植物生态学报, 2010, 34(6): 727-740 DOI: 10.3773/j.issn.1005-264x.2010.06.012

综述

光合作用对光和CO2响应模型的研究进展

叶子飘,*

井冈山大学数理学院, 江西吉安 343009

A review on modeling of responses of photosynthesis to light and CO2

YE Zi-Piao,*

Maths & Physics College, Jinggangshan University, Ji’an, Jiangxi 343009, China

通讯作者: * E-mail:yezp2004@sina.com

编委: 李镇清

责任编辑: 王 葳

收稿日期: 2009-10-10   接受日期: 2010-02-5   网络出版日期: 2010-06-01

Received: 2009-10-10   Accepted: 2010-02-5   Online: 2010-06-01

摘要

光合作用对光和CO2响应模型是研究植物生理和植物生态学的重要工具, 可为植物光合特性对主要环境因子的响应提供科学依据。该文综述了当前光合作用对光和CO2响应模型的研究进展和存在的问题, 并在此基础上探讨了这些模型的可能发展趋势。光合作用涉及光能的吸收、能量转换、电子传递、ATP合成、CO2固定等一系列复杂的物理和化学反应过程。光合作用由原初反应、同化力形成和碳同化3个基本过程构成, 任一个过程均可对光合作用速率产生直接的影响。光合作用对光响应模型只涉及光能的转换, 而光合作用的生化模型包含了同化力形成和碳同化这两个基本过程。把光合作用的原初反应, 即把参与光能吸收、传递和转换的捕光色素分子的物理参数(如捕光色素分子数、捕光色素分子光能吸收截面、捕光色素分子处于激发态的平均寿命等)结合到生化模型中, 可能是今后光合作用对光响应机理模型的发展方向。

关键词: 生化模型 ; CO2响应模型 ; 光响应模型

Abstract

The light and CO2 response curve of photosynthesis is an important tool to study plant physiology and plant ecology that can provide a scientific basis for the response of plant photosynthetic properties to environmental factors. This review considered the progress and potential weaknesses of light and CO2 response models of photosynthesis and discussed research trends. Photosynthesis, which involves energy of light, absorption, energy conversion, electron transfer, ATP synthesis, CO2 fixation etc., is a complex physical and chemical reaction process. It includes three basic steps: the primary reaction, the assimilatory power forms and the carbon assimilation, and each link may directly influence other processes. Classical models on photosynthetic light response only involve with light energy absorption, and biochemistry models do with the assimilatory power to form as well as carbon assimilation. A future direction of research of the mechanistic model of photosynthetic light response is the primary reaction of photosynthesis, namely participation the energy of light absorption, the transmission and the transformation of the harvesting light pigment member the physical parameter (e.g., the light-harvesting pigment molecules, light energy absorption cross-section of the harvesting pigment, the mean lifetime of the harvesting light pigment) unify in the biochemistry model.

Keywords: biochemical model ; CO2 response model of photosynthesis ; light-response model of photosynthesis

PDF (538KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

叶子飘. 光合作用对光和CO2响应模型的研究进展. 植物生态学报[J], 2010, 34(6): 727-740 DOI:10.3773/j.issn.1005-264x.2010.06.012

YE Zi-Piao. A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology[J], 2010, 34(6): 727-740 DOI:10.3773/j.issn.1005-264x.2010.06.012

光合作用是植物(包括光合细菌)将光能转换为可用于生命过程的化学能并进行有机物合成的生物过程。光是光合作用中光能的唯一来源, CO2则是光合作用的基本原料。植物与光、CO2环境的关系一直是植物生理和植物生态学研究的热点问题(Moreno-Sotomayor et al., 2002; Awada et al., 2003; Damesin, 2003)。植物光合作用对光响应模型(或光响应曲线)研究的是植物净光合速率和光合有效辐射之间的关系, 对了解植物光化学过程中的光化学效率非常重要(Robert et al., 1984)。也可以由光合作用对光响应曲线估算植物的饱和光强、最大净光合速率、光补偿点、暗呼吸速率和表观量子效率等重要的光合参数。其中, 饱和光强反映了植物利用光强的能力, 其值高说明植物在受到强光时生长发育不易受到抑制; 叶片的最大净光合速率反映了植物叶片的最大光合能力; 光补偿点反映的是植物叶片光合作用过程中光合同化作用与呼吸消耗相当时的光强; 表观量子效率反映了植物在弱光情况下的光合能力。植物光合作用对CO2响应模型(或CO2响应曲线)研究的是植物净光合速率和CO2之间的关系, 以此可估算植物的饱和CO2浓度、光合能力、CO2补偿点、羧化效率和光下呼吸等光合参数。其中, 饱和CO2浓度反映了植物利用高CO2浓度的能力; 光合能力反映了植物叶片的光合电子传递和磷酸化的活性; CO2补偿点反映植物叶光合同化作用与呼吸消耗相当时的CO2浓度; 羧化效率反映了Rubisco的量的多少与酶活性的大小。

自从Blackman (1905)提出了第一个光合作用对光响应模型(${{P}_{\text{n}}}=\left\{ \begin{align} & \alpha I-{{R}_{\text{d}}},\text{ }I\le {{{P}_{\text{nmax}}}}/{\alpha}\; \\ & {{P}_{\text{nmax}}}-{{R}_{\text{d}}},\text{ }I>{{{P}_{\text{nmax}}}}/{\alpha}\; \\ \end{align} \right.$, α为光合作用速率随光强变化的初始斜率, Pnmax为最大净光合速率, Rd为暗呼吸速率)后, 人们提出了不同的光响应模型, 最常用的有直角双曲线模型(Baly, 1935)、非直角双曲线模型(Thornlye, 1976)、指数方程(Bassman & Zwier, 1991; Prado & Moraes, 1997)和直角双曲线的修正模型(Ye, 2007; Ye & Yu, 2008)等。植物光合作用对CO2响应的生化模型中, 应用最为广泛的是Farquhar模型(1980)及其修正模型(von Caemmerer & Farquhar, 1981; Harley & Sharkey, 1991; von Caemmerer, 2000; Bernacchi et al., 2001; Long & Bernacchi, 2003; Ethier & Livingston, 2004), 经验模型则有Michaelis-Menten模型(Harley et al., 1992)和直角双曲线模型等。

植物光合作用对光和CO2响应模型的研究已经取得了较大的进展, 但对这些响应模型的数学特征及其在实际应用中的潜在问题的深入分析仍然有限。本文从目前常用的植物光合作用对光和CO2响应模型的数学表达形式出发, 分析了不同模型的优势以及潜在的问题, 探讨了可能的发展方向, 为进一步推动植物光合作用对光和CO2响应在植物生态和生理研究中的应用提供理论依据。

1 光合作用对光响应模型的回顾

1.1 直角双曲线模型

直角双曲线模型(Baly, 1935)的数学表达式为:

${{P}_{\text{n}}}=\frac{\alpha I{{P}_{\text{nmax}}}}{\alpha I+{{P}_{\text{nmax}}}}-{{R}_{\text{d}}}$

式中, Pn为净光合速率, I为光强, α为植物光合作用对光响应曲线在I = 0时的斜率, 即光响应曲线的初始斜率, 也称为初始量子效率, Pnmax为最大净光合速率, Rd为暗呼吸速率

对(1)式求一阶导数可得:

$P_{\text{n}}^{'}=\frac{\alpha P_{\text{nmax}}^{\text{2}}}{{{(\alpha I+{{P}_{\text{nmax}}})}^{2}}}$

由(2)式可知, 当I = 0时, 有

$P_{\text{n}}^{'}=\alpha$

(3)式就是植物叶片光响应曲线在I = 0时的斜率, 也被称为光响应曲线的初始斜率或初始量子效率。

由于α和Pnmax均大于0, 由(2)式可知必有${{P}_{\text{n}}}^{'}>0$, 表明(1)式是一个没有极值的函数, 也即直角双曲线是一条没有极点的渐近线。因此, 我们无法由(1)式直接求出植物的Pnmax和饱和光强, 即无法用(1)式求解植物饱和光强的解析解。为了估算Pnmax, 就必须利用非线性最小二乘法。如果植物在饱和光强之后光合速率不下降, 则得到的Pnmax必远大于实测值(Kyei-Boahen et al., 2003; Yu et al., 2004; Leakey et al., 2006; 孙旭生等, 2009; 王照兰等, 2009), 且无法用此模型拟合光合速率随光强增加而下降这一段响应曲线(Ye & Zhao, 2008)。此外, 直角双曲线模型也无法直接估算植物的饱和光强(Kyei-Boahen et al., 2003; Yu et al., 2004; Leakey et al., 2006)。为了估算植物的饱和光强, 就需要用直线方程拟合弱光强条件下(≤200 μmol·m-2·s-1)的光响应数据得到表观量子效率(apparent quantum efficiency, AQE), 然后解直线方程: Pnmax = AQE $\times $ Isat - Rd可以得到饱和光强(Isat)。然而用这种方法得到的饱和光强远小于实测值(叶子飘和于强, 2008; 张中峰等, 2009)。也有学者假设0.7Pnmax所对应的光强为饱和光强(张雪松等, 2009)。

1.2 非直角双曲线模型

非直角双曲线模型(Thornley, 1976)的表达式为:

$\theta {{P}^{2}}-(\alpha I+{{P}_{\text{nmax}}})P+\alpha I{{P}_{\text{nmax}}}=0$

式中, P为植物的总光合速率, θ为曲线的凸度, 凸度越大, 曲线的弯曲程度越大。在(4)式中, 如果θ = 0时且用P减去暗呼吸速率Rd, (4)式变换成了(1)式, 即直角双曲线是非直角双曲线模型的一个特殊形式。当$\theta \ne 0$时, 求解(4)式, 并注意净光合速率等 于总光合速率减去暗呼吸速率, 即Pn = P - Rd, 则 有:

${{P}_{\text{n}}}=\frac{\alpha I+{{P}_{\text{nmax}}}-\sqrt{{{(\alpha I+{{P}_{\text{nmax}}})}^{2}}-4\theta \alpha I{{P}_{\text{nmax}}}}}{2\theta }-{{R}_{\text{d}}}$

(5)式中$\theta $的取值范围在0 < θ ≤ 1之间。当θ = 1时, 如果αI > Pnmax, (5)式将退化为Pn = Pnmax-Rd, 是一条平行X轴(PAR)的直线; 如果αI < Pnmax, 则有Pn = αI-Rd, 它是一条斜率为α、截距为Rd的直线。即当θ = 1时, 非直角双曲线模型将退化为Blackman (1905)提出的光响应模型。

对(5)式求一阶导数, 可得:

$P_{\text{n}}^{'}=\frac{\alpha}{\text{2}\theta }\left[ 1-\frac{(\alpha I+{{P}_{\text{nmax}}})-2\theta {{P}_{\text{nmax}}}}{\sqrt{{{(\alpha I+{{P}_{\text{nmax}}})}^{2}}-4\theta \alpha I{{P}_{\text{nmax}}}}} \right]$

