植物生态学报, 2008, 32(6): 1356-1361 DOI: 10.3773/j.issn.1005-264x.2008.06.016

研究论文

光合作用光响应模型的比较

叶子飘,1,*, 于强2

1 井冈山大学数理学院, 江西吉安 343009

2 中国科学院地理科学与资源研究所, 北京 100101

COMPARISON OF NEW AND SEVERAL CLASSICAL MODELS OF PHOTOSYNTHESIS IN RESPONSE TO IRRADIANCE

YE Zi-Piao,1,*, YU Qiang2

1College of Sciences, Jinggangshan University, Ji’an, Jiangxi 343009, China

2Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

通讯作者: *(yezp@jgsu.edu.cn)

编委: 彭长连

责任编辑: 王葳

收稿日期: 2007-09-30   接受日期: 2008-02-27   网络出版日期: 2008-11-30

基金资助: 江西省科技厅农业攻关项目.  吉市科技字[2006]21号
中国高技术发展计划项目.  O6F60080AH

Corresponding authors: *(yezp@jgsu.edu.cn)

Received: 2007-09-30   Accepted: 2008-02-27   Online: 2008-11-30

摘要

用美国Li-Cor公司生产的Li-6400光合作用测定仪控制CO2浓度和温度, 测量了华北平原冬小麦(Triticum aestivum)的光响应数据。分别用C3植物光响应新模型、直角双曲线模型、非直角双曲线模型和Prado-Moraes模型拟合这些实测数据, 分析了由直角双曲线模型、非直角双曲线模型和Prado-Moraes模型拟合这些数据得到的最大净光合速率(The maximum net photosynthetic rate)远大于实测值, 而光饱和点(Light saturation point)远小于实测值的原因。结果表明, 由C3植物光响应新模型拟合的结果与实测数据符合程度最高(R2=0.999 4和R2=0.998 7); 表观量子效率(Apparent quantum yield)不是一个理想的表示植物利用光能的指标, 建议用植物光响应曲线在光补偿点处的量子效率作为表示植物光能利用的指标。

关键词: 光响应新模型 ; 冬小麦 ; 最大净光合速率 ; 光饱和点 ; 表观量子效率

Abstract

Aims Our objective is to compare a new photosynthetic light-response model with the non-rectangular hyperbola, rectangular hyperbola, and Prado-Moraes model in fitting data and obtaining the maximum net photosynthetic rate and the light saturation point.

Methods We measured the light-response of photosynthetic rate of winter wheat (Triticum aestivum) under the same chamber CO2 concentration and different air temperatures in North China Plain using a gas analyzer Li-6400. The measured data were simulated by the new photosynthetic light-response model and the non-rectangular hyperbola, rectangular hyperbola and Prado-Moraes models, respectively.

Important findings The new photosynthetic light-response model shows advantage over the non-rectangular hyperbola, rectangular hyperbola, and Prado-Moraes models in fitting data on the maximum net photosynthetic rate and the light saturation point. The main photosynthetic parameters calculated by the new one were very close to the measured data (R2=0.999 4 and R2=0.998 7). Results showed that the apparent quantum was not an ideal indicator to assess the light use efficiency of plants. We suggest the apparent quantum yield be replaced by the quantum yield at the light compensation point due to the unity of the quantum yield for any C3plantspecies under certain environmental conditions.

Keywords: new photosynthetic light-response model ; winter wheat (Triticum aestivum) ; the maximum net photosynthetic rate ; light saturation point ; apparent quantum yield

PDF (870KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

叶子飘, 于强. 光合作用光响应模型的比较. 植物生态学报[J], 2008, 32(6): 1356-1361 DOI:10.3773/j.issn.1005-264x.2008.06.016

YE Zi-Piao, YU Qiang. COMPARISON OF NEW AND SEVERAL CLASSICAL MODELS OF PHOTOSYNTHESIS IN RESPONSE TO IRRADIANCE. Chinese Journal of Plant Ecology[J], 2008, 32(6): 1356-1361 DOI:10.3773/j.issn.1005-264x.2008.06.016

