1999)。Zimmermann 等设想在导管管胞中存在一个尚未证实的渗透梯度。而维持这个梯度需要有细胞膜状隔膜(有待证实)将它们分开。总之,至今没有完满的解释。

3 讨论

压力室技术虽不能精确地测定出植物体内真实的水势值(大多数情况可能略低估了水势值),但作为估计,比较水势值应是有效的。而XPP技术可能有待于进一步的完善。主要是因为很难在强张力下保持探头与导管管胞细胞壁之间的密封以及系统内气种难以排除。Wei 等(1999a)虽声称测到1 MPa负压,但他们并没有展示这个测定曲线。可能是测到一个瞬间的值,之后就空穴化了。如前介绍,灌油压力探针比灌水压力探针承受张力的能力略好些(Wei et al., 1999a,1999b)。其主要是低黏度硅油和有机玻璃压力室及金属操纵杆亲和得更好。Wei 等(1999a)推测:如将金属操纵杆换成其它和硅油亲和力更高的材料,有可能进一步改善压力探针承受张力的能力。Burkhard Stumpf发觉往往用旧的压力探针比新的压力探针承受张力的能力更好(私人通讯)。可能新的探针内部存在较多接点死角及加工的毛刺,这些部位都是气种的藏身之处。在旧的探针中,死角被填塞,毛刺被磨光。因而,如果用气相色谱中毛细管柱填充技术将探针内部涂上一层亲水或亲硅油的膜,估计可以改善探针承受张力的能力。另外,探头的直径是否可以更小点,以改善探头与细胞壁的密闭程度。不过探头的直径太小,容易在穿刺过程中被细胞碎片堵塞。

C-T学说有3个支柱条件:巨大的张力是否存在可能还需要进一步的直接实验证据;压力梯度不一定呈线性,但存在,表现为动态变化过程;水柱是连续的,但并不是或不需要是直线连续的。

以U. Zimmermann为代表的C-T理论质疑派,承认蒸腾拉力起重要作用,尤其是在草本植物或实验室内大小的植物(Zimmermann et al., 2004)。但认为其它因素明显也扮演重要角色。为了解释一些和C-T理论不一致的试验观察,他们提出了水门(Watergates)假说。设想水分在植物中的提升就像船只逆水而上时过水坝一样,经一序列的水门一级一级地往上提。这个假说可以解释大多数观察到的现象,但问题是这个设想中的“门”没有得到任何解剖学证实。它需要一种类似细胞膜的物质,或可开启/关闭的阀门存在于导管管胞中。Zimmermann 等(2004)也承认,到目前为止尚没有足够的资料可以导致产生一个完美的(即简洁明了)理论。所以只有权以用这种水门假说,辅以一序列的作用力(Multi-forces)来代替他们认为不尽合理的C-T理论(Zimmermann et al., 2002, 2004)。这些多重力作用主要是为了解决那个“门”的问题。这些力包括蒸腾拉力,另外还有:导管管胞周围薄壁细胞细胞渗透势梯度、压力流学说(Münch water)、木质部汁液中渗透势梯度、导管管胞中粘液物质的水合梯度、反向蒸腾界面张力梯度、导管管胞内壁上的双电层、菌根吸水力、毛细管力。1)沿树高薄壁细胞水势梯度应该存在(如下所述),很可能其渗透势梯度也存在。不过,导管管胞中的水比其周围细胞中的水更容易用以蒸腾,因而在蒸腾状态下,这个渗透势梯度对于托住导管管胞中水分没有多大帮助。2)压力流学说,即木质部和韧皮部共同参与的液体循环。其也是一种水分运输的驱动力,但相对于蒸腾流而言,作用可能也不大。3)木质部汁液中渗透势梯度,即我们通常所说的茎压(Stem pressure)和根压(Root pressure)。在没有半透膜隔开的情况下,难以建立很大的梯度。所以,这种驱动力在蒸腾状态下作用也不大。4)导管管胞中粘液物质的水合梯度,这种现象不具有普遍性。5)反向蒸腾,即在高湿度环境下,或下雨时,植物地上部分吸收水分。这种现象也不具有普遍性。6)导管管胞气泡上升力,以及粘液物质支持的气泡上升力驱动水分上升移动,以及其它界面之间的张力梯度引起水分移动。这种作用尚没有定量化的研究。7)导管管胞内壁上的双电层,一般认为这种作用不是很大(Dainty,1963)。8)菌根吸水力,即增加根系的吸水能力,缓解木质部的张力。9)毛细管力,可以起到托住水分作用,但应该说作用也有限。

假如水门理论成立,近几十年的植物水分生理研究都要重新诠释,相关的理论也要修改。如Ryan和Yoder (1997) 提出水分限制假说:认为随着树高的增加,水分克服地心引力及运输路径的阻力往顶梢运输受到限制,致使树木高生长减缓或停止。然而,最近Ryan 等 (2006)在回顾近10年的研究后发现,他们的这一理论没有得到普遍印证,进而呼吁更多植物水分运输理论的研究。是高生长水分限制理论要修改,还是C-T理论不适合?