由于α、IPnmax均大于0, 由(6)式可知$P_{\text{n}}^{'}>0$。表明(5)式也是一个没有极值的函数, 即非直角双曲线同样是一条没有极点的渐近线。

当$I=0$时, 由(6)式可知:

$P_{\text{n}}^{'}=\alpha$

因此, 非直角双曲线中的系数α依然是光响应曲线在I = 0时的斜率, 即为植物的初始斜率或初始量子效率。

与直角双曲线模型的讨论相似。如果植物在饱和光强之后光合速率不下降, 则用非直角双曲线模型估算的植物Pnmax必大于实测值(Springer & Thomas, 2007; Ye & Zhao, 2008; Ye & Yu, 2008; Lombardini et al., 2009; Posada et al., 2009), 且无法用它拟合光合速率随光强增加而下降这一段响应曲线(Ye & Zhao, 2008; 张中峰等, 2009)。此外, 估算植物的饱和光强方法与直角双曲线模型的方法相同, 但用这种方法得到的饱和光强同样远小于实测值(曹雪丹等, 2008; 贾彩凤和李艾莲, 2008; 叶子飘和于强, 2008; 张中峰等, 2009)。

1.3 指数方程

Prado和Moraes (1997)给出的植物光合作用对光响应的指数方程的表达式为:

${{P}_{\text{n}}}={{P}_{\text{nmax}}}\left[ 1-{{e}^{-\text{b}(I-{{I}_{\text{c}}})}} \right]$

式中, PnPnmaxI的定义与前述相同, Ic为光补偿点, b为一常数

(8)式的一阶导数为:

$P_{\text{n}}^{'}=\text{b}{{P}_{\text{nmax}}}{{e}^{-\text{b}(I-{{I}_{\text{c}}})}}$

I = 0时, 由(9)式可知有:

$\alpha=\text{b}{{P}_{\text{nmax}}}{{e}^{\text{b}{{I}_{\text{c}}}}}$

由于b和Pnmax均大于0, 由(9)式可知必然存在$P_{\text{n}}^{'}>0$。因此, 由Prado和Moraes (1997)给出的指数方程所描写的曲线没有极值, 是一条渐近线。

Bassman和Zwier (1991)给出的植物光合作用对光响应的指数方程的表达式则为:

${{P}_{\text{n}}}={{P}_{\text{nmax}}}\left( 1-{{e}^{-{\alpha I}/{{{P}_{\text{nmax}}}}\;}} \right)-{{R}_{\text{d}}}$

式中, Pn、α、PnmaxRdI的定义与前述相同。

(11)式的一阶导数为:

${{P}_{\text{n}}}^{'}=\alpha{{e}^{-{\alpha I}/{{{P}_{\text{nmax}}}}\;}}$

由(12)式可知必有$P_{\text{n}}^{'}>0$。这表明(12)式也是一条没有极点的渐近线。为了估算饱和光强, 则需要假设光合速率为0.9Pnmax所对应的光强为饱和光强(黄红英等, 2009)。

I = 0时, 必有:

${{P}_{\text{n}}}^{'}=\alpha$

指数方还有如下形式:

${{P}_{\text{n}}}={{P}_{\text{nmax}}}\left( 1-{{\text{C}}_{0}}{{e}^{-{\alpha I}/{{{P}_{\text{nmax}}}}\;}} \right)$

式中, PnPnmaxI的定义与前述相同, α和C0是2个系数。

(14)式的一阶导数为:

${{P}_{\text{n}}}^{'}=\alpha{{\text{C}}_{0}}{{e}^{-{\alpha I}/{{{P}_{\text{nmax}}}}\;}}$

由(15)式可知, 当I = 0, 有:

${{P}_{\text{n}}}^{'}=\alpha{{\text{C}}_{0}}$

由(16)式可知, (14)式中的α和C0是2个没有任何生物学意义的常数, 只能说这2个系数的乘积等于曲线的初始斜率。显然, 把(14)式的α称为弱光下量子效率, 把C0称为度量弱光下净光合速率趋于0的指标是对这2个系数的一种误解。此外, 当α和Pnmax均为大于0时, 由(15)式可知必然存在$P_{\text{n}}^{'}>0$, 也即它也是一条渐近线。同样, 要估算饱和光强, 需假设光合速率为0.99Pnmax所对应的光强为饱和光强(王满莲等, 2006)。

当然, 指数方程还可以写成如下形式(Watling et al., 2000):

${{P}_{\text{n}}}=\text{a}\left( 1-{{e}^{-\text{b}I}} \right)+\text{c}$

式中, a、b和c是3个系数。Watling等(2000)认为植物的最大净光合速率Pnmax可由a + c计算得到; 植物的光量子效率就等于Pn = 0时曲线的斜率, 即量子效率可由b (a + c)计算。但如果光量子效率等于Pn = 0时曲线的斜率, 则由(17)式可知Pn = 0的量子效率应该等于$\text{ab}{{e}^{-\text{a}{{I}_{\text{c}}}}}$, 而不应该是b (a + c)。因为(17)式的一阶导数为:

${{P}_{\text{n}}}^{'}=\text{ab}{{e}^{-\text{a}I}}$

由(18)式可知, 当I = Ic, 即Pn = 0时, 有${{P}_{\text{n}}}^{'}=\text{ab}{{e}^{-\text{a}{{I}_{\text{c}}}}}$。并且由(18)式可得其初始斜率ab。所以,Watling等(2000)认为植物的光量子效率就等于Pn = 0时曲线的斜率是不正确的。

从上面对指数方程的讨论可知, 虽然指数方程的形式多种多样, 但它们的本质是一样的, 即这些指数方程都是一条渐近线, 无法由它们拟合植物在饱和光强之后光合速率随光强的增加而降低这一段光响应曲线(Bassman & Zwier, 1991; Prado & Moraes, 1997; Watling et al., 2000; 黄红英等, 2009), 且估算植物的饱和光强时需要假定光合速率为0.9Pnmax (黄红英等, 2009), 或0.99Pnmax所对应的光强为饱和光强(王满莲等, 2006)。

1.4 直角双曲线的修正模型

植物光合作用对光响应的直角双曲线修正模型的表达式为(Ye & Yu, 2008):

${{P}_{\text{n}}}=\alpha\frac{1-\beta I}{1+\gamma I}I-{{R}_{\text{d}}}. $

式中, α是光响应曲线的初始斜率(无量纲), β和γ为系数(单位为m2·s·μmol-1), I为光合有效辐射, Rd为暗呼吸。如果系数β = 0且令γ = α/Pnmax, 则(19)式将退化为直角双曲线模型。

(19)式的一阶导数为:

${{P}^{'}}_{\text{n}}=\alpha\frac{1-2\beta I-\beta\!\!\gamma{{I}^{2}}}{{{\left( 1+\gamma I \right)}^{2}}}$

由于(19)式的一阶导数可以等于0, 且它的二阶导数可以小于0, 所以, (19)式一定存在极点, 也即它必然存在饱和光强和最大净光合速率。因此, 当(20)式等于0时, 如果植物的饱和光强用Isat表示, 则有:

$I_{\text{sat}}=\frac{\sqrt{(\beta+\gamma)/\beta}-1}{\gamma}$

如果与植物饱和光强所对应的最大净光合速率用Pnmax表示, 则有:

$P_{\text{nmax}}=\alpha(\frac{\sqrt{\beta+\gamma}-\sqrt{\beta}}{\gamma})^{2}-R_{\text{d}}$

由(21)式和(22)式可知, 由直角双曲线修正模型可以直接计算植物的饱和光强和最大净光合速率, 这是(19)式与其他光响应模型的主要区别。该模型不但可以拟合植物在饱和光强之后光合速率不下降的光响应曲线, 而且还可以拟合植物在饱和光强之后光合速率随光强的增加而下降这一段的光响应曲线, 且估算的饱和光强和最大净光合速率与实测值最为接近(Ye, 2007; 胡文海等, 2008; Ye & Yu, 2008; 叶子飘和于强, 2008; 侯智勇等, 2009; 李伟成等, 2009)。

图1A给出了直角双曲线、非直角双曲线模型、指数方程和直角双曲线的修正模型拟合温度为20 ℃、CO2浓度为365 μmol·mol-1条件下华北平原冬小麦(Triticum aestivum)的光响应曲线(Yu et al., 2004), 从中可以看出: 除了直角双曲线模型拟合的点在高光强时与实测曲线稍微有差异外, 其他几个模型的拟合曲线与实测点符合得很好。但同时应该看到, 由这4个光响应模型估算冬小麦饱和光强的方法不同, 所得到的饱和光强也完全不同(图1B)。其中, 由直角双曲线和非直角双曲线模型并结合直线方法得到的饱和光强远小于实测值; 对指数方程而言, 需要假设光合速率为0.9Pnmax所对应的光强为饱和光强, 但得到的饱和光强同样远小于实测值(表1)。如果是假定植物的光合速率为0.99Pnmax所对应的光强为饱和光强, 则无法用此方法估算该条件下冬小麦的饱和光强。

图1

图1   冬小麦的光响应曲线(引自文献Yu et al., 2004)。

A, 4个光合作用对光响应模型拟合华北平原冬小麦的光响应曲线。○, 测量点; —, 修正模型的拟合点; ☆, 直角双曲线的拟合点; ┅, 非直角双曲线的拟合点; ▽, 指数方程的拟合点。B, 4个光合作用对光响应模型估算饱和光强的方法。a, 由直线方程结合非直角双曲线得到的饱和光强; b, 由直线方程结合直角双曲线得到的饱和光强; c, 净光合速率为0.9Pnmax所对应光强为饱和光强; d, 由修正模型得到的饱和光强。

Fig. 1   Light-response curve of photosynthesis for Triticum aestivum (Cited from Yu et al., 2004).

A, Light-response curve of photosynthesis for T. aestivum fitted by four photosynthetic light response models. ○, measured points; —, points fitted by modified model; ☆, points fitted by rectangular hyperbola; ┅, points fitted by non-rectangular hyperbola; ▽, pointed fitted by exponential equation. B, Saturation irradiance estimated by four photosynthetic light response models. a, saturation irradiance obtained by a method combined non-rectangular hyperbola with line equation; b, saturation irradiance obtained by a method combined rectangular hyperbola with line equation; c, saturation irradiance, i.e. irradiance at 0.9Pnmax; d, saturation irradiance obtained by the modified model.