弱光条件下的光合作用效率是描述光合机构功能和运转状态的基本指标, 是光合机理研究的重要内容, 也是揭示光合作用调节规律的有力工具(陈根云等, 2006)。光响应曲线的确定, 对了解光反应过程的效率非常重要(Robert et al., 1984)。 测定植物叶片在弱光下的光合作用可计算它的表观量子效率, 有助于确定光合机构是否正常运转; 测定光合作用光饱和点的范围可了解植物在饱和光下的光合作用能力(曾小美等, 2002)。在光合作用过程中, 光和空气中的CO2浓度是光合作用的主导因子, 对每种绿色植物均可测量其光合作用对光的响应曲线。通过光响应曲线, 即可确定植物的最大净光合速率、光饱和点和光补偿点等光合参数。

虽然现在存在许多静态植物光响应模型(Webb et al., 1974; Jassby & Platt, 1976; Thornley, 1976; Marshall & Biscoe, 1980; Prado & Moraes, 1997)和动态光响应模型(Farquhar et al., 1980; Falkowski & Wirick, 1981; Fasham & Platt, 1983; Megard et al., 1984; Eilers & Peeters, 1988; Hand et al., 1993; Zonneveld, 1998; Rubio et al., 2003), 但还是以直角双曲线模型和非直角双曲线模型的应用最为广泛。然而, 在实际应用过程中发现, 用这些模型拟合光响应数据时, 所给出的最大净光合速率远大于实测值(Evans et al., 1993; Kyei- Boahen et al., 2003; Yu et al., 2004; Leakey et al., 2006), 而所给出的光饱和点远小于实测值(高峻等, 2006), 且无法拟合植物在光饱和点以后光合速率随光强的增加而降低的响应数据(Evans et al.,1993; Yu et al., 2004)。此外, 由于这些模型是一条渐进曲线, 不存在极点, 所以, 无法由这些模型直接给出植物的光饱和点和最大净光合速率的解析解, 必须用其它方法(Walker, 1989; Richardson & Berlyn, 2002)求得植物的光饱和点。而C3植物光响应新模型(Ye, 2007)能克服这个缺点, 可以拟合华北平原冬小麦(Triticum aestivum)在不同环境条件下的光响应数据。

本文用C3植物光响应新模型(Ye, 2007)、直角双曲线模型(Thornley, 1976)、非直角双曲线模型 (Thornley, 1976) 和Prado-Moraes模型(Prado & Moraes, 1997)分别拟合了华北平原冬小麦在不同温度和不同CO2浓度下的光响应曲线, 并与实测数据进行了比较; 用C3植物光响应新模型拟合华北平原冬小麦在低光强时的光响应数据, 讨论了华北平原冬小麦在低光强时的光响应问题, 以及Walker (1989)、Richardson和Berlyn (2002)所给出的求C3植物光饱和点和光补偿点的方法存在的问题和产生这些问题的原因。

1 试验地概况及测量方法

大田试验在中国科学院禹城综合试验站进行(36˚57′ N, 116˚36′ E, 平均海拔28 m)。该试验站地处黄河下游冲积平原, 地势低平。土壤母质为黄河冲积物, 土壤质地以粉砂和轻壤为主。属于大陆性暖温带季风气候。年平均气温为13.1℃, 1月平均气温为-3℃, 7月平均气温为26.91℃。年无霜期200 d。年均降水量为610 mm, 其中, 3~5月平均降水量为75.7 mm, 占年均降水量的12.4%; 6~8月平均降水量为419.7 mm, 占年均降水量的68.8%。

测量时间是从2003年4月23日到5月6日, 用美国Li-Cor公司生产的Li-6400便携式光合作用测定仪测定冬小麦品种‘科禹13’抽穗期的旗叶。测定环境条件: 叶面积指数为4.1, 日平均气温为10~22℃, 相对湿度为57%~90%。气温分别设置为20℃和25℃, 气室CO2浓度为360 mol·mol-1。采用Li-6400-02B人工光源提供0~2 000 μmol·m -2·s-1的不同光强, 每个光强下适应3~5 min后测定, 重复3次。详细的实验环境条件、实验设计、测量方法和测量步骤见文献(Yu et al., 2004)。

