植物生态学报, 2010, 34(1): 2-6 DOI: 10.3773/j.issn.1005-264x.2010.01.002

编辑之窗

生态化学计量学: 探索从个体到生态系统的统一化理论

贺金生1,2, 韩兴国3

1北京大学城市与环境学院生态学系, 北京 100871

2中国科学院西北高原生物研究所, 西宁 810008

3中国科学院植物研究所, 北京 100093

Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems

HE Jin-Sheng1,2, HAN Xing-Guo3

1Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

2Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China

3Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

责任编辑: 王 葳

收稿日期: 2009-11-24   接受日期: 2009-12-15   网络出版日期: 2010-01-01

Received: 2009-11-24   Accepted: 2009-12-15   Online: 2010-01-01

PDF (316KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报[J], 2010, 34(1): 2-6 DOI:10.3773/j.issn.1005-264x.2010.01.002

HE Jin-Sheng, HAN Xing-Guo. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology[J], 2010, 34(1): 2-6 DOI:10.3773/j.issn.1005-264x.2010.01.002

从1909年丹麦哥本哈根大学Johannes Warming (1841-1924)出版第一本生态学教科书《植物生态学》到现在, 生态学经历了100年的发展。作为研究生物与生物、生物与环境相互关系的学科, 生态学具有高度的综合性和交叉性, 研究的问题也具有复杂性和多尺度的特点。正因为这样的学科特点, 传统上生态学家多强调研究对象的特殊性、研究问题的局域性, 缺乏统一的理论框架。进入21世纪以后, 生态学在统一化理论方面出现了一些尝试, 代表性的有生态学的代谢理论(metabolic theory of ecology) (Brown et al., 2004)和生态化学计量学(ecological stoichiometry) (Sterner & Elser, 2002)。

生态化学计量学综合生物学、化学和物理学的基本原理, 利用生态过程中多重化学元素的平衡关系, 为研究C、N、P等元素在生态系统过程中的耦合关系提供了一种综合方法。1958年, 哈佛大学的A. Redfield首次证明: (1)海洋浮游生物的C、N、P有特定的组成(摩尔比106:16:1, 该比率后被称为Redfield比率); (2)这一比率受海洋环境和生物相互作用的调节(Redfield, 1958)。这一开创性的研究成为以后生态化学计量学的奠基之作。从Elser和Hassett (1994)以及Elser等(2000)的重要文章, 到以后Sterner和Elser (2002)的专著《Ecological Stoichi- ometry》的出版, 标志着生态化学计量学理论的系统化和逐步成熟。2004年著名生态学杂志《Ecology》 (85卷1 177页)和2005年《Oikos》(109卷3页)分别出版了“Ecological stoichiometry”专辑, 进一步推动了这一领域的发展。本刊也于2005年发表了曾德慧和陈广生(2005)的综述性文章, 系统介绍了生态化学计量学的理论与进展。

1 生态化学计量学为从个体到生态系统统一化理论的构建提供了新思路

生态化学计量学主要研究生态过程中化学元素的比例关系, 因此跨越了个体、种群、群落、生态系统、景观和区域各个层次。生态化学计量学目前主要集中在C、N、P元素的计量关系。这是因为, C、N、P是重要的生命元素, 它们是地球上所有生命化学组成的基础。一般来说, 组成地球上有机体蛋白质的16%是N, 核酸组成的9.5%是P, 这两个比例在不同来源的生物中相对稳定。而有机体干物质的50%左右是C, 这一比例在生物的不同类群中随细胞的结构组成发生变化。生物在长期进化过程中, 形成了一定的内稳态机制(homeostatic mechanism), 即生物在变化的环境(包括食物)中具有保持其自身化学组成相对恒定的能力, 它是生态化学计量学存在的前提(Sterner & Elser, 2002)。现在还不清楚生物组成的其他元素是否存在相对稳定的计量关系, 但从生态化学计量学角度, 对其他化学元素的探索是必要的, 特别是S的作用。