表1   四个光响应模型拟合温度在20 ℃、CO2浓度在365 μmol·mol-1条件下冬小麦的实测值(引自文献Yu et al., 2004)与拟合结果

Table 1  Results fitted by four models of light-response curve of photosynthesis and measured values for Triticum aestivum at 30 ℃ and 365 μmol·mol-1 CO2 concentration (Cited from Yu et al., 2004)

光合参数
Photosynthetic parameters
初始斜率
Initial slope
α
最大净光合速率
Pnmax
(μmol·m-2·s-1)
饱和光强
Isat
(μmol·m-2·s-1)
光补偿点
Ic (μmol·m-2·s-1)
暗呼吸速率
Rd
(μmol·m-2·s-1)
决定系数
Determination coefficient R2
直角双曲线
Rectangular hyperbola
0.07631.01671.25*27.08-1.930.996 2
非直角双曲线
Non-rectangular hyperbola
0.05526.78583.18*23.10-1.250.998 9
指数方程 ***
Exponential equation***
0.05824.401 288.80**23.03-1.300.999 1
修正的直角双曲线
Modified rectangular hyperbola
0.06222.761 799.1823.75-1.430.999 2
测量数据
Measured data
无 None$\approx $22.87$\approx $1 800≈20-1.25无 None

*, 用方程Pnmax = AQE$\times $Isat-Rd求植物的饱和光强; **, 假定净光合速率为0.9Pnmax所对应的光强为饱和光强; ***, 指数方程的表达式为${{P}_{\text{n}}}(I)={{P}_{\text{nmax}}}\left( 1-{{e}^{-{\alpha I}/{{{P}_{\text{nmax}}}}\;}} \right)-{{R}_{\text{d}}}$(Bassman & Zwier, 1991)。

Ic, light compensation point; Isat, saturation irradiance; Pnmax, maximum net photosynthetic rate; Rd, dark respiration rate. *, saturation irradiance obtained by line equation Pnmax = AQE$\times $Isat-Rd; **, saturation irradiance, i.e. irradiance at 0.9Pnmax; ***, exponential equation is ${{P}_{\text{n}}}(I)={{P}_{\text{nmax}}}\left( 1-{{e}^{-{\alpha I}/{{{P}_{\text{nmax}}}}\;}} \right)-{{R}_{\text{d}}}$(Bassman & Zwier, 1991).

新窗口打开| 下载CSV


表1是用4个光响应曲线模型拟合温度为20 ℃、CO2浓度为365 μmol·mol-1条件下冬小麦的光响应曲线所得到的光合参数。

表1可知, 尽管直角双曲线模型、非直角双曲线模型和指数方程拟合冬小麦的光响应数据所给出的决定系数R2 > 0.99, 但所给的光合参数如饱和光强和最大净光合速率与实测值有较大的差异。因此, 可以认为R2的值越大, 只能说明光响应模型的拟合程度越高, 但并不能保证拟合结果就一定与实测值相符合。此外, 对比不同光响应模型所给出的光合参数可知, 只有修正模型得到的光合参数与实测值最接近(表1)。

图2A给出了直角双曲线、非直角双曲线模型、指数方程和直角双曲线的修正模型拟合环境温度为27.3 ℃、CO2浓度在390 μmol · mol-1时三叶鬼针草(Bidens pilosa)在遮光条件下(50%自然光强下生长)的光响应曲线(Ye & Zhao, 2008), 从中可以看出: 除修正模型外, 其他光响应模型拟合点与实测点有较大的差异, 尽管直角双曲线模型、非直角双曲线模型和指数方程给出的R2分别为0.939 6、0.964 6和0.966 6。另外, 从图2A还可知, 直角双曲线模型、非直角双曲线模型和指数方程都不能很好地描述植物在饱和光强以后的光响应曲线。同样, 用Pnmax = AQE$\times $Isat - Rd方法求植物的饱和光强远低于实测值; 对于指数方程而言, 需假定净光合速率为0.9Pnmax所对应的光强为饱和光强, 但用此方法得到的饱和光强也远小于实测值(图2B; 表2)。

图2

图2   低光强条件下生长的三叶鬼针草的光响应曲线(引自文献 Ye & Zhao, 2008)。

A, 4个光合作用对光响应模型拟合低光强条件下生长的三叶鬼针草的光响应曲线。○, 测量点; —, 修正模型的拟合点; ☆, 直角双曲线的拟合点; ┅ , 非直角双曲线的拟合点; ▽, 指数方程的拟合点。B, 4个光合作用对光响应模型估算饱和光强的方法。a, 由直线方程结合非直角双曲线得到的饱和光强; b, 由直线方程结合直角双曲线得到的饱和光强; c, 净光合速率为0.9Pnmax所对应光强为饱和光强; d, 由修正模型得到的饱和光强。

Fig. 2   Light-response curve of photosynthesis for Bidens pilosa grown under low light condition (Cited from Ye & Zhao, 2008).

A, Light-response curve of photosynthesis for Bidens pilosa fitted by four photosynthetic light response models. ○, measured points; —, points fitted by modified model; ☆, points fitted by rectangular hyperbola; ┅, points fitted by non-rectangular hyperbola; ▽, pointed fitted by exponential equation. B, Saturation irradiance estimated by four photosynthetic light response models. a, saturation irradiance obtained by a method combined non-rectangular hyperbola with line equation; b, saturation irradiance obtained by a method combined rectangular hyperbola with line equation; c, saturation irradiance, i.e. irradiance at 0.9Pnmax; d, saturation irradiance obtained by the modified model.


表2   四个光响应模型拟合温度在27.3 ℃、CO2浓度在390 μmol·mol-1条件下三叶鬼针草的实测值(引自文献 Ye & Zhao, 2008)与拟合结果

Table 2  Results fitted by four models of light-response curve of photosynthesis and measured values for Bidens pilosa grown under low light condition (Cited from Ye & Zhao, 2008)

光合参数
Photosynthetic parameters
初始斜率
Initial slope
α
最大净光合速率
Pnmax
(μmol·m-2·s-1)
饱和光强
Isat (μmol·m-2·s-1)
光补偿点
Ic (μmol·m-2·s-1)
暗呼吸速率
Rd
(μmol·m-2·s-1)
决定系数
Determination coefficient R2
直角双曲线模型
Rectangular hyperbola
0.1186.69199.58*4.39-0.480.939 6
非直角双曲线模型
Non-rectangular hyperbola
0.0425.79171.33*无 None0.020.964 6
指数方程***
Exponential equation
0.0686.02247.92**3.45-0.230.966 6
直角双曲线的修正模型
Modified rectangular hyperbola
0.0716.49646.703.17-0.220.996 8
测量数据
Measured data
无 None$\approx $6.5$\approx $650≈3-0.15无 None

表注同表1

Notes see Table 1.

新窗口打开| 下载CSV


表2是用4个光响应曲线模型拟合温度为27.3 ℃、CO2浓度为390 μmol·mol-1条件下三叶鬼针草的光响应曲线所得到的光合参数。从表2的拟合结果可知, 非直角双曲线模型给出的暗呼吸速率为正数, 且无法估算植物的光补偿点。

2 光合作用对CO2响应模型的回顾

2.1 生化模型

植物光合作用的净光合速率依赖于光强、CO2浓度和温度。Farquhar等(1980)以及其他学者(von Caemmerer & Farquhar, 1981; Harley & Sharkey, 1991; von Caemmerer, 2000; Bernacchi et al., 2001; Long & Bernacchi, 2003; Ethier & Livingston, 2004)建立的光合生化模型如下:

${{P}_{\text{n}}}=\min \left\{ {{w}_{\text{c}}},{{w}_{\text{j}}},{{w}_{\text{p}}} \right\}\left( 1-\frac{{{\Gamma }^{*}}}{{{C}_{\text{i}}}} \right)-{{R}_{\text{d}}}$

式中, Pn为净光合速率, wcwjwp分别为由Rubisco活力、RuBP和无机磷酸的再生支持的潜在的CO2同化速率, Г*为不含暗呼吸的CO2补偿点, Ci为胞间CO2浓度, Rd为光下的暗呼吸速率。wcwjwp的数学表达式分别为:

$w_{\text{c}}=\frac{V_{c\max}C_{i}}{C_{i}+\text{K}_{\text{c}}(1+O/\text{K}_{\text{o}})} \\ w_{\text{j}}=\frac{JC_{i}}{4.5C_{i}+10.5\Gamma^{*}} \\ w_{\text{p}}=\frac{3TPU}{1-\frac{\Gamma^{*}}{C_{i}}}$

式中, Vcmax为最大Rubisco羧化速率。Kc和Ko分别为羧化作用和加氧作用的Michaelis-Menten常数(Farquhar et al., 1980)。J为光饱和时用于RuBP再生的电子传递速率, 等于Jmax。这是由于J受控于RuBP再生的羧化速率, 而RuBP再生则受控于光系统II的电子传递链的潜在传递速率。TPU为光合产物磷酸丙糖的利用速率(Sharkey, 1985)。如果光合作用对CO2响应的观测是在饱和光下进行的, 那么计算得到的Vcmax, JTPU的数值就是它们的最大值。如果光强低于饱和光强, 则电子传递速率J依赖于即时光合有效辐射, 且可以用非直角双曲线模型估算(von Caemmerer, 2000)。

依赖于温度的VcmaxVomax(最大RuBP氧化饱和率)和Rd方程(Bernacchi et al., 2001)为:

$Parameter\left( {{V}_{\text{cmax}}},{{V}_{o\max }},{{R}_{\text{d}}} \right)=\exp \left( \text{c}-{\Delta {{H}_{\text{a}}}}/{\text{R}{{T}_{\text{l}}}}\; \right)$

式中, $\Delta {{H}_{\text{a}}}$为活化能, R为气体常数, Tl为叶温, c为比例常数。对烟草(Nicotiana tabacum)W38’而言, c分别取26.35、22.98和18.72 (无量纲) (Bernacchi et al., 2001); $\Delta {{H}_{\text{a}}}$分别取65.33、60.11和46.39 kJ·mol-1 (Bernacchi et al., 2001)。它们是以温度为25 ℃的值作为归一化的。

依赖于温度的Kc、Ko和Г*的方程(Bernacchi et al., 2001; Long & Bernacchi, 2003)为:

$\begin{align} & {{\text{K}}_{\text{c}}}=\exp \left\{ {\left( 38.05-79.43 \right)}/{\left[ \text{R}\left( {{T}_{\text{l}}}+273.15 \right) \right]}\; \right\} \\ & {{\text{K}}_{\text{o}}}=\exp \left\{ {\left( 20.30-36.38 \right)}/{\left[ \text{R}\left( {{T}_{\text{l}}}+273.15 \right) \right]}\; \right\} \\ & {{\Gamma }^{*}}=\exp \left\{ {\left( 19.02-38.83 \right)}/{\left[ \text{R}\left( {{T}_{\text{l}}}+273.15 \right) \right]}\; \right\} \\ \end{align}$

由量纲分析可知, Long 和 Bernacchi (2003)给出的(26)式分别遗漏了相关系数Kc25 (为25 ℃时羧化作用的Michaelis-Menten常数), Ko25 (为25 ℃时加氧作用的Michaelis-Menten常数)和Г*25 (为25 ℃时不含暗呼吸的CO2补偿点)。现在以Г*说明此问题, Г*的单位为μmol·mol-1, 而由(26)式中Г*的表达式可知它是一个没有单位的常数(例如当叶温为27 ℃时, 由(26)式可得Г*= 0.992 1), 这显然与Г*的单位为μmol·mol-1不一致。Kc和Ko的分析与Г*相似。因此, 依赖于温度的Kc、Ko和Г*方程的正确写法应该为:

$\begin{align} & {{\text{K}}_{\text{c}}}\text{=}{{\text{K}}_{\text{c25}}}\exp \left\{ {\left( 38.05-79.43 \right)}/{\left[ \text{R}\left( {{T}_{\text{l}}}+273.15 \right) \right]}\; \right\} \\ & {{\text{K}}_{\text{o}}}\text{=}{{\text{K}}_{\text{o25}}}\exp \left\{ {\left( 20.30-36.38 \right)}/{\left[ \text{R}\left( {{T}_{\text{l}}}+273.15 \right) \right]}\; \right\} \\ & {{\Gamma }^{*}}=\Gamma _{25}^{*}\exp \left\{ {\left( 19.02-38.83 \right)}/{\left[ \text{R}\left( {{T}_{\text{l}}}+273.15 \right) \right]}\; \right\} \\ \end{align}$

从上面对生化模型的描述可知, 虽然生化模型中涉及的参数和方程比较多, 但当外界环境因素确定时, 就可以用(24)式拟合CO2响应曲线估算植物的生化参数, 如Vc,maxJTPURd等(Harley et al., 1992; Hymus et al., 2001; Bernacchi et al., 2003; Long & Bernacchi, 2003; Ethier & Livingston, 2004; Sharkey et al., 2007; Chen et al., 2008)。且这4个生化参数中只有J可通过快速光曲线(rapid light curve, RLC)确定, Rd可通过气体交换测量确定, 而VcmaxTPU是隐参数, 无法通过实验测量这两个参数值。

2.2 直角双曲线模型

由于生化模型无法估算植物的光合能力和饱和CO2浓度, 所以, 为了估算这些参数, 还必须利用植物光合作用对CO2响应的经验模型, 如光合作用对CO2响应的直角双曲线模型, 它的数学表达式为:

${{P}_{\text{n}}}=\frac{\alpha{{P}_{\text{nmax}}}{{C}_{\text{i}}}}{\alpha{{C}_{\text{i}}}+{{P}_{\text{nmax}}}}-{{R}_{\text{p}}}$

式中, Pn为净光合速率, Ci为胞间CO2浓度, α为植物光合作用对CO2响应曲线在Ci = 0时的斜率, 即CO2响应曲线的初始斜率, 也称为初始羧化效率, Pnmax为光合能力, Rp为光呼吸速率(由于光下暗呼吸很小,可以近似将光下叶片向空气中释放CO2的速率看作光呼吸速率, Cai & Xu, 2000)

与光合作用对光响应的直角双曲线模型的讨论相似, (27)式也是一条没有极点的渐近线, 因此无法由(27)式直接估算植物的饱和CO2浓度, 要估算植物的饱和CO2浓度就必须用其他方法, 例如用方程Pnmax = CE × Cisat - Rp求植物的饱和CO2浓度(CE为羧化效率, 它是用直线方程拟合CO2浓度≤ 200 μmol·mol-1的响应数据得到的直线斜率)。当然也有文章不讨论植物的饱和CO2浓度问题(黄红英等, 2009)。另外, 由(27)式估算的植物光合能力远大于实测值(Yu et al., 2004; 王建林等, 2005)。

2.3 Michaelis-Menten模型

Michaelis-Menten模型(Harley et al., 1992)的数学表达式为:

${{P}_{\text{n}}}=\frac{{{P}_{\text{nmax}}}{{C}_{\text{i}}}}{{{C}_{\text{i}}}+\text{K}}-{{R}_{\text{p}}}$

式中, PnCiPnmaxRp的定义与(27)式的相同, K为Michaelis-Menten常数

对(28)式求一阶导数可得:

$P_{\text{n}}^{'}=\frac{K{{P}_{\text{nmax}}}}{{{({{C}_{\text{i}}}+\text{K})}^{2}}}$

由(29)式可知, 对于任意Ci都存在$P_{\text{n}}^{'}$> 0。同样, 我们无法用(28)式直接估算植物的饱和CO2浓度, 而必须用其他方法估算植物的饱和CO2浓度。另外, 对比(27)和(28)式可知, 直角双曲线模型在本质上与Michaelis-Menten模型相同。因为当K = Pnmax/α时, (28)式就与(27)式完全相同。

2.4 直角双曲线的修正模型

与植物光合作用对光响应模型相似, 植物光合作用对CO2响应的直角双曲线修正模型的表达式为(叶子飘和于强, 2009):

${{P}_{\text{n}}}=\text{a}\frac{1-\text{b}{{C}_{\text{i}}}}{1+\text{c}{{C}_{\text{i}}}}{{C}_{\text{i}}}-{{R}_{\text{p}}}$

式中, PnCiRp与(27)式的相同, a是CO2响应曲线的初始羧化效率, b和c为系数(单位为mol·μmol-1)。与植物光合作用对光响应的直角双曲线修正模型的讨论相同, 可以由(30)式得到饱和CO2浓度的解析解。此外, 当系数b = 0, 且c = a/Pnmax时, (30)式将退化为(27)式。

如果用Cisat表示植物的饱和胞间CO2浓度, 则有:

$C_{\text{isat}}=\frac{\sqrt{(\text{b+c})/\text{b}}-1}{\text{c}}$

如果与植物饱和胞间CO2浓度所对应的光合能力用Pnmax表示, 则有:

$P_{\text{nmax}}=\text{a}(\frac{\sqrt{\text{b+c}}-\sqrt{\text{b}}}{\text{c}})^{2}-R_{\text{p}}$

图3为华北平原冬小麦温度分别在25 ℃、光强为2 000 μmol·m-2·s-1时光合速率对胞间CO2浓度(${{C}_{i}}$)响应曲线(Yu et al., 2004)。

图3

图3   冬小麦的光合作用对胞间CO2浓度的响应曲线(引自文献Yu et al., 2004)。

A, 3个光合作用对CO2响应模型拟合华北平原冬小麦的光响应曲线。○, 测量点; —, 修正模型的拟合点; ┅, 直角双曲线或Michaelis-Menten模型的拟合点。B, 3个光合作用对CO2响应模型估算饱和CO2浓度的方法。a,净光合速率为0.6Pnmax的CO2浓度为饱和胞间CO2浓度; b, 由修正模型得到的饱和胞间CO2浓度。

Fig. 3   Intercellular CO2 response of photosynthesis for Triticum aestivum (Cited from Yu et al., 2004).

A, CO2 response curve of photosynthesis for T. aestivum fitted by three CO2 response models of phtosynthesis. ○, measured points; —, points fitted by a modified model; ┅, points fitted by rectangular hyperbola or Michaelis-Menten model. B, Saturation CO2 estimated by three CO2 response models of photosynthesis. a, saturation intercellular CO2 concentration, i.e. Ci at 0.6Pnmax; b, saturation intercellular CO2 concentration obtained by the modified model.


表2给出了3种光合作用对CO2响应模型拟合温度为25 ℃, 光合有效辐射分别为2 000 μmol·m-2·s-1时冬小麦的光响应曲线所得的光合参数。测量数据来源于文献Yu等(2004)。

表3的数据可知, 由直角双曲线模型和Michaelis-Menten模型拟合得到的光合能力为68.54 μmol·m-2·s-1, 远大于实测值的42.3 μmol·m-2·s-1。并且从表3的数据可知, 除初始羧化效率外, 直角双曲线模型和Michaelis-Menten模型的拟合结果完全相同, 这表明它们本质上是相同的。另外, 由于直角双曲线模型和Michaelis-Menten模型没有极点, 所以为了求饱和胞间CO2浓度就必须用其他方法, 例如用类似于指数方程那样求饱和胞间CO2浓度, 那么只能假定0.6Pnmax所对应的CO2浓度才是饱和胞间CO2浓度。如果假设0.7Pnmax所对应的CO2浓度是饱和胞间CO2浓度, 则为1 520.43 μmol·mol-1; 如果假设0.9Pnmax所对应的CO2浓度是饱和CO2浓度,则用此方法不能计算植物的饱和胞间CO2浓度。显然, 用这样的方法估算植物的饱和胞间CO2浓度不是很合理的。

表3   三种模型拟合冬小麦光合作用对胞间CO2浓度响应的结果

Table 3  Simulated results of CO2 response of photosynthesis with three models for Triticum aestivum

光合参数
Photosynthesis parameter
MichaelisMenten 模型
MichaelisMenten model
直角双曲线模型
Rectangular hyperbola model
修正模型
Modified model
测量值
Measured data
初始羧化效率 (mol·m-2·s-1)
Initial slope α
无None0.3310.228无None
光合能力 (μmol·m-2·s-1)
Photosynthetic capacity
68.5468.5442.26$\approx $42.3
饱和胞间CO2浓度(μmol·mol-1)
saturation intercellular CO2 concentration Cisat
687.02*687.02*886.74$\approx $900
CO2补偿点 (μmol·mol-1)
CO2 compensation point Γ
45.5845.5847.40$\approx $48
光呼吸速率 (μmol·m-2·s-1)
Rate of photorespiration Rp
-12.36-12.36-9.51无 None
决定系数
Determination coefficient (R2)
0.991 30.991 30.998 7无 None

*, 假定净光合速率为0.6Pmax所对应的CO2浓度为饱和胞间CO2浓度。

*, saturation intercellular CO2 concentration, i.e. Ci at 0.6Pnmax.