2 结果与分析

2.1 光合作用光响应曲线的拟合

图1为两种温度条件下实测的华北平原冬小麦的光合速率对光强的响应曲线与由C3植物光响应新模型(Ye, 2007; 叶子飘, 2007)拟合的光响应曲线。

图1

图1   不同气温条件下冬小麦的光响应曲线

Pn: 净光合速率 Net photosynthetic rate PAR: Photosynthetically active radiation Ta: 气温 Air temperature Ca: 气室的CO2浓度 Chamber CO2 concentration φ c: 在光补偿点的量子效率 Quantum yield at light compensation point Pmax: 最大净光合速率 Maximum net photosynthetic rate Isat: 光饱和点 Light saturation point Ic: 光补偿点 Light compensation point Rd: 暗呼吸速率 Dark respiration rate R2: 决定系数 Determination coefficient

Fig. 1   Light response curve of winter wheat (Triticum aestivum) under different temperatures


图1中可以看出, 在不同温度和相同CO2浓度条件下, 在一定光强范围内, 净光合速率随光强的增加而增加, 当光强超过光饱和点后, 光合速率随光强的增加而降低(图1)。CO2浓度为360 μmol·mol -1, 温度分别为20℃和25℃时冬小麦的Isat分别为1 910.56 μmol·m -2·s-1和1 687.87 μmol·m -2·s-1。此外, 从图1可知, 在相同的CO2浓度和不同的温度条件下, 冬小麦的PmaxIc没有什么差异, 但IsatφcRd值的差异显著。

表1给出了用非直角双曲线模型、直角双曲线模型、P-M模型和C3植物光响应新模型拟合冬小麦在温度为20℃、CO2浓度为360 μmol·mol -1条件下的实测数据与拟合结果比较。从表1可知, 由非直角双曲线模型拟合温度为20℃、CO2浓度为360 μmol·mol -1时的实测数据所得到的冬小麦的Pmax为51.56 μmol CO 2·m-2·s-1, 远大于实测值(约为23 μmol CO 2·m-2·s-1); 由直角双曲线模型拟合同样的实测数据所得到的冬小麦的Pmax为31.27 μmol CO 2·m-2·s-1, 也大于实测值; 由P-M模型拟合同样的实测数据所得到的冬小麦的Pmax为24.32 μmol CO 2·m-2·s-1, 与实测结果相近, 但所给出的Ic为5.52 μmol·m -2·s-1, 远小于实测值(约29 μmol·m -2·s-1)。此外, 用Walker (1989)、Richardson和Berlyn (2002)提出的求植物光饱和点的方法并结合非直角双曲线模型、直角双曲线模型, 得到在该试验条件下冬小麦的Isat分别约为1 220 μmol·m -2·s-1和750 μmol·m -2·s-1, 由P-M模型估算的Isat为1 243.08 μmol·m -2·s-1, 这些估算值远小于实测值(约1 900 μmol·m -2·s-1)。而由C3植物光响应新模型得到该条件下冬小麦的Pmax为22.8 μmol CO 2·m-2·s-1, 与实测数据非常接近, 且C3植物光响应新模型可以直接计算出该试验条件下冬小麦的Isat为1 910.56 μmol·m -2·s-1, 与实测数据也非常接近。此外, 由C3植物光响应新模型拟合所给出的IcRd与实测数据几乎完全相同(表1)。

表1   4个光响应模型拟合冬小麦在20℃和360 μmol·mol-1 CO2时光响应数据所得结果与实测数据的比较

Table 1  Comparison of the measured data of winter wheat (Triticum aestivum) with the results fitted by four models at 20℃ and 360 μmol·mol-1 CO2 concentration

光合参数
Photosynthetic parameters
非直角双曲线模型
Nonrectangular
hyperbola model
直角双曲线模型
Rectangular hyperbola model
P-M模型
Prado-Moraes model
C3植物光响应模型
New photosynthetic
model for C3 species
测量值
Measured data
最大净光合速率
Maximum net photosynthetic rate (Pmax, μmol CO 2·m-2·s-1)
51.5631.2724.3222.85≈23
初始斜率
Initial slope (α)
0.1030.0840.0600.067-
光补偿点
Light compensation point
(Ic, μmol·m -2·s-1)
11.8130.605.5228.47≈29
光饱和点
Light saturation point
(Isat, μmol·m -2·s-1)
≈1 220≈7501 243.081 910.56≈1 900
暗呼吸速率
Dark respiration rate
(Rd, μmol CO 2·m-2·s-1)
-1.21-2.57-1.243-1.81-1.8
决定系数
Determination coefficient (R2)
-0.997 00.999 10.999 4-