Koch 等(2004)用目前地球上最高的树(112.7 m)——红树(Sequoia sempervirens),为材料研究树高对水分关系和高生长的影响。结果发现:随树高的增加,其水分胁迫越来越严重,高生长几乎完全停止。该实验结果支持水分限制高生长假说(Ryan & Yoder, 1997)。解剖观察(Fahn, 1964)和理论推测(West et al., 1999)都表明,导管管胞的直径随着树高的增加而逐渐变小。根据Hagen-Poiseuille理论,输导能力随管道直径成4次方指数的变化。除了水柱重力越来越大外,输水路径的阻力也越来越大,这可能是一种进化适应的需要。按C-T理论的预测,树基部的导管管胞内压力高,顶部压力低。换言之,顶部导管管胞需要承受更大的压力差,其小直径有利于承受更大的压力差(Tyree & Zimmermann, 2002)。

我们可以用Chardakov 的方法(小液流法)测定植物材料的水势,它应该是存在沿树木高度的梯度,否则高位细胞水分将因重力而向下流失。木质部细胞导管管胞有着密切的水分交流(Steudle, 1989, 1992; Moore & Cosgrove, 1991; Malone, 1993)。木质部薄璧细胞中存在大量的水孔蛋白估计是用以水分的横向运输(Barrieu et al., 1998;Sakr et al., 2003)。木质部薄壁细胞如存在水势梯度,导管中就应该也存在相应的水势梯度。只是像Zimmerman 等(2004)设想的,有一系列的如水门样的装置。或者就像纵向排列的活塞运动似的调节导管管胞中的张力及水流。这种调节可能通过依次开启和关闭导管管胞壁上的纹孔来实现,所以在蒸腾时单个导管细胞中的张力是呈动态变化的(Wegner & Zimmermann, 1998)。这种变化也反映在蒸腾的振荡上(Farquhar & Cowan, 1974; Raschke, 1975)。植物根压也有振荡现象(Wan 未发表的资料)。沿树高水分运输的阻力状况也是影响导管管胞中的张力梯度的因素(Tyree, 1997)。

Zimmermann等(2004)所提供核磁共振以及压缩-释压(Schill et al., 1996)试验的证据证明导管中广泛的存在气穴化,从而得出结论:导管中不存在连续水柱,尤其是在强蒸腾状态。但水柱是否连续并不需要所有的导管都充满水。单个导管细胞气穴化后,其上下的导管可以通过其它周围的导管细胞将水膜连成一气。而气穴化的导管可以经壁上纹孔的关闭暂时游离开。亦即Zimmermann(1983)所提出的区域化理论,放弃被栓塞的导管管胞,使其它的部分连在一起。

上面提到的Preston在树干上进行的交叉重叠双割试验被C-T理论的反对派学者引用来攻击C-T理论的合理性(Zimmermann et al., 2004)。这个试验结果似乎证明,水分在树木中的长距离输送并不需要连续的水柱,因为所有的水柱都被切断了。对这个结果的解释依赖于双割之间的距离和树种导管的长度(Mackay & Weatherley, 1973)。如果切割距离长于导管的长度,很大部分的导管实际没有被切断,水柱很容易迂回过双割部分,继续往上运输(Tyree & Zimmermann, 2002)。反过来,如果切割距离短于导管的长度就会对水分运输造成严重的影响,甚至完全阻断水分的输送(Mackay & Weatherley, 1973)。另一个考虑是,双割后的导管暴露在外,吸入空气后产生气穴栓塞。这个问题可以通过导管之间的纹孔调节作用控制。蒸腾状态下的木质部中压力一般都是负的。为防止经受伤的导管管胞吸入空气到水分输送路径中,导管管胞之间的纹孔膜会像一个单向阀一样吸附在仍有输水功能的管壁一侧,关闭和受伤导管管胞的联系(Tyree & Zimmermann, 2002; Hache et al., 2004)。

Smith(1991)用Briggs(1950)的Z型管离心发现未经去气泡的蒸馏水空穴生成的张力阈值在0.2~0.3 MPa 之间。如水中含有杂质,阈值会变得更小。这一结果被用以证明木质部导管管胞中不可能存在很大的负压(Smith, 1994; Canny, 1995; Zimmermann et al., 2004)。不过我们认为,Z型玻璃管的离心试验和植物体内还是有很重要的区别。首先,木质部的水经过根部内皮层,以及管壁纹孔过滤,不应该有很多气种。导管管胞壁上的纹孔有控制空气进入的功能(前已叙及)。再则,在玻璃管的离心试验时水是静止的,而在蒸腾植物中水是快速运动的,水流的冲量可能会干扰气种的空穴化,使空穴难以生成。其次,导管管胞壁上的纹孔(具缘纹孔)通过变形开闭可以调节压力和水流(Tyree & Zimmermann, 2002),对外部张力起到缓冲作用。

上面提到Renner 的试验结果被争论双方所引用。这反映出该方法本身存在一定的问题。摘下叶片后留下的伤口可能出现泄漏,所以真空泵的作用没有充分得到发挥。另如Zimmermann等(2004)所分析的,摘下叶片后原来和叶片相连的导管没有被利用起来,致使输导面积减少,削弱了枝条的水分导度。

参考文献

Alder NN, Sperry JS, Pockman WT (1996).

Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient

Oecologia, 105,293-301.

URL     PMID      [本文引用: 1]

An F (安锋), Zhang SX (张硕新), Zhao PJ (赵平娟) (2002).

Progress on study of vulnerability of xylem embolism in woody plants

Journal of Northwest Forestry University (西北林学院学报), l7(3),30-34. (in Chinese with English abstract)

[本文引用: 1]

Balling A, Zimmermann U (1990).

Comparative measurements of the xylem pressure of Nicotiana plants by means of the pressure bomb and pressure probe

Planta, 182,325-338.