新窗口打开| 下载CSV


3 表观量子效率与羧化效率

由光合作用对光和CO2响应曲线的经验模型可以估算植物的初始量子效率和羧化效率, 但无法用这些模型估算植物的表观量子效率和羧化效率, 要得到这2个参数就必须用其他方法。现在确定这2个参数的普遍方法就是用直线方程拟合弱光强条件下(≤ 200 μmol·m-2·s-1)的光响应数据和低CO2浓度条件下(≤ 200 μmol·mol-1)的CO2响应数据, 得到的直线斜率就是植物在该生境下的表观量子效率和羧化效率。为了减少实验误差, 用于直线回归的资料点一般以7-8个为宜, 且在作直线回归时, 不应包括那些净光合速率为负值的资料点(许大全, 2002)。但我们在用这种方法拟合响应数据时发现, 光合有效辐射或CO2浓度的拟合范围不同, 直线的斜率也不相同(叶子飘和于强, 2008)。这表明植物在弱光和低CO2浓度下的响应曲线并非是线性的。为了解决这个问题, 我们建议用响应曲线上光补偿点(light compensation point)和CO2补偿点(CO2 compensation point)的曲线斜率作为衡量植物在弱光或低CO2浓度条件下对光能的利用率或对CO2的同化能力。因为对于生长在一定生境下的植物, 它的光补偿点或CO2补偿点只有一个, 因此, 这些参数具有唯一性(Ye, 2007)。

4 光系统的空间结构和功能

类囊体膜是光合作用的原初光化学反应、电子传递和光合磷酸化的发生部位。现在, 人们虽然对类囊体膜的超微结构、化学组成和空间结构(Liu et al., 2004; Ishikita et al., 2005; Raszewski et al., 2005; Vasil’ev & Bruce, 2006; van der Weij-De Wit et al., 2008)已有所了解, 同时也比较清楚植物光合作用的发生过程(严国光, 1987; 徐春和和米华玲, 2001), 但是, 目前人们对植物光合作用对光响应机理的认识还不是十分清楚。多年来, 许多学者的研究结果证实, 光强和光质在植物光合作用对光响应中起重要的作用, 并且探明了捕光天线色素分子在光能的吸收和传递中担当的角色(Raszewski et al., 2005; van der Weij-De Wit et al., 2007)。然而, 我们现在还无法从理论上预测捕光天线色素分子吸收的光能中有多少光能被用于退激发(热辐射和荧光)、多少光能用于共振传递到PSII, 从而引起PSII的电荷分离以及此后的电子传递, 尤其是光能吸收、传递和退激发与PSII捕光天线色素分子的哪些物理参数有关, 以及这些参数之间的关系如何。

光合作用涉及光能的吸收、能量转换、电子传递、ATP合成、CO2固定等一系列复杂的物理和化学反应过程。它由原初反应、同化力形成和碳同化3个基本阶段构成, 每一个环节均可对其他过程产生直接影响。目前生化机理模型是以光合作用的生物化学过程为基础对光合反应过程的定量描述, 只涉及同化力形成和碳同化这两个过程, 未考虑捕光天线色素分子对光能的吸收和传递、激发态捕光色素分子的退激发、荧光辐射及PSII (光系统II)的电荷分离与电子传递等物理和化学过程, 因此, 无法用生化模型研究植物的光响应、光抑制和荧光等问题。

尽管现在对捕光色素分子的光能吸收、退激发和传递过程和机制有所了解, 但对于捕光色素分子中哪些物理参数在此过程中起作用, 以及如何起作用则不是很清楚。而要定量描述捕光色素分子对光能吸收和利用效率, 就需要考虑植物叶绿体中的捕光色素分子数(表示植物叶片可以吸收光子的捕光色素分子数, 单位为μmol)、捕光色素分子的光能吸收截面(表示色素分子吸收光能的几率, 单位为m2)、捕光色素分子处于激发态退激发的平均寿命(表示色素分子吸收光子后由基态跃迁到高能态后可以停留的时间, 单位为s)、处于不同能态的简并度(表示色素分子吸收光能后处于基态和激发态的权重, 也称统计权重, 无量纲)、电子从锰聚合体通过D1蛋白亚基上161位的酪氨酸残基(D1-161Tyr)传到P680的时间(单位为s)、激子从捕光色素分子传递到PSII的时间(单位为s)和PSII的开闭概率(PSII的光化学量子效率)等参数, 因为这些物理参数在光合作用的原初反应过程中起着重要的作用。所以, 缺乏这些物理参数的光响应机理模型或生化模型应该说是不全面的。

5 存在的问题与展望

迄今为止, 人们提出了许多光合作用对光和CO2响应模型, 并在改进这些模型方面做了大量研究, 这些工作不仅对植物的生理和生态研究具有重要的作用, 而且在很大程度上提高了人们对植物生理生化以及环境对植物影响的认识, 为提高植物的光能利用率和应对全球CO2浓度升高对环境的影响奠定了基础。

尽管人们对光合作用光和CO2响应模型的研究取得了很大进展, 但仍存在以下问题: 1)光合作用对光和CO2响应的经验模型只涉及植物对光能和CO2的利用; 光合作用对CO2响应的生化模型则涉及当光合有效辐射一定时植物所同化的CO2量, 考虑了光、CO2浓度和温度等环境因子对光合速率的影响。2)光合作用对光和CO2响应的经验模型估算的参数属于显性参数, 拟合结果可以与实测值进行比较, 而生化模型通过拟合CO2响应曲线得到的参数除了电子传递速率和光下暗呼吸速率外, 其他2个是隐性参数, 这些隐性参数无法由实验直接测量。3)光合作用的光响应模型和生化模型没有有机地联系起来, 即这些模型仅仅各自研究了植物的光能吸收和CO2的同化问题, 无法用这些模型研究和解决植物的光抑制(Long et al., 1994; Weis & Berry, 1987; Osmond, 1994; Hymus et al., 2001; Al-Taweel et al., 2007; Takahashi et al., 2009)、光适应(Marra, 1978a, 1978b; Geider et al., 1998; He & Liu, 2005; Navarro-Sampedro et al., 2008)和荧光(Lichtenthaler, 1992; Govindjee, 1995; Krause & Weis, 1991; Inoué et al., 2002; Sekatskii, 2004)等问题。

针对上述问题, 认为今后的工作应该侧重以下几个方面: 1)考虑光合作用中的原初反应。原初反应的实质是捕光天线色素分子量子态的改变, 它涉及到能量的吸收、退激发和传递。因此, 我们必须考虑PSII捕光天线色素分子的光能吸收、传递、退激发、光能转化、电荷分离和电子传递等过程在光合作用中的作用。而要考虑PSII捕光天线色素分子在光合作用中的作用就必须引入PSII捕光天线色素分子的光能吸收截面、PSII捕光天线色素分子激发态的平均寿命、PSII捕光天线色素分子的能级简并度、PSII捕光天线色素分子数、电子从锰聚合体通过Yz传到P680的时间, 激子从捕光色素分子传递到PSII的时间和PSII的开闭概率等参数。2)需要从捕光色素分子吸收光能这个过程出发, 以PSII捕光天线色素分子为基本单元, 从PSII捕光天线色素分子的光能吸收出发, 追踪单个光子从吸收、分子激发、分子退激发产生荧光和热辐射、共振传递到PSII、激发P680发生电荷分离、P680把电子传递给脱镁叶绿素等过程。通过光能吸收、传递和转化等物理和化学过程, 运用量子力学中的能级跃迁理论和统计物理学中的费米-狄拉克统计原理研究PSII捕光天线色素分子吸收光能后处于激发态后退激发产生荧光和激发能传递到光反应中心的比率, 才有可能构建光合作用对光响应的机理模型。3)构建的光合作用机理模型不仅应该包含捕光色素分子的物理参数, 还应该包含同化力形成和碳同化能力这两个基本过程中所涉及的生化参数。这样就可以用这个光合作用机理模型解释植物的光适应等问题, 同时还应能合理地解释植物在不同生境下的荧光问题、光抑制的可逆失活和不可逆失活问题。4)利用这个机理模型可以研究植物光能利用率的限制因素, 同时还可以用此研究植物在全球CO2浓度和温度升高过程中的适应性。

致谢

国家自然科学基金(30960031)和江西省自然科学基金(2009GZN0076)共同资助。法国LSCE- CEA的李龙辉博士曾阅读本文文稿并提出建议和修改意见, 特此致谢。

参考文献

Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A (2007).

A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light

Plant Physiology, 145, 258-265.

DOI      URL     PMID      [本文引用: 1]

During photoinhibition of photosystem II (PSII) in cyanobacteria, salt stress inhibits the repair of photodamaged PSII and, in particular, the synthesis of the D1 protein (D1). We investigated the effects of salt stress on the repair of PSII and the synthesis of D1 in wild-type tobacco (Nicotiana tabacum 'Xanthi') and in transformed plants that harbored the katE gene for catalase from Escherichia coli. Salt stress due to NaCl enhanced the photoinhibition of PSII in leaf discs from both wild-type and katE-transformed plants, but the effect of salt stress was less significant in the transformed plants than in wild-type plants. In the presence of lincomycin, which inhibits protein synthesis in chloroplasts, the activity of PSII decreased rapidly and at similar rates in both types of leaf disc during photoinhibition, and the observation suggests that repair of PSII was protected by the transgene-coded enzyme. Incorporation of [(35)S]methionine into D1 during photoinhibition was inhibited by salt stress, and the transformation mitigated this inhibitory effect. Northern blotting revealed that the level of psbA transcripts was not significantly affected by salt stress or by the transformation. Our results suggest that salt stress enhanced photoinhibition by inhibiting repair of PSII and that the katE transgene increased the resistance of the chloroplast's translational machinery to salt stress by scavenging hydrogen peroxide.

Awada T, Radoglou K, Fotelli MN, Constantinidou HIA (2003).

Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes

Tree Physiology, 23, 33-41.

DOI      URL     PMID      [本文引用: 1]

Seasonal dynamics of net photosynthesis (Anet) in 2-year-old seedlings of Pinus brutia Ten., Pinus pinea L. and Pinus pinaster Ait. were investigated. Seedlings were grown in the field in two light regimes: sun (ambient light) and shade (25% of photosynthetically active radiation (PAR)). Repeated measures analyses over a 12-month period showed that Anet varied significantly among species and from season to season. Maximum Anet in sun-acclimated seedlings was low in winter (yet remained positive) and peaked during summer. Maximum Anet was observed in June in P. pinea (12 micromol m-2 s-1), July in P. pinaster (23 micromol m-2 s-1) and August in P. brutia (20 micromol m-2 s-1). Photosynthetic light response curves saturated at a PAR of 200-300 micromol m-2 s-1 in winter and in shade-acclimated seedlings in summer. Net photosynthesis in sun-acclimated seedlings did not saturate at PAR up to 1900 micromol m-2 s-1 in P. brutia and P. pinaster. Minimum air temperature of the preceding night was apparently one of the main factors controlling Anet during the day. In shade-acclimated seedlings, photosynthetic rates were reduced by 50% in P. brutia and P. pinaster and by 20% in P. pinea compared with those in sun-acclimated seedlings. Stomatal conductance was generally lower in shaded seedlings than in seedlings grown in the sun, except on days with a high vapor pressure deficit. Total chlorophyll concentration per unit leaf area, specific leaf area (SLA) and height significantly increased in P. pinea in response to shade, but not in P. pinaster or P. brutia. In response to shade, P. brutia showed a significant increase in total chlorophyll concentration but not SLA. Photosynthetic and growth data indicate that P. pinaster and P. brutia are more light-demanding than P. pinea.

Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001).

Improved temperature response functions for models of Rubisco-limited photosynthesis

Plant, Cell & Environment, 24, 253-259.

[本文引用: 6]

Bernacchi GJ, Pimentel C, Long SP (2003).

In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis

Plant, Cell & Environment, 26, 1419-1430.

[本文引用: 2]

Bassman J, Zwier JC (1991).

Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa × P. deltoids clone

Tree Physiology, 8, 145-159.

URL     PMID      [本文引用: 5]

Blackman FF (1905).

Optima and limiting factors

Annals of Botany, 19, 281-295.

[本文引用: 2]

Baly EC (1935).

The kinetics of photosynthesis

Proceedings of the Royal Society of London Series B (Biological Sciences), 117, 218-239.