新窗口打开| 下载CSV


2.2 低光强时冬小麦的光响应

现在普遍认为, 在低光强条件下(≤200 μmol·m-2·s-1), 植物叶片的净光合速率对光强的响应是线性的。该直线方程与非直角双曲线模型和直角双曲线模型拟合的曲线相交, 与X轴的交点值为Ic, 而与Pmax的交点在X轴上的数值为Isat(Walker, 1989; Richardson & Berlyn, 2002)。图2为冬小麦在温度为20℃, CO2浓度为360 μmol·mol -1时的光响应曲线与光强小于200 μmol·m -2·s-1时拟合的线性方程相交的情况。拟合的线性方程为:

P(I)=0.049I--1.375

由上式可知, 该条件下冬小麦的表观量子效率为0.049。显然, 该值远小于由直角双曲线模型拟合得到的0.084和由非直角双曲线模型拟合得到的0.103(表1)。并且在实际应用中, 光合有效辐射拟合范围不同, 所得到的表观量子效率也不相同, 并且得到的IcRd也因光合有效辐射拟合范围的不同有一定的差异(表2)。

图2

图2   冬小麦的光响应曲线(左)和在低光强时的光合响应曲线(右)

PnPAR: 见图1 See Fig. 1

Fig. 2   Light-response curve of photosynthesis (left) and photosynthetic response to irradiance at lower levels of light intensity (right) for winter wheat


表2   不同拟合有效光合辐射区间的表观量子效率、光补偿点和暗呼吸速率

Table 2  Apparent quantum yield, light compensation point and dark respiration rate under different fitted scopes of PAR

光合有效辐射
Photosynthetically active radiation (PAR, μmol·m -2·s-1)
≤200 μmol·m-2·s-1≤180 μmol·m-2·s-1≤160 μmol·m-2·s-1≤140 μmol·m-2·s-1≤120 μmol·m-2·s-1
表观量子效率 Apparent quantum yield (AQY) 0.0490.0500.0520.0540.055
光补偿点 Light compensation point ( Ic, μmol·m -2·s-1) 28.1628.8029.2330.0030.18
暗呼吸速率 Dark respiration rate (Rd, μmol·m -2·s-1) -1.38-1.44-1.52-1.62-1.66

新窗口打开| 下载CSV


3 结论与讨论

非直角双曲线模型(Thornley, 1976)、直角双曲线模型(Thornley, 1976)和P-M模型(Prado & Moraes, 1997)是一条渐近线, 不存在极值。所以我们无法用这3个模型直接估算出冬小麦的PmaxIsat, 即无法从这3个模型直接求出冬小麦的PmaxIsat的解析解。对于直角双曲线模型和非直角直角双曲线模型而言, 要想得到植物的Isat就必须结合其它方法(Walker, 1989; Richardson & Berlyn, 2002)。如图2所示的那样, 即先假定光合有效辐射在0~200 μmol·m -2·s-1P(I)观察值为一条直线, 它与X轴(光合有效辐射) 的交点就是Ic, 该直线与Y=Pmax直线相交, 交点所对应于X轴的数值即为Isat。但用这种方法给出的Isat明显小于实测值(表1), 这种现象在其它植物的拟合过程中也存在(Kyei-Boahen et al., 2003; Yu et al., 2004; 高峻等, 2006)。而用P-M模型求Isat是按P(I)为Pmax的90%时的光合有效辐射这个假定得到的(Prado & Moraes, 1997)。显然, 由P-M模型得到植物的Isat在很大程度上受到人为影响, 并不客观, 且拟合得到的Isat远小于实测值(表1)。另外, 由于非直角双曲线模型、直角双曲线模型和P-M模型不存在极值, 所以我们无法用这3个模型拟合植物在光抑制条件下的光响应数据(Evans et al.,1993; Yu et al., 2004; Leakey et al., 2006), 且所给出冬小麦的Pmax远大于实测值(表1)。这种现象在其它植物的拟合过程中也存在(Evans et al., 1993; Kyei-Boahen et al., 2003; Yu et al., 2004; Leakey et al., 2006; 高峻等, 2006)。而由P-M模型拟合同样的光响应数据, 得到的Isat远小于实测值, 且Ic为实测值的1/6(表1)。对C3植物光响应新模型而言, 由于它的一阶导数可以等于0, 即该模型的数学函数存在极值, 因此, 我们可以用此模型拟合植物叶片在不同光强条件下, 包括光抑制条件下的光响应数据(Ye, 2007)。从图1可以看出, 两种温度条件下冬小麦的拟合结果与实测结果符合程度非常显著, 决定系数分别为R2=0.999 4和R2=0.998 7, 且拟合的结果与实测数据非常接近。