无论是植物个体水平, 还是生态系统水平, C、N、P都是相互作用的。研究其中一个元素在生态学过程中的作用, 必须同时考虑其他元素的影响。生态化学计量学为研究C、N、P等主要元素的生物地球化学循环和生态学过程提供了一种新思路 (Sterner & Elser, 2002; Güsewell, 2004)。在植物的个体水平上, C、N、P的组成及分配是相互联系、不可分割的一个整体, 它们的相互作用及与外界环境的关系共同决定着植物的营养水平和生长发育过程(Bazzaz & Grace, 1997; Güsewell, 2004)。通常可以把C或N作为植物资源分配的“货币(currency)”来看待, 不同器官和组织之间相互作用的结果就是分配多少C或N到特定部位, 以协调整体的生长发育过程(Grace, 1997)。例如, 植物的光合作用与光合器官(通常是叶片)中的N含量密切相关(Field & Mooney, 1986), 而光合器官中的氮素又依赖于植物根系对N的吸收和向叶片的运输, 这些过程都需要植物的光合作用提供能量。因此, 植物要获得C首先需要投资N到同化器官。同样, 为了获得N, 植物要投资同化的有机物到根系。在个体水平上, 植物的生长速率随叶片N:P比率的降低而增加, 即所谓的生长速率假说(growth rate hypothesis, Sterner & Elser, 2002)。

在生态系统水平上, 生产者、消费者、分解者及土壤等环境的C、N、P组成决定了生态系统的主要过程, 如能量流动和物质循环(Chapin, 1980; Tilman, 1982; Aerts & Chapin, 2000; Moe et al., 2005)。例如, 群落冠层叶片氮素水平在一定程度上代表其光合能力和生态系统的生产力, 凋落物的分解速率也与其C:N比率呈负相关关系, 而土壤的C:N比率与有机质的分解、土壤呼吸等密切相关 (Schlesinger & Andrews, 2000; Yuste et al., 2007), 土壤及植物的N和P共同决定着生态系统的生产力(Treseder & Vitousek, 2001; Chapin et al., 2002)。因此, 在生态系统水平上, C、N、P的耦合作用制约了生态系统的主要过程。

2 化学计量学是当前生态学研究的前沿领域之一

化学计量学目前的发展主要集中在以下几个方面:

2.1 区域C:N:P化学计量学格局及其驱动因素

区域C:N:P化学计量学格局及其驱动因素主要包括不同生态系统类型之间、植物功能群之间及物种之间的趋同与分异。代表性的研究(表1)包括: Elser等(2000)对全球陆生植物及无脊椎食草动物的研究, 表明尽管陆生环境和淡水湖泊环境有着巨大的差异, 但是陆生植物和无脊椎食草动物具有相近的N:P比率。Reich和Oleksyn (2004)对全球1 280种陆生植物的研究发现, 随着纬度的降低和年平均气温的增加, 叶片的N和P含量降低, 而N:P则升高。McGroddy等(2004)在群落水平上, 研究了全球森林生态系统的C:N:P计量学关系, 发现尽管从全球来看, 植物叶片的C:N:P存在较大变化, 但在生物群区的水平上相对稳定, 并且叶片凋落物的C:N相对稳定。Han等(2005)研究了中国753种陆生植物的N:P 比率, 发现和全球相比, 中国植物的P含量相对较低, 这可能导致了叶片N:P高于全球平均水平。He等(2006, 2008)对中国草地213种优势植物的C:N:P计量学进行了研究, 发现中国草地植物的P含量相对较低, 而N:P高于其他地区草地生态系统, 并且在草地生物群区之内, N、P及N:P不随温度和降水发生明显变化。这些研究还发现, 草本植物叶片的N、P含量通常高于木本植物 (He et al., 2006, 2008)。

表1   全球和区域C:N:P化学计量学格局研究的案例

物种数N (mg·g-1)P (mg·g-1)N:P质量比参考文献
全球陆生植物39520.61.9912.7Elser et al., 2000
全球陆生植物894-125120.11.8013.8Reich & Oleksyn, 2004
全球森林551)--37.1McGroddy et al., 2004
中国陆生植物75320.21.4616.3Han et al., 2005
中国草地21329.01.9015.3He et al., 2006, 2008
英国草地8327.82.7210.8Thompson et al., 1997