DOI      URL     PMID      [本文引用: 6]

Determination of the pressure in the water-conducting vessels of intactNicotiana rustica L. plants showed that the pressure probe technique gave less-negative values than the Scholander-bomb method. Even though absolute values of the order of -0.1 MPa could be directly recorded in the xylem by means of the pressure probe, pressures between zero and atmospheric were also frequently found. The data obtained by the pressure probe for excised leaves showed that the Scholander bomb apparently did not read the actual tension in the xylem vessles ofNicotiana plants. The possibility that the pressure probe gave false readings was excluded by several experimental controls. In addition, cavitation and leaks either during the insertion of the microcapillary of the pressure probe, or else during the measurements were easily recognized when they occurred because of the sudden increase of the absolute xylem tension to that of water vapour or to atmospheric, respectively. Tension values of the same order could also be measured by means of the pressure probe in the xylem vessels of pieces of stem cut from leaves and roots under water and clamped at both ends. The magnitude of the absolute tension depended on the osmolarity of the bathing solution which was adjusted by addition of appropriate concentrations of polyethylene glycol. Partial and uniform pressurisation of plant tissues or organs, or of entire plants (by means of the Scholander bomb or of a hyperbaric chamber, respectively) and simultaneous recording of the xylem tension using the pressure probe showed that a 1ratio1 response in xylem pressure only occurred under a few circumstances. A 1ratio1 response required that the xylem vessels were in direct contact with an external water reservoir and/or that the tissue was (pre-)infiltrated with water. Corresponding pressure-probe measurements in isolated vascular bundles ofPlantago major L. orP. lanceolata L. plants attached to a Hepp-type osmometer indicated that the magnitude of the tension in the xylem vessels was determined by the external osmotic pressure of the reservoir. These and other experiments, as well as analysis of the data using classical thermodynamics, indicated that the turgor and the internal osmotic pressure of the accessory cells along the xylem vessels play an important role in the maintenance of a constant xylem tension. This conclusion is consistent with the cohesion theory. In agreement with the literature (P.E. Weatherley, 1976, Philos. Trans. R. Soc. London Ser. B23, 435-444; 1982, Encyclopedia of plant physiology, vol. 12B, 79-109), it was found that the tension in the xylem of intact plants under normal and elevated ambient pressure (as measured with the pressure probe) under quasi-stationary conditions was independent of the transpiration rate over a large range, indicating that the conductance of the flow path must be flow-dependent.

Barrieu F, Chaumont F, Chrispeels MJ (1998).

High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize

Plant Physiology, 117,1153-1163.

DOI      URL     PMID      [本文引用: 1]

Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required.

Benkert R, Zhu JJ, Zimmermann G, Türk R, Bentrup FW, Zimmermann U (1995).

Long-term xylem pressure measurements in the liana Tetrastigma voinierianum by means of the xylem pressure probe

Planta, 196,804-813.

[本文引用: 2]

Berthelot PM (1850).

Sur quelques phénomènes de dilatation forcée des liquides

Annales de Chimie et de Physique, 3,232-242.

[本文引用: 1]

Briggs LJ (1950).

Limiting negative pressure of water

Journal of Applicable Physics, 21,721-22.

[本文引用: 3]

Buckley T (2005).

The control of stomata by water balance

New Phytologist, 168,275-292.

[本文引用: 1]

Canny MJ (1995).

A new theory for the ascent of sap - cohesion supported by tissue pressure

Annals of Botany, 75,343-357.

[本文引用: 4]

Canny MJ (1997).

Vessel contents during transpiration-embolisms and refilling

American Journal Botany, 84,1223-1230.

[本文引用: 2]

Canny MJ (1998).

Transporting water in plants

American Scientist, 86,152-159.

[本文引用: 1]

Cochard H (1992).

Vulnerability of several conifers to air embolism

Tree Physiology, 11,73-83.

URL     PMID      [本文引用: 3]

Cochard H (2002).

A technique for measuring xylem hydraulic conductance under high negative pressures

Plant, Cell and Environment, 25,815-819.

[本文引用: 1]

Cochard H, Cruiziat P, Tyree MT (1992).

Use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and possible problems for pressure-volume analysis

Plant Physiology, 100,205-209.

URL     PMID     

Comstock JP (1999).

Why Canny's theory doesn't hold water

American Journal of Botany, 86,1077-1081.

URL     PMID      [本文引用: 1]

A critique of Martin Canny's theory of water transport supported by tissue pressure is given with reference to basic principles of cellular water relations and biomechanics. It is shown that the application of tissue pressure in Canny's theory is neither internally consistent nor compatible with basic biophysics. Canny's translation of tissue pressure into an altered steady-state pressure in the xylem conduits has no defensible mechanism, relying instead on untenable action-at-a-distance and poor definitions. Tissue pressure itself, as defined by Canny and illustrated by the example of a turgid leaf, may well exist. However, it cannot function in whole-plant processes as envisioned by Canny, nor can it exist in the magnitude his theory would require. Rigid outer tissue layers containing internal pressures of the magnitude postulated by Canny would require a tensile strength quite incompatible with the observed biological materials. A simple application of La Place's Law illustrates that this is an issue of scale and that the turgor generated by osmotic potentials must be balanced primarily at the cellular level, and not the tissue level.

Dainty J (1963).

Water relations of plant cells

Advances in Botanical Research, 1,279-326.

[本文引用: 1]

Dixon HH (1914). Transpiration and the Ascent of Sap in Plants. Macmillan and Co. Ltd., London, UK.

[本文引用: 1]

Dixon HH, Joly J (1894).

On the ascent of sap

Philosophical Transactions of the Royal Society London, Series B, 186,563-576.

[本文引用: 1]

Dixon MA, Tyree MT (1984).

A new temperature corrected stem hygrometer and its calibration against the pressure bomb

Plant, Cell and Environment, 7,693-697.

[本文引用: 1]

Edwards WRN, Jarvis PG, Grace J, Moncrieff JB (1994).