低光强下净光合速率对光强的响应曲线是评价植物光合特性的强有力工具(Olsson & Leverenz, 1994), 用表观量子效率来表示, 它反映植物对光能的利用效率。但由表2的数据可知, 如果拟合的光合有效辐射范围不同, 所得到的表观量子效率是不同的, 因此, 通过拟合低光强条件下(≤200 μmol·m-2·s-1)植物叶片净光合速率与光强之间的关系所得到的表观量子效率的值具有一定的人为性。由此可知, 表观量子效率并非描述植物利用光能的一个理想指标。为了解决这个问题, 我们建议用植物在光补偿点处的量子效率作为表征植物利用光能的一个指标, 它表示植物叶片把光能转化为净能量的能力(叶子飘, 2007), 这样就可避免上述问题的出现。因为在确定的试验条件下, 植物的光补偿点只有一个, 所以该植物在光补偿点处的量子效率也只有一个, 因而具有唯一性。此外, 由图2(右)可知, 在温度为20℃、CO2浓度为360 μmol·mol -1条件下华北平原冬小麦在低光强时的光合速率对光强的响应是非线性的。所以我们认为, 在低光强条件下植物叶片的净光合速率对光强的线性响应是一种近似。

图1可知, 温度不同而CO2浓度相同的条件下, 冬小麦的PmaxIc几乎相同, 但在20℃条件下冬小麦的φcRdIsat要大于25℃时的冬小麦。20 ℃时冬小麦的光能利用效率要高于25℃时, 这是因为20℃时冬小麦的φc比在25℃时大, 20℃时的Isat要比25℃时的大, 即25℃条件下的冬小麦要先于20℃时的冬小麦达到光饱和, 这表明在该试验条件下25℃时冬小麦的光合酶活性比20℃时的大。因此, C3植物光响应新模型可以为单一变量条件下植物光合作用特性的比较提供一个有效的理论工具。

总之, 利用植物叶片的光响应测量数据, 由C3植物光响应新模型就可以直接准确地拟合出植物叶片的主要光合参数, 并且拟合结果与实测数据的符合程度高。因此, 利用C3植物光响应新模型的特性可以讨论不同试验条件下植物的光合参数以及影响这些光合参数的环境因素和可能的生理生态学意义, 可为作物育种、植物生理生态学研究提供合理而有效的参数。

参考文献

Chen GY (陈根云), Yu GL (俞冠路), Chen Y (陈悦), Xu DQ (许大全) (2006).

Exploring the observation methods of photosynthetic responses to light and carbon dioxide

Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 32,691-696. (in Chinese with English abstract)

[本文引用: 1]

Eilers PHC, Peeters JCH (1988).

A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton

Ecological Modelling, 42,199-215.

[本文引用: 1]

Evans JG, Jakonbsen I, Ögren E (1993).

Photosynthetic light-response curves. 2. Gradients of light absorption and photosynthetic capacity

Planta, 189,191-200.

[本文引用: 4]

Falkowski PG, Wirick CD (1981).

A simulation model of the effects of vertical mixing on primary productivity

Marine Biology, 65,69-75.

[本文引用: 1]

Farquhar GD, Caemmerers S, Berry JA (1980).

A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species

Planta, 149,78-90.

DOI      URL     PMID      [本文引用: 1]

Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.

