低压环境中植物的生长特性及适应机理研究进展
Review of advances on growth characteristics and adapting mechanism of plant at low atmospheric pressure
通讯作者: ** E-mail:guoshuangsheng@tom.com
收稿日期: 2011-06-13 接受日期: 2011-06-21 网络出版日期: 2011-08-01
Received: 2011-06-13 Accepted: 2011-06-21 Online: 2011-08-01
在低压受控生态生命保障系统中, 植物是关键的生物部件。在低压环境中, 植物会面临与常压不同的总大气压力(总压)、O2分压和CO2分压等大气环境条件。虽然植物在一定的低压环境中能完成完整的生长周期(从种子到种子), 但为了适应新的大气环境条件, 其生理生态特性均会发生改变。该文综述了低压对植物种子萌发、植株形态结构、生长特性、根系养分吸收、植株营养品质、叶片气体交换和乙烯(C2H4)释放的影响, 以及低压环境诱导的植物基因表达和相应的调控机理等, 从不同角度阐述了低压环境对植物生长的影响及植物对低压环境的适应机理, 并指出了将来需要进一步开展的试验研究方向。
关键词:
Plants are a key biological component in the controlled ecological life support system at low atmospheric pressure. Both total pressure and partial pressure (of oxygen, carbon dioxide, etc.) are reduced at low atmospheric pressure. Plants can complete their life cycle (from seed to seed) at low pressure, but their course of development is different from that at normal pressure, in adapting to changed atmospheric conditions. We summarized the effects of low pressure on seed germination, morphology, leaf structure, growth characteristics, nutrient uptake, plant nutrition, gas exchange and ethylene release. In addition, we summarized signal transmission and gene express induced by low pressure and discussed the latest research advances on growth characteristics and adapting mechanisms of plants at low atmospheric pressure. We also suggested future emphases and directions of study of plants at low atmospheric pressure.
Keywords:
本文引用格式
唐永康, 郭双生, 林杉, 艾为党, 秦利锋.
TANG Yong-Kang, GUO Shuang-Sheng, LIN Shan, AI Wei-Dang, QIN Li-Feng.
植物是CELSS中的关键生物部件, 在特定的人工生态环境(如低大气压、低氧、低光和低温等)中培养植物并研究其生长特性, 对于将来建立空间CELSS具有非常积极的意义(Rajapakse et al., 2009)。比如, 在月球/火星上建立低大气压力(低压) CELSS来培养植物时, 可以减少该系统的质量, 降低系统内外压差和结构难度, 减少系统的气体泄漏和消耗(Chamberlain, 2004; Nangalia & Habershon, 2004; Paul & Ferl, 2006; He et al., 2007)。因此, 低压环境中植物的生理生态特性及其适应机理是受控生态研究领域的热点和难点(Rajapakse et al., 2009)。目前, 主要的研究方向集中在低压环境下植物的种子萌发、生长发育特性(形态结构、生长特性、养分吸收、营养品质和叶片气体交换)、乙烯(C2H4)释放、基因表达和信号传导等方面。以下就这几个方面, 针对已有研究并结合本研究小组的工作进行综述。
1 低压对植物种子萌发的影响
种子萌发是植物生长发育的第一个阶段, 它对后续植株的营养生长和生殖生长有着重要的影响。在地球开放的生态环境中, 种子萌发必须具备4个基本条件, 即水分、温度、O2和光照。而在完全密封的环境中, 总大气压力(总压)降低会导致O2分压下降, 从而影响种子萌发。另外, 种子萌发过程涉及多种酶参与的生化反应, 这些生化反应需在一定的压力环境条件下进行, 而且O2的扩散速率也与总压密切相关, 所以O2分压和总压是影响低压密闭环境中植物种子萌发的两大主要因素。
O2是种子萌发时呼吸所需, 而呼吸作用是种子萌发时分解储藏物质和代谢所不可或缺的途径和能量供给的主要来源(刘双平和周青, 2009)。在一些特定环境条件下(如淹水和洪涝), 以及土壤微生物活动均会导致土壤空气中O2含量降低, 从而影响种子萌发(Pérez-Ramos & Marañón,2009)。常压下, 一般植物种子萌发需要土壤空气含氧量在10%以上, 当土壤空气含氧量在5%以下时(如灌水过深), 多数植物种子不能萌发(杨世杰, 2000)。而在低压下, 总压下降导致O2分压也下降, 从而可能抑制种子萌发。如在10-101 kPa总压下, 降低O2分压明显抑制了水稻(Oryza sativa)和拟南芥(Arabidopsis thaliana)种子萌发(Goto et al., 2002), 且不同种子对O2分压变化的敏感性也不一样, 如25 kPa总压和5 kPa O2分压下, 水稻种子萌发率为45%, 但拟南芥种子萌发率只有8%。与常压环境一样, 低压环境中O2分压降低可能同样抑制了种子萌发过程中与呼吸有关的酶的活性(如细胞色素氧化酶), 从而影响氧化磷酸化过程, 抑制了种子的能量代谢, 并最终限制了种子萌发(Spanarkel & Drew, 2002)。在总压一定的条件下, 高O2分压(40 kPa)也导致拟南芥种子的萌发时间延迟(Goto et al., 2002), 其作用机理尚不明确, 可能与高O2分压导致的自由基伤害有一定的关系(罗广华等, 1987)。另外, 种子萌发的临界O2分压也因植物种类不同而异, 一般适应在水里生长的植物(水稻)较旱作植物(拟南芥)所需临界O2分压低, 但这还与总压有关(种子萌发需要维持一定的临界总压)。