Reversing cavitation in tracheids of Pinus sylvestris L. under negative water potentials

Plant, Cell and Environment, 17,389-397.

[本文引用: 1]

Fahn A (1964).

Some anatomical adaptations of desert plants

Phytomorphology, 14,93-102.

[本文引用: 1]

Fan DY (樊大勇), Xie ZQ (谢宗强) (2004).

Several controversial viewpoints in studying the cavitation of xylem vessels

Acta Phytoecologica Sinica (植物生态学报), 28,126-132. (in Chinese with English abstract)

[本文引用: 1]

Farquhar GD, Cowan IR (1974).

Oscillations in stomatal conductance

Plant Physiology, 54,769-772.

DOI      URL     PMID      [本文引用: 1]

It is supposed that oscillations in stomatal conductance are associated with the dynamic properties of the loop in which rate of evaporation affects, through physiological processes, the aperture of stomata and stomatal aperture in turn affects rate of evaporation. It is therefore predicted that their occurrence must be influenced by the magnitude of what is termed environmental gain: the sensitivity of rate of evaporation to change in leaf conductance to vapor transfer. Two methods of manipulating gain, and their effects on stomatal behavior in cotton (Gossypium hirsutum L. cv. Deltapine Smooth Leaf), are described. In the first, gain was increased by decreasing ambient humidity; in the second, it was made zero by regulating ambient humidity to keep rate of evaporation constant despite changes in conductance. The results are in accord with the supposition.

Grace J (1993).

Consequences of xylem cavitation for plant water deficits

In: Smith JAC, Griffiths Heds. Water Deficits-Plant Responses from Cell to Community. BiosScientific Publishers Ltd., Oxford, UK,109-128.

[本文引用: 1]

Hacke UG, Sperry JS, Pittermann J (2004).

Analysis of circular bordered pit function. Ⅱ. Gymnosperm tracheids with torus-margo pit membranes

American Journal of Botany, 91,386-400.

URL     PMID      [本文引用: 4]

Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001).

In vivo observation of cavitation and embolism repair using magnetic resonance imaging

Plant Physiology, 126,27-31.

URL     PMID      [本文引用: 1]

Holbrook NM, Burns MJ, Field CB (1995).

Negative xylem pressures in plants: a test of the balancing pressure technique

Science, 270,1193-1194.

[本文引用: 1]

Holbrook NM, Zwieniecki MA (1999).

Embolism repair and xylem tension: do we need a miracle

Plant Physiology, 120,7-10.

DOI      URL     PMID      [本文引用: 1]

Jansen S, Baas P, Gasson P, Lens F, Smets E (2004).

Variation in xylem structure from tropics to tundra: evidence from vestured pits

Proceeding of the National Academy of Sciences of the United States of America, 101,8833-8837.

[本文引用: 1]

Jones HG, Sutherland RA (1991).

Stomatal control of xylem embolism

Plant, Cell and Environment 14,607-612.

URL     PMID      [本文引用: 1]

Kikuta SB, Lo Gullo MA, Nardini A, Richter H, Salleo S (1997).

Ultrasound acoustic emissions from dehydrating leaves of deciduous and evergreen trees

Plant, Cell and Environment, 20,1381-1390.

[本文引用: 1]

KochGW, SillettSC JenningsGM Davis SD (2004).

The limits to tree height

Nature, 428,851-854.

DOI      URL     PMID      [本文引用: 1]

Trees grow tall where resources are abundant, stresses are minor, and competition for light places a premium on height growth. The height to which trees can grow and the biophysical determinants of maximum height are poorly understood. Some models predict heights of up to 120 m in the absence of mechanical damage, but there are historical accounts of taller trees. Current hypotheses of height limitation focus on increasing water transport constraints in taller trees and the resulting reductions in leaf photosynthesis. We studied redwoods (Sequoia sempervirens), including the tallest known tree on Earth (112.7 m), in wet temperate forests of northern California. Our regression analyses of height gradients in leaf functional characteristics estimate a maximum tree height of 122-130 m barring mechanical damage, similar to the tallest recorded trees of the past. As trees grow taller, increasing leaf water stress due to gravity and path length resistance may ultimately limit leaf expansion and photosynthesis for further height growth, even with ample soil moisture.

Li JY (李吉跃), Gao LH (高丽洪) (2002).

New evidence for cohesion-tension theory

Journal of Beijing Forestry University (北京林业大学学报), 24(4),135-138. (in Chinese with English abstract)

[本文引用: 1]

Mackay JFG, Weatherley PE (1973).

The effects of transverse cuts through the stems of transpiring woody plants on water transport and stress in the leaves

Journal of Experimental Botany, 24,15-28.

[本文引用: 2]

Malone M (1993).

Hydraulic signals

Philosophical Transactions of the Royal Society of London B, 341,33-39.

[本文引用: 1]

Melcher PJ, Meinzer FC, Yount DE, Goldstein G, Zimmermann U (1998).

Comparative measurements of xylem pressure in transpiring and on-transpiring leaves by means of the pressure chamber and the xylem ressure probe

Journal of Experimental Botany, 49,1757-1760.

[本文引用: 1]

Mencuccini M (2003).

The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms

Plant, Cell and Environment, 26,163-182.

[本文引用: 1]

Milburn JA (1996).

Sap ascent in vascular plants: challengers to the Cohesion Theory ignore the significance of immature xylem and the recycling of Münch water

Annals of Botany, 78,399-407.

DOI      URL     [本文引用: 4]

Milburn JA, Johnson RPC (1966).

The conduction of sap. Ⅱ. Detection of vibrations produced by sap cavitation in Ricinus xylem

Planta, 69,43-52.