Fasham MJR, Platt T (1983).

Photosynthesis response of phytoplankton to light: a physiological model

Proceedings of the Royal Society of London, Series B: Biological Sciences, 219,355-370.

[本文引用: 1]

Gao J (高峻), Meng P (孟平), Wu B (吴斌), Zhang JS (张劲松), Chu JM (禇健民) (2006).

Photosynthesis and transpiration of Salvia miltiorrhiza in tree-herb system of Prunus dulcis and Salvia miltiorrhiza

Journal of Beijing Forestry University (北京林业大学学报), 28(2),64-67. ( in Chinese with English abstract).

[本文引用: 3]

Jassby AD, Platt T (1976).

Mathematical formulation of the relationship between photosynthesis and light for phytoplankton

Limnology and Oceanography, 21,540-547.

[本文引用: 1]

Hand DW, Warren WJW, Acock B (1993).

Effects of light and CO 2 on net photosynthetic rates of stands of aubergine and Amaranthus

Annals of Botany, 71,209-216.

[本文引用: 1]

Kyei-Boahen S, Lada R, Astatkie T, Gordon R, Caldwell C (2003).

Photosynthetic response of carrots to varying irradiances

Photosynthetica, 41,1-5.

[本文引用: 3]

Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006).

Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO 2 concentration in the absence of drought

Plant Physiology, 140,779-790.

DOI      URL     PMID      [本文引用: 3]

While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless, some controlled environment studies have reported direct stimulation of C4 photosynthesis and productivity, as well as physiological acclimation, under elevated [CO2]. To test if these effects occur in the open air and within the Corn Belt, maize (Zea mays) was grown in ambient [CO2] (376 micromol mol(-1)) and elevated [CO2] (550 micromol mol(-1)) using Free-Air Concentration Enrichment technology. The 2004 season had ideal growing conditions in which the crop did not experience water stress. In the absence of water stress, growth at elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Nor was there any CO2 effect on the activity of key photosynthetic enzymes, or metabolic markers of carbon and nitrogen status. Stomatal conductance was lower (-34%) and soil moisture was higher (up to 31%), consistent with reduced crop water use. The results provide unique field evidence that photosynthesis and production of maize may be unaffected by rising [CO2] in the absence of drought. This suggests that rising [CO2] may not provide the full dividend to North American maize production anticipated in projections of future global food supply.

Marshall B, Biscoe PV (1980).

A model for C 3 leaves describing the dependence of net photosynthesis on irradiance

Journal of Experimental Botany, 31,29-39.

[本文引用: 1]

Megard ROD, Tonkyn W, Senft WH (1984).

Kinetics of oxygenic photosynthesis in planktonic algae

Journal of Plankton Research, 6,325-337.

[本文引用: 1]

Olsson T, Leverenz JW (1994).

Non-uniform stomata closure and the apparent convexity of the photosynthetic photon flux density response curve

Plant,Cell & Environment, 17,701-710.

[本文引用: 1]

Prado CHBA, Moraes JAPV (1997).

Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition

Photosynthetica, 33,103-112.

[本文引用: 4]

Richardson A, Berlyn G (2002).

Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting

Tree Physiology, 22,499-506.

DOI      URL     PMID      [本文引用: 5]

Spectral reflectance and chlorophyll fluorescence are rapid non-invasive methods that can be used to quantify plant stress. Because variation in ambient light (e.g., diurnal patterns of solar radiation) may have a confounding effect on these measurements, branches are often excised in the field and then measured under controlled conditions in the laboratory. We studied four temperate tree species (Abies balsamea (L.) Mill. (balsam fir), Betula papyrifera var. cordifolia (Regel) Fern. (paper birch), Picea rubens Sarg. (red spruce) and Sorbus americana Marsh. (mountain-ash)) to determine how quickly reflectance and fluorescence change following branch cutting. We hypothesized that conifer species, which have tough xeromorphic foliage, would exhibit changes more slowly than broadleaf species. Furthermore, we hypothesized that keeping broadleaf samples cool and moist would delay the onset of reflectance and fluorescence changes. In one set of experiments, we did not use any treatments to maintain the freshness of cut branches. During the first 12 h following cutting, changes in reflectance and fluorescence were slight for all species. Two or 3 days after branch cutting, the two conifers still showed only small changes in the ratio of variable to maximum fluorescence (Fv/Fm) and most reflectance indices, whereas paper birch and mountain-ash showed larger and more rapid declines in Fv/Fm and most reflectance indices. We attribute these declines to loss of water. As a consequence of xeromorphic leaf structure, the conifers were better able to minimize water loss than the two broadleaf species. In another experiment, paper birch that had been kept cool and moist after cutting showed only slight changes in fluorescence and reflectance, even after 3 days, indicating that with careful handling the time interval between collection and measurement of reflectance and fluorescence of many broadleaf specimens can be extended to several days. We conclude that measurements of reflectance and fluorescence need not be made in situ to be accurate and reliable.