[本文引用: 2]

Cai SQ, Xu DQ (2000).

Relationship between the CO2 compensation point and photoresp iration in soybean leaves

Acta Phytophysiologica Sinica, 26, 545-550.

[本文引用: 1]

Cao XD (曹雪丹), Li WH (李文华), Lu ZM (鲁周民), Zhang ZL (张忠良), Wu WX (吴万兴) (2008).

The photosynthetic characteristics of Eriobotrya japonica in northern marginal cultivation area in Spring

Journal of Northwest Forestry University (西北林学院学报), 23(6), 33-37.(in Chinese with English abstract)

[本文引用: 1]

Chen CP, Zhu XG, Long SP (2008).

The effect of leaf-level spatial variability in photosynthetic capacity on biochemical parameter estimates using the Farquhar Model: a theoretical analysis

Plant Physiology, 148, 1139-1147.

DOI      URL     PMID      [本文引用: 1]

Application of the widely used Farquhar model of photosynthesis in interpretation of gas exchange data assumes that photosynthetic properties are homogeneous throughout the leaf. Previous studies showed that heterogeneity in stomatal conductance (g(s)) across a leaf could affect the shape of the measured leaf photosynthetic CO(2) uptake rate (A) versus intercellular CO(2) concentration (C(i)) response curve and, in turn, estimation of the critical biochemical parameters of this model. These are the maximum rates of carboxylation (V(c,max)), whole-chain electron transport (J(max)), and triose-P utilization (V(TPU)). The effects of spatial variation in V(c,max,) J(max), and V(TPU) on estimation of leaf averages of these parameters from A-C(i) curves measured on a whole leaf have not been investigated. A mathematical model incorporating defined degrees of spatial variability in V(c,max) and J(max) was constructed. One hundred and ten theoretical leaves were simulated, each with the same average V(c,max) and J(max), but different coefficients of variation of the mean (CV(VJ)) and varying correlation between V(c,max) and J(max) (Omega). Additionally, the interaction of variation in V(c,max) and J(max) with heterogeneity in V(TPU), g(s), and light gradients within the leaf was also investigated. Transition from V(c,max)- to J(max)-limited photosynthesis in the A-C(i) curve was smooth in the most heterogeneous leaves, in contrast to a distinct inflection in the absence of heterogeneity. Spatial variability had little effect on the accuracy of estimation of V(c,max) and J(max) from A-C(i) curves when the two varied in concert (Omega = 1.0), but resulted in underestimation of both parameters when they varied independently (up to 12.5% in V(c,max) and 17.7% in J(max) at CV(VJ) = 50%; Omega = 0.3). Heterogeneity in V(TPU) also significantly affected parameter estimates, but effects of heterogeneity in g(s) or light gradients were comparatively small. If V(c,max) and J(max) derived from such heterogeneous leaves are used in models to project leaf photosynthesis, actual A is overestimated by up to 12% at the transition between V(c,max)- and J(max)-limited photosynthesis. This could have implications for both crop production and Earth system models, including projections of the effects of atmospheric change.

Damesin C (2003).

Respiration and photosynthesis characteristics of current 2 year stems of Fagus sylvatica: from the seasonal pattern to an annual balance

New Phytologist, 158, 465-475.

[本文引用: 1]

Ethier GJ, Livingston NJ (2004).

On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model

Plant, Cell & Environment, 27, 137-153.

[本文引用: 3]

Farquhar GD, Caemmerers S, Berry JA (1980).

A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species

Planta, 149, 78-90.

DOI      URL     PMID      [本文引用: 2]

Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.

Geider RJ, MacIntyre HL, Kana TM (1998).

A dynamic regulatory model of phytoplanktonic acclimation to, nutrients and temperatures

Limnology and Oceanography, 43, 679-694.

[本文引用: 1]

Govindjee (1995).

Sixty-three years since Kautsky: chlorophyll a fluorescence

Australian Journal of Plant Physiology, 22, 131-160.

[本文引用: 1]

Harley PC, Sharkey TD (1991).

An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast

Photosynthesis Research, 27, 169-178.

[本文引用: 2]

Harley PC, Thomas RB, Reynolds JF, Strain BR (1992).

Modelling photosynthesis of cotton grown in elevated CO2

Plant, Cell & Environment, 15, 271-282.

[本文引用: 3]

He QY, Liu Y (2005).

Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation

Genes and Development, 19, 2888-2899.

DOI      URL     PMID      [本文引用: 1]

Blue light regulates many molecular and physiological activities in a large number of organisms. In Neurospora crassa, a eukaryotic model system for studying blue-light responses, the transcription factor and blue-light photoreceptor WHITE COLLAR-1 (WC-1) and its partner WC-2 are central to blue-light sensing. Neurospora's light responses are transient, that is, following an initial acute phase of induction, light-regulated processes are down-regulated under continuous illumination, a phenomenon called photoadaptation. The molecular mechanism(s) of photoadaptation are not well understood. Here we show that a common mechanism controls the light-induced transcription of immediate early genes (such as frq, al-3, and vvd) in Neurospora, in which light induces the binding of identical large WC-1/WC-2 complexes (L-WCC) to the light response elements (LREs) in their promoters. Using recombinant proteins, we show that the WC complexes are functional without the requirement of additional factors. In vivo, WCC has a long period photocycle, indicating that it cannot be efficiently used for repeated light activation. Contrary to previous expectations, we demonstrate that the light-induced hyperphosphorylation of WC proteins inhibits bindings of the L-WCC to the LREs. We show that, in vivo, due to its rapid hyperphosphorylation, L-WCC can only bind transiently to LREs, indicating that WCC hyperphosphorylation is a critical process for photoadaptation. Finally, phosphorylation was also shown to inhibit the LRE-binding activity of D-WCC (dark WC complex), suggesting that it plays an important role in the circadian negative feedback loop.

Hu WH (胡文海), Hu XH (胡雪华), Zeng JJ (曾建军), Duan ZH (段智辉), Ye ZP (叶子飘) (2008).

Effects of drought on photosynthetic characteristics in two pepper cultivars

Journal of Huazhong Agricultural University (华中农业大学学报), 27, 776-781. (in Chinese with English abstract)

[本文引用: 1]

Huang HY (黄红英), Dou XY (窦新永), Sun PY (孙蓓育), Deng B (邓斌), Wu GJ (吴国江), Peng CL (彭长连) (2009).

Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer

Acta Ecologica Sinica (生态学报), 29, 2861-2867. (in Chinese with English abstract)

[本文引用: 4]

Hou ZY (侯智勇), Hong W (洪伟), Li J (李键), Lin H (林晗), Fan HL (范海兰), Chen C (陈灿), Wu CZ (吴承祯) (2009).

Study on light response curves of photosynthesis of different Ecucalyptus clones

Journal of Fujian College of Forestry (福建农林学院学报), 29, 97-102. (in Chinese with English abstract)

[本文引用: 1]

Hymus GJ, Baker NR, Long SP (2001).

Growth in elevated CO2 can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition

Plant Physiology, 127, 1204-1211.

URL     PMID      [本文引用: 2]

Inoué S, Shimomura O, Goda M, Shribak M, Tran PT (2002).

Fluorescence polarization of green fluorescence protein

Proceedings of the National Academy of Sciences of the United States of America, 99, 4272-4277.

DOI      URL     PMID      [本文引用: 1]

We report here the striking anisotropy of fluorescence exhibited by crystals of native green fluorescence protein (GFP). The crystals were generated by water dialysis of highly purified GFP obtained from the jellyfish Aequorea. We find that the fluorescence becomes six times brighter when the excitation, or emission, beam is polarized parallel (compared with perpendicular) to the crystal long axis. Thus, the major dipoles of the fluorophores must be oriented very nearly parallel to the crystal long axis. Observed in a polarizing microscope between parallel polars instead of either a polarizer or analyzer alone, the fluorescence polarization ratio rises to an unexpectedly high value of about 30:1, nearly the product of the fluorescence excitation and emission ratios, suggesting a sensitive method for measuring fluorophore orientations, even of a single fluorophore molecule. We have derived equations that accurately describe the relative fluorescence intensities of crystals oriented in various directions, with the polarizer and analyzer arranged in different configurations. The equations yield relative absorption and fluorescence coefficients for the four transition dipoles involved. Finally, we propose a model in which the elongated crystal is made of GFP molecules that are tilted 60 degrees to align the fluorophores parallel to the crystal long axis. The unit layer in the model may well correspond to the arrangement of functional GFP molecules, to which resonant energy is efficiently transmitted from Ca2+-activated aequorin, in the jellyfish photophores.

Ishikita H, Loll B, Biesiadka J, Saenger W, Knapp EW (2005).

Redox potentials of chlorophylls in the photosystem II reaction center

Biochemistry, 44, 4118-4124.

URL     PMID      [本文引用: 1]

Jia CF (贾彩凤), Li AL (李艾莲) (2008).

Studies on photosynthetic characteristics of medicinal plant Fagoyrum cymosum

China Journal of Chinese Materia Medica (中国中药杂志), 33(2), 129-132. (in Chinese with English abstract)

[本文引用: 1]

Kyei-Boahen S, Lada R, Astatkie T, Gordon R, Caldwell C (2003).

Photosynthetic response of carrots to varying irradiances

Photosynthetica, 41, 1-5.

[本文引用: 2]

Krause GH, Weis E (1991).

Chlorophyll fluorescence and photosynthesis: the basics

Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313-349.

[本文引用: 1]

Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006).

Photosynthesis, productivity, and yield of maize are not affected by Open-Air elevation of CO2 concentration in the absence of drought

Plant Physiology, 140, 779-790.

URL     PMID      [本文引用: 2]

Li WC (李伟成), Wang SD (王树东), Zhong ZK (钟哲科), Ding XC (丁兴萃), Zhou Y (周妍) (2009).

Application of several empirical models in simulating photosynthesis light response of two sympodial bamboos

Journal of Bamboo Research (竹子研究汇刊), 28(3), 20-24. (in Chinese with English abstract)

[本文引用: 1]

Lichtenthaler HK (1992).

The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics

Photosynthetica, 27, 45-55.

[本文引用: 1]

Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004).

Crystal structure of spinach major light-harvesting complex at 2.72Å resolution

Nature, 428, 287-292.

DOI      URL     [本文引用: 1]

Lombardini L, Restrepo-Diaz H, Volder A (2009).

Photosynthetic light response and epidermal characteristics of sun and shade pecan leaves

Journal of the Americal Society for Horticultural Science, 134, 372-378.

[本文引用: 1]

Long SP, Bernacchi CJ (2003).

Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error

Journal of Experimental Botany, 54, 2393-2401.