1) 生态系统类型数目。

新窗口打开| 下载CSV


2.2 C:N:P计量关系与植物个体生长发育、种群增长、群落动态和生态系统过程的联系

生态化学计量学的基本原理之一, 就是种内不同发育阶段之间, 以及群落和生态系统不同组成物种之间对C、N、P等多种元素要求的差异, 这种差异引起不同层次上资源“供应-需求”之间的错配(mismatch)或矛盾, 从而调节生理和生态学过程 (Anderson et al., 2004b; Moe et al., 2005)。例如植物和养分之间、食草动物和植物之间、食碎屑者和碎屑之间(detritivore vs. detritus)都可能发生错配现象, 因此可以影响到生态学的各个过程, 包括个体的生长(Elser et al., 1996; Anderson et al., 2004b; Vrede et al., 2004)、种群的增长(Urabe & Sterner, 1996)、元素循环和物种共存(Urabe et al., 2002; Hessen et al., 2004; Zhang et al., 2004)。到目前为止, 有关元素错配的生态学效应研究, 多集中在个体水平上的生理生态过程, 而对于种群和群落学的作用研究很少 (Anderson et al., 2004a; Frost et al., 2005)。

2.3 不同营养级之间对C:N:P化学计量学的调节

对于生态系统的食物链来说, 这个过程包括食物的C:N:P比率如何通过代谢过程, 传递(translate) 到下一营养级, 即在生态系统不同组分中的调节 (Sterner & Elser, 2002; Raubenheimer & Simpson, 2004)。具体到植物生态学, 相关研究主要集中到C:N:P如何从高C:N和C:P (土壤)到低C:N和C:P (植物叶片和根系)的传递过程及其机理。在C:N:P计量学研究中, 一个重要的例子就是可以根据植物叶片的N:P比率来判断土壤养分状况。例如, Koerselman 和Meuleman (1996)通过对欧洲湿地植物施肥作用的评估发现, 当植物N:P < 14时, 表现为受N的限制; 当N:P > 16时, 表现为受P的限制。内蒙古羊草草原的施肥试验表明, N:P > 23时是P限制, 而N:P < 21时是N限制(Zhang et al., 2004)。最近通过对内蒙古温带草地、青藏高原高寒草地, 以及新疆山地草地199个取样地点213个物种的化学计量学分析发现, 植物叶片N:P比率主要受P含量的影响(He et al., 2006, 2008)。

2.4 环境要素和生物组成元素之间的计量关系

除了生物组成元素之间的计量关系, 目前发现环境要素如光照可能影响植物的C:N:P计量关系。近年来的一些研究表明, “光:养分(light : nutrient)”可能存在计量关系, 特别是在浮游生物中。如Striebel等(2008)发现, 光照可以改变浮游植物的C:P计量关系, 随着辐射增强, 藻类群落生物量和C:P增长加快, 并且不管是贫营养还是富营养的湖泊中, 水蚤生物量的增长都是中等光强时最大。Dickman等(2008)把光:养分比率关系应用到鱼类的实验中, 发现光、营养和食物链长度都能影响能量传递效率。这些研究表明, 除了考虑C:N:P计量关系, 光照等环境要素也是一个重要因素。

3 本“生态化学计量学专题”旨在促进生态化学计量学在国内的发展

生态化学计量学近年来在国内发展较快。这些研究主要集中在区域C:N:P化学计量学格局及其驱动因素方面(Han et al., 2005; He et al., 2006; 任书杰等, 2007; Zheng & Shangguan, 2007; He et al., 2008), 也有施肥对群落N:P比率的影响(Zhang et al., 2004), 不同演替阶段优势植物的N:P比率的变化(高三平等, 2007)。另外, 曾德慧和陈广胜(2005)综述了生态化学计量学的研究进展, 王绍强和于贵瑞(2008)重点介绍了生态化学计量学在土壤学中的应用。