DOI      URL     PMID      [本文引用: 1]

An apparatus has been constructed for the detection of vibrations generated within plant tissue. This can detect vibrations due to water cavitation within fern sporangia. Using this detector 'clicks' have been obtained from Ricinus petioles and leaves in a condition when, from previous work, water cavitation might be expected.Evidence is provided to show: 1. That 'click' production is correlated with the water status of the plant tissue. 2. There are reasons for opposing the possibility that 'clicks' result from tissue fracture alone. 3. The 'clicks' may be detected in a wide range of plants. The implications of the apparent vulnerability of water conducting systems in plants are discussed.

Moore PH, Cosgrove DJ (1991).

Developmental changes in cell and tissue water relations parameters in storage parenchyma of sugarcane

Plant Physiology, 96,794-801.

DOI      URL     PMID      [本文引用: 1]

The osmotic pressure of the cell sap of stalk storage parenchyma of sugarcane (Saccharum spp. hybrids) increases by an order of magnitude during ontogeny to reach molar concentrations of sucrose at maturity. Stalk parenchyma cells must either experience very high turgor at maturation or have an ability to regulate turgor. We tested this hypothesis by using pressure probe techniques to quantify parameters of cell and tissue water relations of sugarcane storage parenchyma during ontogeny. The largest developmental change was in the volumetric elastic modulus, which increased from 6 bars in immature tissue to 43 bars in mature tissue. Turgor was maintained relatively low during sucrose accumulation by the partitioning of solutes between the cell and wall compartments. Membrane hydraulic conductivity decreased from about 12 x 10(-7) centimeters per second per bar down to 4.4 x 10(-7) centimeters per second per bar. The 2.7-fold decrease in membrane hydraulic conductivity during tissue maturation was accompanied by a 7.8-fold increase in wall elasticity. Integration of the cell wall and membrane properties appears to be by the opposing effects of turgor on hydraulic conductivity and elastic modulus. The changes in these properties during development of sugarcane stalk tissue may be a way for parenchyma cells to develop a capacity for expansive growth and still serve as a strong sink for storing high concentrations of sucrose.

Passioura JB, Munns R (1984).

Hydraulic resistance of plants. Ⅱ. Effects of rooting medium, and time of day, in barley and lupin

Australian Journal of Plant Physiology, 11,341-350.

[本文引用: 1]

Pockman WT, Sperry JS, O'Leary JW (1995).

Sustained and significant negative water pressure in xylem

Nature, 378,715-716.

[本文引用: 2]

Preston RD (1952).

Movement of water in higher plants

In: Frey-Wyssling Aed. Deformation and Flow in Biological Systems. North Holland Publishing Co., Amsterdam, the Netherlands,257-321.

[本文引用: 1]

Raschke K (1975).

Stomatal action

Annual Review of Plant Physiology, 26,309-340.

[本文引用: 1]

Renner O (1911).

Experimentelle Beiträge zur Kenntnis der Wasserbewegung

Flora, 103,171-247.

[本文引用: 1]

Renner O (1925).

Zum Nachweis negativer Drucke im Gefässwasser bewurzelter Holzgewächse

Flora, 119,402-408.

[本文引用: 2]

Ryan MG, Phillips N, Bond BJ (2006).

The hydraulic limitation hypothesis revisited

Plant, Cell and Environment, 29,367-381.

DOI      URL     PMID      [本文引用: 1]

We proposed the hydraulic limitation hypothesis (HLH) as a mechanism to explain universal patterns in tree height, and tree and stand biomass growth: height growth slows down as trees grow taller, maximum height is lower for trees of the same species on resource-poor sites and annual wood production declines after canopy closure for even-aged forests. Our review of 51 studies that measured one or more of the components necessary for testing the hypothesis showed that taller trees differ physiologically from shorter, younger trees. Stomatal conductance to water vapour (g(s)), photosynthesis (A) and leaf-specific hydraulic conductance (K L) are often, but not always, lower in taller trees. Additionally, leaf mass per area is often greater in taller trees, and leaf area:sapwood area ratio changes with tree height. We conclude that hydraulic limitation of gas exchange with increasing tree size is common, but not universal. Where hydraulic limitations to A do occur, no evidence supports the original expectation that hydraulic limitation of carbon assimilation is sufficient to explain observed declines in wood production. Any limit to height or height growth does not appear to be related to the so-called age-related decline in wood production of forests after canopy closure. Future work on this problem should explicitly link leaf or canopy gas exchange with tree and stand growth, and consider a more fundamental assumption: whether tree biomass growth is limited by carbon availability.

Ryan MG, Yoder BJ (1997).

Hydraulic limits to tree height and tree growth-what keeps trees from grawing beyond a certain height

BioScience, 47,235-242.

[本文引用: 3]

Sakr S, Alves G, Morillon R, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ (2003).

Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree

Plant Physiology, 133,630-641.

DOI      URL     PMID      [本文引用: 1]

In perennial plants, freeze-thaw cycles during the winter months can induce the formation of air bubbles in xylem vessels, leading to changes in their hydraulic conductivity. Refilling of embolized xylem vessels requires an osmotic force that is created by the accumulation of soluble sugars in the vessels. Low water potential leads to water movement from the parenchyma cells into the xylem vessels. The water flux gives rise to a positive pressure essential for the recovery of xylem hydraulic conductivity. We investigated the possible role of plasma membrane aquaporins in winter embolism recovery in walnut (Juglans regia). First, we established that xylem parenchyma starch is converted to sucrose in the winter months. Then, from a xylem-derived cDNA library, we isolated two PIP2 aquaporin genes (JrPIP2,1 and JrPIP2,2) that encode nearly identical proteins. The water channel activity of the JrPIP2,1 protein was demonstrated by its expression in Xenopus laevis oocytes. The expression of the two PIP2 isoforms was investigated throughout the autumn-winter period. In the winter period, high levels of PIP2 mRNA and corresponding protein occurred simultaneously with the rise in sucrose. Furthermore, immunolocalization studies in the winter period show that PIP2 aquaporins were mainly localized in vessel-associated cells, which play a major role in controlling solute flux between parenchyma cells and xylem vessels. Taken together, our data suggest that PIP2 aquaporins could play a role in water transport between xylem parenchyma cells and embolized vessels.