DOI      URL     PMID      [本文引用: 4]

The principles, equipment and procedures for measuring leaf and canopy gas exchange have been described previously as has chlorophyll fluorescence. Simultaneous measurement of the responses of leaf gas exchange and modulated chlorophyll fluorescence to light and CO2 concentration now provide a means to determine a wide range of key biochemical and biophysical limitations on photo synthesis in vivo. Here the mathematical frameworks and practical procedures for determining these parameters in vivo are consolidated. Leaf CO2 uptake (A) versus intercellular CO2 concentration (Ci) curves may now be routinely obtained from commercial gas exchange systems. The potential pitfalls, and means to avoid these, are examined. Calculation of in vivo maximum rates of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) carboxylation (Vc,max), electron transport driving regeneration of RuBP (Jmax), and triose-phosphate utilization (VTPU) are explained; these three parameters are now widely assumed to represent the major limitations to light-saturated photosynthesis. Precision in determining these in intact leaves is improved by the simultaneous measurement of electron transport via modulated chlorophyll fluorescence. The A/Ci response also provides a simple practical method for quantifying the limitation that stomata impose on CO2 assimilation. Determining the rate of photorespiratory release of oxygen (Rl) has previously only been possible by isotopic methods, now, by combining gas exchange and fluorescence measurements, Rl may be determined simply and routinely in the field. The physical diffusion of CO2 from the intercellular air space to the site of Rubisco in C3 leaves has long been suspected of being a limitation on photosynthesis, but it has commonly been ignored because of the lack of a practical method for its determination. Again combining gas exchange and fluorescence provides a means to determine mesophyll conductance. This method is described and provides insights into the magnitude and basis of this limitation.

Long SP, Humpheris S, Falkowski PG (1994).

Photoinhibition of photosynthesis in nature

Annual Review of Plant Physiology and Plant Molecular Biology, 45, 633-662.

DOI      URL     [本文引用: 1]

Marra J (1978a).

Effect of short term variation in light intensity on photosynthesis of a marine phytoplankton: a laboratory simulation study

Marine Biology, 46, 191-202.

DOI      URL     [本文引用: 1]

Marra J (1978b).

Phytoplankton photosynthesis response vertical movement in a mixing layer

Marine Biology, 46, 203-208.

DOI      URL     [本文引用: 1]

Moreno-Sotomayor A, Weiss A, Paparozzi ET, Arkebauer TJ (2002).

Stability of leaf anatomy and light response curves of field grown maize as a function of age and nitrogen status

Journal of Plant Physiology, 159, 819-826.

DOI      URL     [本文引用: 1]

Navarro-Sampedro L, Yanofsky C, Corrochano LM (2008).

A genetic selection for Neurospora crassa mutants altered in their light regulation of transcription

Genetics, 178, 171-183.

DOI      URL     PMID      [本文引用: 1]

Transcription of the Neurospora crassa gene con-10 is induced during conidiation and following exposure of vegetative mycelia to light, but light activation is transient due to photoadaptation. We describe mutational analyses of photoadaptation using a N. crassa strain bearing a translational fusion of con-10, including its regulatory region, to a selectable bacterial gene conferring hygromycin resistance (hph). Growth of this strain was sensitive to hygromycin, upon continuous culture in the light. Five mutants were isolated that were resistant to hygromycin when cultured under constant light. Three mutant strains displayed elevated, sustained accumulation of con-10::hph mRNA during continued light exposure, suggesting that they bear mutations that reduce or eliminate the presumed light-dependent repression mechanism that blocks con-10 transcription upon prolonged illumination. These mutations altered photoadaptation for only a specific group of genes (con-10 and con-6), suggesting that regulation of photoadaptation is relatively gene specific. The mutations increased light-dependent mRNA accumulation for genes al-1, al-2, and al-3, each required for carotenoid biosynthesis, resulting in a threefold increase in carotenoid accumulation following continuous light exposure. Identification of the altered gene or genes in these mutants may reveal novel proteins that participate in light regulation of gene transcription in fungi.

Osmond CB (1994).

What is photoinhibition? Some insights from comparisons of shade and sun plants

In: Baker NR ed. Photoinhibition of Photosynthesis: from Molecular Mechanisms to Field BIOS Scientific Publishers, Oxford. 1-24.

[本文引用: 1]

Posada JM, Lechowicz MJ, Kitajima K (2009).

Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content

Annals of Botany, 103, 795-805.

DOI      URL     PMID      [本文引用: 1]

BACKGROUND AND AIMS: Theory for optimal allocation of foliar nitrogen (ONA) predicts that both nitrogen concentration and photosynthetic capacity will scale linearly with gradients of insolation within plant canopies. ONA is expected to allow plants to efficiently use both light and nitrogen. However, empirical data generally do not exhibit perfect ONA, and light-use optimization per se is little explored. The aim was to examine to what degree partitioning of nitrogen or light is optimized in the crowns of three tropical canopy tree species. METHODS: Instantaneous photosynthetic photon flux density (PPFD) incident on the adaxial surface of individual leaves was measured along vertical PPFD gradients in tree canopies at a frequency of 0.5 Hz over 9-17 d, and summed to obtain the average daily integral of PPFD for each leaf to characterize its insolation regime. Also measured were leaf N per area (N(area)), leaf mass per area (LMA), the cosine of leaf inclination and the parameters of the photosynthetic light response curve [photosynthetic capacity (A(max)), dark respiration (R(d)), apparent quantum yield (phi) and curvature (theta)]. The instantaneous PPFD measurements and light response curves were used to estimate leaf daily photosynthesis (A(daily)) for each leaf. KEY RESULTS: Leaf N(area) and A(max) changed as a hyperbolic asymptotic function of the PPFD regime, not the linear relationship predicted by ONA. Despite this suboptimal nitrogen partitioning among leaves, A(daily) did increase linearly with PPFD regime through co-ordinated adjustments in both leaf angle and physiology along canopy gradients in insolation, exhibiting a strong convergence among the three species. CONCLUSIONS: The results suggest that canopy tree leaves in this tropical forest optimize photosynthetic use of PPFD rather than N per se. Tropical tree canopies then can be considered simple 'big-leaves' in which all constituent 'small leaves' use PPFD with the same photosynthetic efficiency.

Prado CHBA, Moraes JAPV (1997).

Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition

Photosynthetica, 33, 103-112.

DOI      URL     [本文引用: 4]

Raszewski G, Saenger W, Renger T (2005).

Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor

Biophysiology Journal, 88, 986-998.

[本文引用: 2]

Robert ES, Mark A, John SB (1984).

Kok effect and the quantum yield of photosynthesis

Plant Physiology, 75, 95-101.

URL     PMID      [本文引用: 1]

Sekatskii SK (2004).

Fluorescence resonance energy transfer scanning near-field optical microscopy

Philosophical Transactions of the Royal Society A: Mathematical Physical & Engineering Sciences, 362, 901-919.

[本文引用: 1]

Sharkey TD (1985).

O2-insensitive photosynthesis in C3 plants. its occurrence and a possible explanation

Plant Physiology, 78, 71-75.

DOI      URL     PMID      [本文引用: 1]

Leaves of C(3) plants which exhibit a normal O(2) inhibition of CO(2) fixation at less than saturating light intensity were found to exhibit O(2)-insensitive photosynthesis at high light. This behavior was observed in Phaseolus vulgaris L., Xanthium strumarium L., and Scrophularia desertorum (Shaw.) Munz. O(2)-insensitive photosynthesis has been reported in nine other C(3) species and usually occurred when the intercellular CO(2) pressure was about double the normal pressure. A lack of O(2) inhibition of photosynthesis was always accompanied by a failure of increased CO(2) pressure to stimulate photosynthesis to the expected degree. O(2)-insensitive photosynthesis also occurred after plants had been water stressed. Under such conditions, however, photosynthesis became O(2) and CO(2) insensitive at physiological CO(2) pressures. Postillumination CO(2) exchange kinetics showed that O(2) and CO(2) insensitivity was not the result of elimination of photorespiration.It is proposed that O(2) and CO(2) insensitivity occurs when the concentration of phosphate in the chloroplast stroma cannot be both high enough to allow photophosphorylation and low enough to allow starch and sucrose synthesis at the rates required by the rest of the photosynthetic component processes. Under these conditions, the energy diverted to photorespiration does not adversely affect the potential for CO(2) assimilation.

Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007).

Fitting photosynthetic carbon dioxide response curves for C3 leaves

Plant, Cell & Environment, 30, 1035-1040.

DOI      URL     PMID      [本文引用: 1]

Photosynthetic responses to carbon dioxide concentration can provide data on a number of important parameters related to leaf physiology. Methods for fitting a model to such data are briefly described. The method will fit the following parameters: V(cmax), J, TPU, R(d) and g(m)[maximum carboxylation rate allowed by ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), rate of photosynthetic electron transport (based on NADPH requirement), triose phosphate use, day respiration and mesophyll conductance, respectively]. The method requires at least five data pairs of net CO(2) assimilation (A) and [CO(2)] in the intercellular airspaces of the leaf (C(i)) and requires users to indicate the presumed limiting factor. The output is (1) calculated CO(2) partial pressure at the sites of carboxylation, C(c), (2) values for the five parameters at the measurement temperature and (3) values adjusted to 25 degrees C to facilitate comparisons. Fitting this model is a way of exploring leaf level photosynthesis. However, interpreting leaf level photosynthesis in terms of underlying biochemistry and biophysics is subject to assumptions that hold to a greater or lesser degree, a major assumption being that all parts of the leaf are behaving in the same way at each instant.

Springer CJ, Thomas RB (2007).

Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment

Tree Physiology, 27, 25-32.

DOI      URL     PMID      [本文引用: 1]

We examined the photosynthetic responses of four species of saplings growing in the understory of the Duke Forest FACE experiment during the seventh year of exposure to elevated CO2 concentration ([CO2]). Saplings of these same species were measured in the first year of the Duke Forest FACE experiment and at that time showed only seasonal fluctuations in acclimation of photosynthesis to elevated [CO2]. Based on observations from the Duke Forest FACE experiment, we hypothesized that after seven years of exposure to elevated [CO2] significant photosynthetic down-regulation would be observed in these tree species. To test our hypothesis, photosynthetic CO2-response and light-response curves, along with chlorophyll fluorescence, chlorophyll concentration and foliar N were measured twice during the summer of 2003. Exposure to elevated [CO2] continued to increase photosynthesis in all species measured after seven years of treatment with the greatest photosynthetic increase observed near saturating irradiances. In all species, elevated [CO2] increased electron transport efficiency but did not significantly alter carboxylation efficiency. Quantum yield estimated by light curves, chlorophyll concentration, and foliar nitrogen concentrations were unaffected by elevated [CO2]. Contrary to our hypothesis, there is little evidence of progressive N limitation of leaf-level processes in these understory tree species after seven years of exposure to elevated [CO2] in the Duke Forest FACE experiment.

Sun XS (孙旭生), Lin Q (林琪), Jiang W (姜雯), Li LY (李玲燕), Zhai YJ (翟延举) (2009).

Effects of different amount of nitrogen supply on the CO2-response curve in flag leaves of super high-yield winter wheat at flowering stage

Journal of Triticeae Crops (麦类作物学报), 29, 303-307. (in Chinese with English abstract)

[本文引用: 1]

Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009).