本专题收录了8篇论文, 分别对森林、草地和湿地生态系统的植物、土壤C:N:P化学计量特征进行了研究。这些研究不仅包括了不同生态系统类型之间(阎恩荣等, 2010; 吴统贵等, 2010a, 2010b)、不同演替阶段(刘兴诏等, 2010; 银晓瑞等, 2010)植物C:N:P化学计量特征的差异, 还包括了植物叶片N、P化学计量学特征的季节变化、植物叶片和细根不同器官之间计量特征的关联(周鹏等, 2010)以及这种关联在物种之间和物种内的差异(徐冰等, 2010)。以往的研究多集中在物种水平, 而杨阔等(2010)则探讨了群落水平的化学计量学特征及随环境的变化, 这无疑是以后研究的一个重要内容。

显然, 这些研究只是国内方兴未艾的生态化学计量学研究的一小部分, 仅能部分反映出国内外研究的热点和关键的科学问题。生态化学计量学是一种理论、一种思维, 也是一种工具, 对立志提高生态学的理论性和预测能力的研究者来说, 无疑是一个机遇, 但也是挑战。我们相信, 随着生态化学计量学渗透到生态学的各个方面, 一定会有更新的成果不断出现。

参考文献

Aerts R, Chapin FS III (2000).

The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns

Advances in Ecological Research, 30, 1-67.

[本文引用: 1]

Anderson T, Elser JJ, Hessen DO (2004a).

Stoichiometry and population dynamics

Ecology Letters, 7, 884-900.

[本文引用: 1]

Anderson TR, Boersma M, Raubenheimer D (2004b).

Stoichi- ometry: linking elements to biochemicals

Ecology, 85, 1193-1202.

[本文引用: 2]

Bazzaz FA, Grace J (1997). Plant Resource Allocation. Academic Press, San Diego, CA, USA.

[本文引用: 1]

Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004).

Toward a metabolic theory of ecology

Ecology, 85, 1771-1789.

[本文引用: 1]

Chapin FS III (1980).

The mineral nutrition of wild plants

Annual Review of Ecology and Systematics, 11, 233-260.

[本文引用: 1]

Chapin FS III, Matson PA, Mooney H (2002).

Principles of Terrestrial Ecosystem Ecology

Springer-Verlag, New York.

[本文引用: 1]

Dickman EM, Newell JM, González MJ, Vanni MJ (2008).

Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels

Proceedings of the National Academy of Sciences of the United States of America, 105, 18408-18412.

DOI      URL     PMID      [本文引用: 1]

The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types.

Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996).

Organism size, life history, and N:P stoichiometry

BioScience, 46, 674-684.

[本文引用: 1]

Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000).

Nutritional constraints in terrestrial and freshwater food webs

Nature, 408, 578-580.

DOI      URL     PMID      [本文引用: 3]

Biological and environmental contrasts between aquatic and terrestrial systems have hindered analyses of community and ecosystem structure across Earth's diverse habitats. Ecological stoichiometry provides an integrative approach for such analyses, as all organisms are composed of the same major elements (C, N, P) whose balance affects production, nutrient cycling, and food-web dynamics. Here we show both similarities and differences in the C:N:P ratios of primary producers (autotrophs) and invertebrate primary consumers (herbivores) across habitats. Terrestrial food webs are built on an extremely nutrient-poor autotroph base with C:P and C:N ratios higher than in lake particulate matter, although the N:P ratios are nearly identical. Terrestrial herbivores (insects) and their freshwater counterparts (zooplankton) are nutrient-rich and indistinguishable in C:N:P stoichiometry. In both lakes and terrestrial systems, herbivores should have low growth efficiencies (10-30%) when consuming autotrophs with typical carbon-to-nutrient ratios. These stoichiometric constraints on herbivore growth appear to be qualitatively similar and widespread in both environments.

Elser JJ, Hassett RP (1994).

A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems

Nature, 370, 211-213.

[本文引用: 1]

Field C, Mooney HA (1986).

The photosynthesis-nitrogen relationship in wild plants

In: Givnish TJ ed. On the Economy of Plant form and Function. Cambridge University Press, Cambridge, UK. 25-55.

[本文引用: 1]

Frost PC, Evans-White MA, Finkel ZV, Jensen TC, Matzek V (2005).

Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world

Oikos, 109, 18-28.