Salleo S, Hinckley TM, Kikuta SB, Lo Gullo MA, Weilgony P, Yoon TM, Richter H (1992).

A method for inducing xylem emboli in situ: experiments with a field-grown tree

Plant, Cell and Environment, 15,491-497.

[本文引用: 1]

Salleo S, Logullo MA, DePaoli D, Zippo M (1996).

Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism

New Phytologist, 132,47-56.

[本文引用: 1]

Salleo S, Nardini A, Pitt F, Logullo MA (2000).

Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.)

Plant, Cell and Environment, 23,71-79.

[本文引用: 1]

Schill V, Hartung W, Orthen B, Weisenseel MH (1996).

The xylem sap of maple (Acer platanoides) trees-sap obtained by a novel method shows changes with season and height

Journal of Experimental Botany, 47,123-133.

[本文引用: 1]

Scholander PF, Hammel HT, Bradstreet EA, Hemmingsen EA (1965).

Sap pressure in vascular plants

Science, 148,339-346.

DOI      URL     PMID      [本文引用: 2]

A method is described which permits measurement of sap pressure in the xylem of vascular plants. As long predicted, sap pressures during transpiration are normally negative, ranging from -4 or -5 atmospheres in a damp forest to -80 atmospheres in the desert. Mangroves and other halophytes maintain at all times a sap pressure of -35 to -60 atmospheres. Mistletoes have greater suction than their hosts, usually by 10 to 20 atmospheres. Diurnal cycles of 10 to 20 atmospheres are common. In tall conifers there is a hydrostatic pressure gradient that closely corresponds to the height and seems surprisingly little influenced by the intensity of transpiration. Sap extruded from the xylem by gas pressure on the leaves is practically pure water. At zero turgor this procedure gives a linear relation between the intracellular concentration and the tension of the xylem.

Smith AM (1991).

Negative pressure generated by octopus suckers: a study of the tensile strength of water in nature

Journal of Experimental Biology, 157,257-271.

[本文引用: 2]

Smith AM (1994).

Xylem transport and the negative pressures sustainable by water

Annals of Botany, 74,647-651.

[本文引用: 2]

Sobrado MA, Grace J, Jarvis PG (1992).

The limits of xylem embolism recovery in Pinus sylvestris L

Journal of Experimental Botany, 43,831-836.

[本文引用: 1]

Sperry JS (1995).

Limitations on stem water transport and their consequences

In: Gartner BLed. Plant Stems: Physiological and Functional Morphology. Academic Press, San Diego,105-124.

[本文引用: 1]

Sperry JS, Hacke UG (2004).

Analysis of circular bordered pit function. Ⅰ. Angiosperm vessels with homogenous pit membranes

American Journal of Botany, 91,369-385.

DOI      URL     PMID      [本文引用: 1]

10 MPa) air-seed pressure primarily because of decreasing pit membrane conductivity. Vessel conductivity (per length and wall area) increased with vessel length as higher lumen conductivity overcame low pit conductivity. At the]]>

Sperry JS, Saliendra NZ, Pockman WT, Cochard H, Cruiziat P, Davis SD, Ewers FW, Tyree MT (1996).

New evidence for large negative xylem pressures and their measurement by the pressure chamber method

Plant, Cell and Environment, 19,427-436.

[本文引用: 1]

Sperry JS, Tyree MT (1990).

Water-stress-induced xylem embolism in three species of conifers

Plant, Cell and Environment, 13,427-436.

[本文引用: 1]

Sperry JS, Tyree MT (1988).

Mechanism of water stress-induced xylem embolism

Plant Physiology, 88,581-587.

DOI      URL     PMID      [本文引用: 2]

3 megapascals. This same pressure difference was found to be sufficient to force air across intervessel pits from air injection experiments of hydrated stem segments. This suggests air entry at pits is causing embolism in dehydrating stems. (b) Treatments that increased the permeability of intervessel pits to air injection also caused xylem to embolize at less negative xylem pressures. Permeability was increased either by perfusing stems with solutions of surface tension below that of water or by perfusion with a solution of oxalic acid and calcium. The mechanism of oxalic-calcium action on permeability is unknown, but may relate to the ability of oxalate to chelate calcium from the pectate fraction of the pit membrane. (c) Diameter of pores in pit membranes measured with the scanning electron microscope were within the range predicted by hypothesis (

Steudle E (1989).

Water flows in plants and its coupling with other processes: an overview

Methods Enzymology, 174,183-225.

[本文引用: 1]

Steudle E (1992).

The biophysics of plant water: compartmentation, coupling with metabolic processes, and flow of water in plant roots

In: Somero GN, Osmond CB, Bolis CLeds. Water and Life: Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels. Springer-Verlag, Heidelberg, Germany,173-204.

[本文引用: 1]

Steudle E (1993).

Pressure probe techniques: basic principles and application to studies of water and solute relations at the cell, tissue, and organ level

In: Smith JAC, Griffiths Heds. Water Deficits: Plant Responses from Cell to Community. BiosScientific Publishers Ltd., Oxford,5-36.