Robert ES, Mark A, John SB (1984).

Kok effect and the quantum yield of photosynthesis

Plant Physiology, 75,95-101.

URL     PMID      [本文引用: 1]

Rubio FC, Camacho FG, Sevilla JMF, Chisti Y, Grima EM (2003).

A mechanistic model of photosynthesis in microalgae

Biotechnology and Bioengineering, 81,459-473.

DOI      URL     PMID      [本文引用: 1]

A dynamic model of photosynthesis is developed, accounting for factors such as photoadaptation, photoinhibition, and the

Thornley JHM (1976).

Mathematical Models in Plant Physiology

Academic Press, London, 86-110.

[本文引用: 5]

Walker DA (1989).

Automated measurement of leaf photosynthetic O 2 evolution as a function of photon flux density

Philosophical Transactions of the Royal Society London B, 323,313-326.

[本文引用: 5]

Webb WL, Newton M, Starr D (1974).

Carbon dioxide exchange of Alnus rubra: a mathematical model

Oecologica, 17,281-291.

[本文引用: 1]

Ye ZP (叶子飘) (2007).

Application of light-response model in estimating the photosynthesis of super-hybrid rice combinationⅡ—Youming 86

Chinese Journal of Ecology(生态学杂志), 26,1323-1326. (in Chinese with English abstract)

[本文引用: 5]

Ye ZP (2007).

A new model for relationship between light intensity and the rate of photosynthesis in Oryza sativa

Photosynthetica, 45,637-640.

[本文引用: 1]

Yu Q, Zhang YQ, Liu YF, Shi PL (2004).

Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO 2 changes

Annals of Botany, 93,435-441.

DOI      URL     PMID      [本文引用: 6]

BACKGROUND AND AIMS: The stomata are a key channel of the water cycle in ecosystems, and are constrained by both physiological and environmental elements. The aim of this study was to parameterize stomatal conductance by extending a previous empirical model and a revised Ball-Berry model. METHODS: Light and CO(2) responses of stomatal conductance and photosynthesis of winter wheat in the North China Plain were investigated under ambient and free-air CO(2) enrichment conditions. The photosynthetic photon flux density and CO(2) concentration ranged from 0 to 2000 micro mol m(-2) s(-1) and from 0 to 1400 micro mol mol(-1), respectively. The model was validated with data from a light, temperature and CO(2) response experiment. RESULTS: By using previously published hyperbolic equations of photosynthetic responses to light and CO(2), the number of parameters in the model was reduced. These response curves were observed diurnally with large variations of temperature and vapour pressure deficit. The model interpreted stomatal response under wide variations in environmental factors. CONCLUSIONS: Most of the model parameters, such as initial photon efficiency and maximum photosynthetic rate (P(max)), have physiological meanings. The model can be expanded to include influences of other physiological elements, such as leaf ageing and nutrient conditions, especially leaf nitrogen content.

Zeng XM (曾小美), Yuan L (袁琳), Shen YG (沈允刚) (2002).

Response of photosynthesis to light intensity in intact and detached leaves of Arabidopsis thaliana

Plant Physiology Communications(植物生理学通讯), 38,25-26. (in Chinese with English abstract)

[本文引用: 1]

Zonneveld C (1998).

Photoinhibition as affected by photoacclimation in phytoplankton: a model approach

Journal of Theoretical Biology, 193,115-123.

[本文引用: 1]

/