[本文引用: 1]

Gao SP (高三平), Li SX (李俊祥), Xu MC (徐明策), Chen X (陈熙), Dai J (戴洁) (2007).

Leaf N and P stoichiometry of common species in successional stages of the evergreen broad-leaved forest in Tiantong National Forest Park, Zhejiang Province, China

Acta Ecologica Sinica (生态学报), 27, 947-952. (in Chinese with English abstract)

[本文引用: 1]

Grace J (1997).

Towards models of resource allocation by plants

In: Bazzaz FA, Grace J eds. Plant Resource Allocation. Academic Press, San Diego, CA, USA. 279-291.

[本文引用: 1]

Güsewell S (2004).

N:P ratios in terrestrial plants: variation and functional significance

New Phytologist, 164, 243-266.

[本文引用: 2]

Han W, Fang JY, Guo D, Zhang Y (2005).

Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China

New Phytologist, 168, 377-385.

[本文引用: 3]

He JS, Fang JY, Wang ZH, Guo D, Flynn DFB, Geng Z (2006).

Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China

Oecologia, 149, 115-122.

DOI      URL     PMID      [本文引用: 5]

Nitrogen (N) and carbon-nitrogen (C:N) ratio are key foliar traits with great ecological importance, but their patterns across biomes have only recently been explored. We conducted a systematic census of foliar C, N and C:N ratio for 213 species, from 41 families over 199 research sites across the grassland biomes of China following the same protocol, to explore how different environmental conditions and species composition affect leaf N and C:N stoichiometry. Leaf C:N stoichiometry is stable in three distinct climatic regions in Inner Mongolia, the Tibetan Plateau, and Xinjiang Autonomous Region, despite considerable variations among co-existing species and among different vegetation types. Our results also show that life form and genus identity explain more than 70% of total variations of foliar N and C:N ratio, while mean growing season temperature and growing season precipitation explained only less than 3%. This suggests that, at the biome scale, temperature affects leaf N mainly through a change in plant species composition rather than via temperature itself. When our data were pooled with a global dataset, the previously observed positive correlation between leaf N and mean annual temperature (MAT) at very low MATs, disappeared. Thus, our data do not support the previously proposed biogeochemical hypothesis that low temperature limitations on mineralization of organic matter and N availability in soils lead to low leaf N in cold environments.

He JS, Wang L, Flynn DFB, Wang X, Ma W, Fang J (2008).

Leaf nitrogen : phosphorus stoichiometry across Chinese grassland biomes

Oecologia, 155, 301-310.

DOI      URL     PMID      [本文引用: 5]

Leaf N and P stoichiometry covaries with many aspects of plant biology, yet the drivers of this trait at biogeographic scales remain uncertain. Recently we reported the patterns of leaf C and N based on systematic census of 213 species over 199 research sites in the grassland biomes of China. With the expanded analysis of leaf P, here we report patterns of leaf P and N:P ratios, and analyze the relative contribution of climatic variables and phylogeny in structuring patterns of leaf N:P stoichiometry. Average values of leaf P and N:P ratio were 1.9 mg g(-1) and 15.3 (mass ratio), respectively, consistent with the previous observation of a higher N:P ratio in China's flora than the global averages (ca. 13.8), resulting from a lower leaf P. Climatic variables had very little direct correlation with leaf P and N:P ratios, with growing season precipitation and temperature together explaining less than 2% of the variation, while inter-site differences and within-site phylogenetic variation explained 55 and 26% of the total variation in leaf P and N:P ratios. Across all sites and species, leaf N and P were highly positively correlated at all levels. However, the within-site, within-species covariations of leaf N and P were weaker than those across sites and across species. Leaf N and P relationships are driven by both variation between sites at the landscape scale (explaining 58% of the variance) and within sites at the local scale (explaining 24%), while the climatic factors exerted limited influence (explaining less than 3%). In addition, leaf N:P ratios in two dominant genera Kobresia and Stipa had different responses to precipitation. This study suggests that geographic variation and between-species variation, rather than climatic variation, are the major determinants of grassland foliar stoichiometry at the biome level.