[本文引用: 1]

Steudle E (2001).

The cohesion-tension mechanism and the acquisition of water by plant roots

Annual Review Plant Physiology Plant Molecular Biology, 52,847-875.

[本文引用: 5]

Tyree MT (1997).

The Cohesion-Tension theory of sap ascent: current controversies

Journal of Experimental Botany, 48,1753-1765.

[本文引用: 6]

Tyree MT (1999).

The forgotten component of plant water potential: a replytissue pressures are not additive in the way M.J. Canny suggests

Plant Biology, 1,598-601.

[本文引用: 3]

Tyree MT, Davis SD, Cochard H (1994).

Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability dysfunction

IAWA Journal, 15,335-360.

[本文引用: 1]

Tyree MT, Dixon MA (1983).

Cavitation events in Thuja occidentalis L. ultrasonic acoustic emissions from the sapwood can be measured

Plant Physiology, 72,1094-1099.

DOI      URL     PMID      [本文引用: 1]

Ultrasonic acoustic emissions (AE) in the frequency range of 0.1 to 1 megahertz appear to originate in the sapwood of Thuja occidentalis L. The AE are vibrations of an impulsive nature. The vibrations can be transduced to a voltage waveform and amplified. The vibrations of each AE event begin at a large amplitude which decays over 20 to 100 microseconds. Strong circumstantial evidence indicates that the ultrasonic AE result from cavitation events because: (a) they occur only when the xylem pressure potential Psi(xp) is more negative than a threshold level of about -1 megapascal; (b) the rate of AE events increases as Psi(xp) decreases and when the net rate of water loss increases; (c) the AE can be stopped by raising Psi(xp) above -1 megapascal. Ultrasonic AE have been measured in whole terminal shoots allowed to dry in the laboratory, in isolated pieces of sapwood as they dried in the laboratory, and in whole terminal shoots in a pressure bomb when Psi(xp) was decreased by lowering the gas pressure in the pressure bomb.

Tyree MT, Ewers FW (1991).

The hydraulic architecture of trees and other woody plants

New Phytologist, 119,345-360.

[本文引用: 1]

Tyree MT, Salleo S, Nardini A, Logullo MA, Mosca R (1999).

Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm

Plant Physiology, 120,11-21.

DOI      URL     PMID     

Recovery of hydraulic conductivity after the induction of embolisms was studied in woody stems of laurel (Laurus nobilis). Previous experiments confirming the recovery of hydraulic conductivity when xylem pressure potential was less than -1 MPa were repeated, and new experiments were done to investigate the changes in solute composition in xylem vessels during refilling. Xylem sap collected by perfusion of excised stem segments showed elevated levels of several ions during refilling. Stem segments were frozen in liquid N2 to view refilling vessels using cryoscanning electron microscopy. Vessels could be found in all three states of presumed refilling: (a) mostly water with a little air, (b) mostly air with a little water, or (c) water droplets extruding from vessel pits adjacent to living cells. Radiographic probe microanalysis of refilling vessels revealed nondetectable levels of dissolved solutes. Results are discussed in terms of proposed mechanisms of refilling in vessels while surrounding vessels were at a xylem pressure potential of less than -1 MPa. We have concluded that none of the existing paradigms explains the results.

Tyree MT, Sperry JS (1989).

The vulnerability of xylem to cavitation and embolism

Annual Review Plant Physiology Plant Molecular Biology, 40,19-38.

[本文引用: 3]

Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap 2nd edn. Springer-Verlag, Berlin, 278.

[本文引用: 11]

Tyree MT, Fiscus EL, Wullschleger SD, Dixon MA (1986).

Detection of xylem cavitation in corn under field conditions

Plant Physiology, 82,597-599.

URL     PMID      [本文引用: 1]

Wagner HJ, Schneider H, Mimietz S, Wistuba N, Rokitta M, Krohne G, Haase A, Zimmermann U (2000).

Xylem conduits of a resurrection plant contain a unique lipid lining and refill following a distinct pattern after desiccation

New Phytologist, 148,239-255.

[本文引用: 1]

Wan XC, Steudle E, Hartung W (2004).

Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2

Journal of Experimental Botany, 55,411-422.

DOI      URL     PMID      [本文引用: 1]

Hydraulic properties (half-time of water exchange, T1/2, and hydraulic conductivity, Lp; T1/2 approximately 1/Lp) of individual cells in the cortex of young corn roots were measured using a cell pressure probe for up to 6 h to avoid variations between cells. When pulses of turgor pressure of different size were imposed, T1/2 (Lp) responded differently depending on the size. Pulses of smaller than 0.1 MPa, which induced a small proportional water flow, caused no changes in T1/2 (Lp). Medium-sized pulses of between 0.1 and 0.2 MPa caused an increase in T1/2 (decrease in Lp) by a factor of 4 to 23. The effects caused by medium-sized pulses were reversible within 5-20 min. When larger pulses of more than 0.2 MPa were employed, changes were not reversible within 1-3 h, but could be reversed within 30 min in the presence of 500 nM of the stress hormone ABA. Cells with a short T1/2 responded to the aquaporin blocker mercuric chloride (HgCl2). The treatment had no effect on cells which exhibited long T1/2 following a mechanical inhibition by the large-pulse treatment. Step decreases in pressure resulted in the same inhibition as step increases. Hence, the treatment did not cause a stretch-inhibition of water channels and was independent of the directions of both pressure changes and water flows induced by them. It is concluded that inhibition is caused by the absolute value of intensities of water flow within the channels, which increased in proportion to the size of step changes in pressure. Probable mechanisms by which the mechanical stimuli are perceived are (i) the input of kinetic energy to the channel constriction (NPA motif of aquaporin) which may cause a conformational change of the channel protein (energy-input model) or (ii) the creation of tensions at the constriction analogous to Bernoulli's principle for macroscopic pores (cohesion-tension model). Estimated rates of water flow within the pores were a few hundred micro m s-1, which is too small to create sufficient tension. They were much smaller than those proposed for AQP1. Based on literature data of single-channel permeability of AQP1, a per channel energy input of 200 kBxT (kB=Boltzmann constant) was estimated for the energy-input model. This should be sufficient to initiate changes of protein conformation and an inactivation of channels. The data indicate different closed states which differ in the amount of distortion and the rates at which they relax back to the open state.