How does cyclic electron flow alleviate photoinhibition in Arabidopsis?

Plant Physiology, 149, 1560-1567.

DOI      URL     PMID      [本文引用: 1]

Cyclic electron flow (CEF) around photosystem I has a role in avoiding photoinhibition of photosystem II (PSII), which occurs under conditions in which the rate of photodamage to PSII exceeds the rate of its repair. However, the molecular mechanism underlying how CEF contributes to photoprotection is not yet well understood. We examined the effect of impairment of CEF and thermal energy dissipation (qE) on photoinhibition using CEF (pgr5) and qE (npq1 and npq4) mutants of Arabidopsis (Arabidopsis thaliana) exposed to strong light. Impairment of CEF by mutation of pgr5 suppressed qE and accelerated photoinhibition. We found that impairment of qE, by mutations of pgr5, npq1, and npq4, caused inhibition of the repair of photodamaged PSII at the step of the de novo synthesis of the D1 protein. In the presence of the chloroplast protein synthesis inhibitor chloramphenicol, impairment of CEF, but not impairment of qE, accelerated photoinhibition, and a similar effect was obtained when leaves were infiltrated with the protonophore nigericin. These results suggest that CEF-dependent generation of DeltapH across the thylakoid membrane helps to alleviate photoinhibition by at least two different photoprotection mechanisms: one is linked to qE generation and prevents the inhibition of the repair of photodamaged PSII at the step of protein synthesis, and the other is independent of qE and suppresses photodamage to PSII.

Thornley JHM (1976). Mathematical Models in Plant Physiology. Academic Press, London. 86-110.

[本文引用: 2]

van der Weij-de Wit CD, Doust AB, van Stokkum IH, Dekker JP, Wilk KE, Curmi PM, van Grondelle R (2008).

Phycocyanin sensitizes both photosystem I and photosystem II in cryptophyte Chroomonas CCMP270 cells

Biophysio- logy Journal, 94, 2423-2433.

[本文引用: 1]

van der Weij-de Wit CD, Ihalainen JA, van Grondelle R, Dekker JP (2007).

Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy

Photosynthesis Research, 93, 173-182.

URL     PMID      [本文引用: 1]

Vasil’ev S, Bruce D (2006).

A protein dynamics study of photosystem II: the effects of protein conformation on reaction center function

Biophysiology Journal, 90, 3062-3073.

[本文引用: 1]

von Caemmerer S (2000). Biochemical Models of Leaf Photosynthesis, Techniques in Plant Sciences No. 2. CSIRO Publishing, Collingwood, Victoria, Australia. 1-165.

[本文引用: 3]

von Caemmerer S, Farquhar GD (1981).

Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves

Planta, 153, 376-387.

DOI      URL     PMID      [本文引用: 2]

A series of experiments is presented investigating short term and long term changes of the nature of the response of rate of CO2 assimilation to intercellular p(CO2). The relationships between CO2 assimilation rate and biochemical components of leaf photosynthesis, such as ribulose-bisphosphate (RuP2) carboxylase-oxygenase activity and electron transport capacity are examined and related to current theory of CO2 assimilation in leaves of C3 species. It was found that the response of the rate of CO2 assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at low and high intercellular p(CO2). In longer term changes in CO2 assimilation rate, induced by different growth conditions, the initial slope of the response of CO2 assimilation rate to intercellular p(CO2) could be correlated to in vitro measurements of RuP2 carboxylase activity. Also, CO2 assimilation rate at high p(CO2) could be correlated to in vitro measurements of electron transport rate. These results are consistent with the hypothesis that CO2 assimilation rate is limited by the RuP2 saturated rate of the RuP2 carboxylase-oxygenase at low intercellular p(CO2) and by the rate allowed by RuP2 regeneration capacity at high intercellular p(CO2).

Wang JL (王建林), Yu GR (于贵瑞), Wang BL (王伯伦), Qi H (齐华), Xu ZJ (徐正进) (2005).

Response of photosynthetic rate and stomatal conductance of rice to light intensity and CO2 concentration in Northern China

Acta Phytoecologica Sinica (植物生态学报), 29, 16-25. (in Chinese with English abstract)

[本文引用: 1]

Wang ML (王满莲), Feng YL (冯玉龙), Li X (李新) (2006).

Effects of soil phosphorus level on morphological and photosynthetic characteristics of Ageratina adenophora and Chromolaena odorata

Chinese Journal of Applied Ecology (应用生态学报), 17, 602-606. (in Chinese with English abstract)

[本文引用: 2]

Wang ZL (王照兰), Yang C (杨持), Du JC (杜建材), Hu HF (胡卉芳), Zhao LL (赵丽丽), Mao XT (毛小涛) (2009).

Photosynthetic characteristics and photo-adapt ability of four Melilotoides ruthenica ecotypes

Chinese Journal of Plant Ecology (生态学杂志), 28, 1035-1040. (in Chinese with English abstract)

[本文引用: 1]

Watling JR, Press MC, Quick WP (2000).

Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum

Plant Physiology, 123, 1143-1152.

[本文引用: 4]

Weis E, Berry JA (1987).

Quantum efficiency of PSII in relation to energy dependent quenching of chlorophyll fluorescence

Biochimica Biophysica Acta, 894, 198-208.

[本文引用: 1]

Xu DQ (许大全) (2002). Photosynthetic Efficiency (光合作用效率). Shanghai Science and Technology Press, Shanghai. 15. (in Chinese)

[本文引用: 1]

Xu CH (徐春和), Mi HL (米华玲) (2001).

The primary reaction of photosynthesis

In: Yu SW (余叔文), Tang ZC (汤章城) eds. Plant Physiology and Molecular Biology (植物生理与分子生物学). Science Press, Beijing. 188-197. (in Chinese)

[本文引用: 1]

Yan GG (严国光) (1987).

Light energy absorption and transmission

In: Yan GG (严国光), Zhou PZ (周佩珍), Guo C (郭础), Dai YL (戴云玲) eds. Primary Process of Photosynthesis (光合作用的原初过程). Science Press, Beijing. 62-102. (in Chinese)

[本文引用: 1]

Ye ZP (2007).

A new model for relationship between light intensity and the rate of photosynthesis in Oryza sativa

Photosynthetica, 45, 637-640.

DOI      URL     [本文引用: 3]

The calculated maximum net photosynthetic rate (P N) at saturation irradiance (I m) of 1 314.13 μmol m−2 s−1 was 25.49 μmol(CO2) m−2 s−1, and intrinsic quantum yield at zero irradiance was 0.103. The results fitted by nonrectangular hyperbolic model, rectangular hyperbolic method, binomial regression method, and the new model were compared. The maximum P N values calculated by nonrectangular hyperbolic model and rectangular hyperbolic model were higher than the measured values, and the I m calculated by nonrectangular hyperbolic model and rectangular hyperbolic model were less than measured values. Results fitted by new model showed that the response curve of P N to I was nonlinear at low I for Oryza sativa, P N increased nonlinearly with I below saturation value. Above this value, P N decreased nonlinearly with I.]]>

Ye ZP (叶子飘), Yu Q (于强) (2008).

Comparison of new and several classical models of photosynthesis in response to irradiance

Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 1356-1361. (in Chinese with English abstract)

[本文引用: 5]

Ye ZP, Yu Q (2008).

A coupled model of stomatal conductance and photosynthesis for winter wheat

Photosynthetica, 46, 637-640.

DOI      URL     [本文引用: 4]

The model couples stomatal conductance (g s) and net photosynthetic rate (P N) describing not only part of the curve up to and including saturation irradiance (I max), but also the range above the saturation irradiance. Maximum stomatal conductance (g smax) and I max can be calculated by the coupled model. For winter wheat (Triticum aestivum) the fitted results showed that maximum P N (P max) at 600 μmol mol−1 was more than at 350 μmol mol−1 under the same leaf temperature, which can not be explained by the stomatal closure at high CO2 concentration because g smax at 600 μmol mol−1 was less than at 350 μmol mol−1. The irradiance-response curves for winter wheat had similar tendency, e.g. at 25 °C and 350 μmol mol−1 both P N and g s almost synchronously reached the maximum values at about 1 600 μmol m−2 s−1. At 25 °C and 600 μmol mol−1 the I max corresponding to P max and g smax was 2 080 and 1 575 μmol m−2 s−1, respectively.]]>

Ye ZP, Zhao ZH (2008).

Primary application on a light-response model to describe light response curve of Bidens pilosa leaf net photosynthesis, grown at two different light intensities

Proceedings of the 6th Conference of Biomathematics. World Academic Press, England, UK. 889-892.

[本文引用: 7]

Ye ZP (叶子飘), Yu Q (于强) (2009).

Comparison of photosynthetic response to intercellular CO2 and air CO2

Chinese Journal of Ecology (生态学杂志), 28, 2233-2238. (in Chinese with English abstract)

[本文引用: 1]

Yu Q, Zhang YQ, Liu YF, Shi PL (2004).

Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes

Annals of Botany, 93, 435-441.

DOI      URL     PMID      [本文引用: 11]

BACKGROUND AND AIMS: The stomata are a key channel of the water cycle in ecosystems, and are constrained by both physiological and environmental elements. The aim of this study was to parameterize stomatal conductance by extending a previous empirical model and a revised Ball-Berry model. METHODS: Light and CO(2) responses of stomatal conductance and photosynthesis of winter wheat in the North China Plain were investigated under ambient and free-air CO(2) enrichment conditions. The photosynthetic photon flux density and CO(2) concentration ranged from 0 to 2000 micro mol m(-2) s(-1) and from 0 to 1400 micro mol mol(-1), respectively. The model was validated with data from a light, temperature and CO(2) response experiment. RESULTS: By using previously published hyperbolic equations of photosynthetic responses to light and CO(2), the number of parameters in the model was reduced. These response curves were observed diurnally with large variations of temperature and vapour pressure deficit. The model interpreted stomatal response under wide variations in environmental factors. CONCLUSIONS: Most of the model parameters, such as initial photon efficiency and maximum photosynthetic rate (P(max)), have physiological meanings. The model can be expanded to include influences of other physiological elements, such as leaf ageing and nutrient conditions, especially leaf nitrogen content.

Zhang ZF (张中峰), Huang YQ (黄玉清), Mo L (莫凌), You YM (尤业明), Jiao JF (焦继飞) (2009).

Comparison of two photosynthesis-light response curve—fitting models of the karst plant

Journal of Wuhan Botanical Research (武汉植物学研究), 27, 340-344. (in Chinese with English abstract)

[本文引用: 3]

Zhang XS (张雪松) , Shen SH (申双和), Song J (宋洁) (2009).

The vertical distribution of cotton leaf nitrogen content and photosynthetic characteristics in the North China Plain

Acta Ecologica Sinica (生态学报), 29, 1893-1898. (in Chinese with English abstract)

[本文引用: 1]

/