Hessen DO, Agren GI, Anderson TR, Elser JJ, de Ruiter PC (2004).

Carbon, sequestration in ecosystems: the role of stoichiometry

Ecology, 85, 1179-1192.

[本文引用: 1]

Koerselman W, Meuleman AFM (1996).

The vegetation N:P ratios: a new tool to detect the nature of nutrient limitation

Journal of Applied Ecology, 33, 1441-1450.

[本文引用: 1]

Liu XZ (刘兴诏), Zhou GY (周国逸), Zhang DQ (张德强), Liu SZ (刘世忠), Chu GW (褚国伟), Yan JH (闫俊华) (2010).

N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China

Chinese Journal of Plant Ecology (植物生态学报), 34, 64-71. (in Chinese with English abstract)

[本文引用: 1]

McGroddy ME, Daufresne T, Hedin LO (2004).

Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios

Ecology, 85, 2390-2401.

[本文引用: 2]

Moe SJ, Stelzer RS, Forman MR, Harpole WS, Daufresne T, Yoshida T (2005).

Recent advances in ecological stoichiometry: insights for population and community ecology

Oikos, 109, 29-39.

DOI      URL     [本文引用: 2]

Raubenheimer D, Simpson SJ (2004).

Organismal stoichiometry: quantifying non-independence among food components

Ecology, 85, 1203-1216.

[本文引用: 1]

Redfield AC (1958).

The biological control of chemical factors in the environment

American Scientist, 46, 205-221.

[本文引用: 1]

Reich PB, Oleksyn J (2004).

Global patterns of plant leaf N and P in relation to temperature and latitude

Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.

DOI      URL     PMID      [本文引用: 2]

A global data set including 5,087 observations of leaf nitrogen (N) and phosphorus (P) for 1,280 plant species at 452 sites and of associated mean climate indices demonstrates broad biogeographic patterns. In general, leaf N and P decline and the N/P ratio increases toward the equator as average temperature and growing season length increase. These patterns are similar for five dominant plant groups, coniferous trees and four angiosperm groups (grasses, herbs, shrubs, and trees). These results support the hypotheses that (i) leaf N and P increase from the tropics to the cooler and drier midlatitudes because of temperature-related plant physiological stoichiometry and biogeographical gradients in soil substrate age and then plateau or decrease at high latitudes because of cold temperature effects on biogeochemistry and (ii) the N/P ratio increases with mean temperature and toward the equator, because P is a major limiting nutrient in older tropical soils and N is the major limiting nutrient in younger temperate and high-latitude soils.

Ren SJ (任书杰), Yu GR (于贵瑞), Tao B (陶波), Wang SQ (王绍强) (2007).

Leaf nitrogen and phosphorus stoichio- metry across 654 terrestrial plant species in NSTEC

Chinese Journal of Environmental Science (环境科学), 28, 2665-2667.

[本文引用: 1]

Schlesinger WH, Andrews JA (2000).

Soil respiration and the global carbon cycle

Biogeochemistry, 48, 7-20.

DOI      URL     [本文引用: 1]

Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

[本文引用: 6]

Striebel M, Spörl G, Stibor H (2008).

Light-induced changes of plankton growth and stoichiometry: experiments with natural phytoplankton communities

Limnology and Oceanography, 53, 513-522.

DOI      URL     [本文引用: 1]

Thompson K, Parkinson JA, Band SR, Spencer RE (1997).

A comparative study of leaf nutrient concentrations in a regional herbaceous flora

New Phytologist, 136, 679-689.

DOI      URL     [本文引用: 1]

Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton.

[本文引用: 1]

Treseder KK, Vitousek PM (2001).

Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests

Ecology, 82, 946-954.

DOI      URL     [本文引用: 1]

Urabe J, Elser JJ, Kyle MM, Sekino T, Kawabata Z (2002).

Herbivorous animals can mitigate unfavourable ratios of energy and material supplies by enhancing nutrient recycling

Ecology Letters, 5, 177-185.

DOI      URL     [本文引用: 1]

Urabe J, Sterner RW (1996).

Regulation of herbivore growth by the balance of light and nutrients

Proceedings of the National Academy of Sciences of the United States of America, 93, 8465-8469.