Wegner LH, Zimmermann U (1998).

Simultaneous recording of xylem pressure and trans-root potential in roots of intact glycophytes using a novel xylem pressure probe technique

Plant, Cell and Environment, 21,849-865.

[本文引用: 1]

Wei C, Steudle E, Tyree MT (1999a).

Water ascent in plants: do ongoing controversies have a sound basis

Trends in Plant Science, 4,372-375.

URL     PMID      [本文引用: 5]

Wei C, Tyree MT, Steudle E (1999b).

Direct measurement of xylem pressure in leaves of intact maize plants. A test of the Cohesion-Tension theory taking hydraulic architecture into consideration

Plant Physiology, 121,1191-1205.

DOI      URL     PMID      [本文引用: 7]

The water relations of maize (Zea mays L. cv Helix) were documented in terms of hydraulic architecture and xylem pressure. A high-pressure flowmeter was used to characterize the hydraulic resistances of the root, stalk, and leaves. Xylem pressure measurements were made with a Scholander-Hammel pressure bomb and with a cell pressure probe. Evaporation rates were measured by gas exchange and by gravimetric measurements. Xylem pressure was altered by changing the light intensity, by controlling irrigation, or by gas pressure applied to the soil mass (using a root pressure bomb). Xylem pressure measured by the cell pressure probe and by the pressure bomb agreed over the entire measured range of 0 to -0.7 MPa. Experiments were consistent with the cohesion-tension theory. Xylem pressure changed rapidly and reversibly with changes in light intensity and root-bomb pressure. Increasing the root-bomb pressure increased the evaporation rate slightly when xylem pressure was negative and increased water flow rate through the shoots dramatically when xylem pressure was positive and guttation was observed. The hydraulic architecture model could predict all observed changes in water flow rate and xylem. We measured the cavitation threshold for oil- and water-filled pressure probes and provide some suggestions for improvement.

West GB, Brown JH, Enquist BJ (1999).

A general model for the structure and allometry of plant vascular systems

Nature, 400,664-667.

[本文引用: 1]

Zimmermann MH (1983). Xylem Structure and the Ascent of Sap. Springer-Verlag, Berlin, 143.

[本文引用: 4]

Zimmermann U, Haase A, Langbein D, Meinzer F (1993).

Mechanism of long-distance water transport in plants: a re-examination of some paradigms in the light of new evidence

Philosophical Transactions of the Royal Society of London B, 341,19-31.

[本文引用: 1]

Zimmermann U, Meinzer F, Bentrup FW (1995).

How does water ascend in tall trees and other vascular plants

Annals of Botany, 76,545-551.

[本文引用: 1]

Zimmermann U, Schneider H, Wegner LH and Haase A (2004).

Water ascent in tall trees: does evolution of land plants rely on a highly metastable state

New Phytologist, 162,575-615.

DOI      URL     [本文引用: 19]

Zimmermann U, Schneider H, Wegner LH, Wagner HJ, Szimtenings M, Haase A, Bentrup FW (2002).

What are the driving forces for water lifting in the xylem conduit

Physiologia Plantarum, 114,327-335.

DOI      URL     PMID      [本文引用: 1]

After Renner had shown convincingly in 1925 that the transpirational water loss generates tensions larger than 0.1 MPa (i.e. negative pressures) in the xylem of cut leafy twigs the Cohesion Theory proposed by Bohm, Askenasy, Dixon and Joly at the end of the 19th century was immediately accepted by plant physiologists. Introduction of the pressure chamber technique by Scholander et al. in 1965 enforced the general belief that tension is the only driving force for water lifting although substantial criticism regarding the technique and/or the Cohesion Theory was published by several authors. As typical for scientific disciplines, the advent of minimal- and non-invasive techniques in the last decade as well as the development of a new, reliable method for xylem sap sampling have challenged this view. Today, xylem pressure gradients, potentials, ion concentrations and volume flows as well as cell turgor pressure gradients can be monitored online in intact transpiring higher plants, and within a given physiological context by using the pressure probe technique and high-resolution NMR imaging techniques, respectively. Application of the pressure probe technique to transpiring plants has shown that negative absolute pressures (down to - 0.6 MPa) and pressure gradients can exist temporarily in the xylem conduit, but that the magnitude and (occasionally) direction of gradients contrasts frequently the belief that tension is the only driving force. This seems to be particularly the case for plants faced with problems of height, drought, freezing and salinity as well as with cavitation of the tensile water. Reviewing the current data base shows that other forces come into operation when exclusively tension fails to lift water against gravity due to environmental conditions. Possible candidates are longitudinal cellular and xylem osmotic pressure gradients, axial potential gradients in the vessels as well as gel- and gas bubble-supported interfacial gradients. The multiforce theory overcomes the problem of the Cohesion Theory that life on earth depends on water being in a highly metastable state.

/