DOI      URL     PMID      [本文引用: 1]

Experiments using planktonic organisms revealed that the balance of radiant energy and available nutrients regulated herbivore growth rates through their effects on abundance and chemical composition of primary producers. Both algae and herbivores were energy limited at low light/nutrient ratios, but both were nutrient limited at high light/nutrient ratios. Herbivore growth increased with increasing light intensity at low values of the light/nutrient ratio due to increases in algal biomass, but growth decreased with increasing light at a high light/nutrient ratio due to decreases in algal quality. Herbivore production therefore was maximal at intermediate levels of the light/nutrient ratio. The results contribute to an understanding of mass transfer mechanisms in ecosystems and illustrate the importance of integration of energy-based and material-based currencies in ecology.

Vrede T, Dobberfuhl DR, Kooijman S, Elser JJ (2004).

Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth

Ecology, 85, 1217-1229.

DOI      URL     [本文引用: 1]

Wang SQ (王绍强), Yu GR (于贵瑞) (2008).

Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements

Acta Ecologica Sinica (生态学报), 28, 3937-3947.

[本文引用: 1]

Wu TG (吴统贵), Chen BF (陈步峰), Xiao YH (肖以华), Pan YJ (潘勇军), Chen Y (陈勇), Xiao JH (萧江华) (2010a).

Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China

Chinese Journal of Plant Ecology (植物生态学报), 34, 58-63. (in Chinese with English abstract)

[本文引用: 1]

Wu TG (吴统贵), Wu M (吴明), Liu L (刘丽), Xiao JH (萧江华) (2010b).

Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China

Chinese Journal of Plant Ecology (植物生态学报), 34, 23-28. (in Chinese with English abstract)

[本文引用: 1]

Xu B (徐冰), Cheng YX (程雨曦), Gan HJ (甘慧洁), Zhou WJ (周文嘉), He JS (贺金生) (2010).

Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China

Chinese Journal of Plant Ecology (植物生态学报), 34, 29-38. (in Chinese with English abstract)

[本文引用: 1]

Yan ER (阎恩荣), Wang XH (王希华), Guo M (郭明), Zhong Q (仲强), Zhou W (周武) (2010).

C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China

Chinese Journal of Plant Ecology (植物生态学报), 34, 48-57. (in Chinese with English abstract)

[本文引用: 1]

Yang K (杨阔), Huang JH (黄建辉), Dong D (董丹), Ma WH (马文红), He JS (贺金生) (2010).

Canopy leaf N and P stoichiometry in grassland communities of Qinghai- Tibetan Plateau, China

Chinese Journal of Plant Ecology (植物生态学报), 34, 17-22. (in Chinese with English abstract)

[本文引用: 1]

Yin XR (银晓瑞), Liang CZ (梁存柱), Wang LX (王立新), Wang W (王炜), Liu ZL (刘钟龄) , Liu XP (刘小平) (2010).

Ecological stoichiometry of plant nutrients at different restoration succession stages in typical steppe of Inner Mongolia, China

Chinese Journal of Plant Ecology (植物生态学报), 34, 39-47. (in Chinese with English abstract)

[本文引用: 1]

Yuste JC, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007).

Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture

Global Change Biology, 13, 1-8.

DOI      URL     [本文引用: 1]

Zeng DH (曾德慧), Chen GS (陈广生) (2005).

Ecological stoichiometry: a science to explore the complexity of living systems

Acta Phytoecologica Sinica (植物生态学报), 29, 1007-1019. (in Chinese with English abstract)

[本文引用: 2]

Zhang LX, Bai YF, Han XG (2004).

Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol

Acta Botanica Sinica, 46, 259-270.

[本文引用: 3]

Zheng S, Shangguan Z (2007).

Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China

Trees, 21, 357-370.

DOI      URL     [本文引用: 1]

Zhou P (周鹏), Geng Y (耿燕), Ma WH (马文红), He JS (贺金生) (2010).

Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China

Chinese Journal of Plant Ecology (植物生态学报), 34, 7-16. (in Chinese with English abstract)

[本文引用: 1]

/