总压发生变化时, 种子萌发过程中一些生化反应的速度和平衡会受到影响, 甚至会发生改变。有研究发现, 当总压增加时(>101 kPa), 植物种子的细胞结构被破坏, 发芽率降低, 淀粉酶和超氧化物歧化酶(SOD)活性降低, 而过氧化物酶(POD)活性提高(言普等,2006)。当总压降低时(<101 kPa), 种子萌发过程中的生理生化反应与总压增加一样吗?Corey等(2002)曾提出, 低压可能影响了种子萌发过程中某些酶的活性和表达, 但并没有具体的研究结果给予支持。低压下, 不同植物的种子萌发需要一定的临界总压, 如拟南芥种子能够在25 kPa总压下萌发, 但在10 kPa总压下却不能萌发(Goto et al., 2002)。这主要是因为总压下降导致O2分压下降, 从而抑制了拟南芥种子的呼吸, 所以25 kPa总压是拟南芥种子萌发的临界点。另外, 种子萌发的临界总压也不因O2分压的增加而改变, 如O2分压为21 kPa时, 在23 kPa总压下拟南芥种子萌发同样受到抑制。O2分压一定, 总压降低似乎有利于种子萌发, 如O2分压为10 kPa时, 水稻在100 kPa总压下的萌发率仅为12%, 但在25 kPa总压下萌发率升高到80% (Goto et al., 2002)。其原因可能是低压下的气体扩散速率增加, 使更多的O2扩散进入种子内部, 促进了种子的呼吸作用。
2 低压对植物生长发育的影响
目前, 用于开展低压生长试验研究的植物包括: 小麦(Triticum aestivum)、大麦(Hordeum vulgare)、水稻、玉米(Zea mays)、绿豆(Phaseolus radiatus)、萝卜(Raphanus sativus)、番茄(Solanum lycopersicum)、生菜(Lactuca sativa)、菠菜(Spinacia oleracea)、拟南芥等。这些植物大多在25 kPa下能生长并适应该环境, 有些还能忍受10 kPa的总压环境条件(Andre & Massimino, 1992; Arai et al., 2003)。一般认为, 植物至少需要10 kPa总压和相应的O2分压、CO2分压和水蒸气分压才能正常生长发育, 但与常压相比, 低压环境中植物的形态结构、生长特性、根系养分吸收、植株营养品质和叶片气体交换等均有所不同(Goto et al., 2002)。
2.1 形态结构
生菜在10 kPa总压(pCO2 = 1 kPa、pO2 = 6 kPa和pH2O汽 = 3 kPa)下能生长并可以完成其生长周期(Rygalov et al., 2002), 在25 kPa总压时(pO2 = 12 kPa或21 kPa), 其形态与常压相比无明显差异(He et al., 2007); 小麦在20 kPa总压下的生长与常压下相比并没有什么差异, 但发育却有所不同(Andre & Massimino, 1992), 在50 kPa总压时(pO2 = 10 kPa), 小麦生长初期叶片有卷曲、发黄的现象(可能因为蒸腾速率过大造成), 分蘖增加, 根冠比增加, 生育期延长(唐永康等, 2008); 萝卜在33或66 kPa总压下生长(pO2 = 21 kPa), 其形态与常压相比无明显差异, 但根冠比增加(Levine et al., 2008)。在180 Pa CO2分压下, 萝卜在33或66 kPa总压中生长时, 叶片发黄、变红、变焦枯, 叶绿素含量降低(Gohil et al., 2010)。另外, 植物可能将低压下水分快速运动理解为干旱, 会产生诸如收拢叶片和增加根冠比等适应性反应来减少过多的水分损失(Chamberlain et al., 2002; Tang et al., 2010)。
植物生长的形态特征不仅受总压影响, 还与O2分压高低密切相关。当O2充足时, 总压变化对植物形态特征的影响较小, 但当O2缺乏时, 植物生长明显不同。一般来说, 植物在面临过低的O2分压胁迫时的生长表现为: 生长速率下降、植株矮小、叶片萎蔫、叶片老化并加厚、叶柄偏向上生长(乙烯累积造成); 植物干重下降, 尤其是根系干重下降明显; 根皮层组织细胞程序性死亡, 生成通气组织, 甚至向根际泌O2; 根基部产生不定根和气根, 根毛减少(Ramonell et al., 2001; 汪天等, 2006)。其中, 通气组织的形成减少了组织中消耗O2的细胞数量和单位体积组织的呼吸速率, 并且降低了内部O2的分散阻力, 从而促进了O2向内部组织的传递, 这是植物为免于缺O2的一种长期形态适应性(Geigenberger, 2003)。
从微观来看, 总压降低也影响植物叶片的结构。在短期低压下, 菠菜叶片上表面气孔长度和宽度以及宽/长比均显著减小, 这可能是植物对低压条件下减少水分损失的一种适应性反应(Iwabuchi et al., 1996)。Ramonell等(2001)采用拟南芥及其突变体det2材料(缺乏油菜素内酯), 研究在常压及不同O2分压(2.5、5.1、10.1、16.2和21.3 kPa)下叶片结构和淀粉含量。其结果表明: 2.5 kPa下拟南芥植株矮小、叶片变厚(类似于CO2增加)、细胞紧密、气孔数量显著增加; 叶绿体基粒堆置不明显, 并且因为淀粉堆积而呈圆形, 线粒体体积增大, 细胞形状明显改变; 花青素和淀粉大量累积; 突变体det2叶片厚度显著增加。Ramonell等(2001)认为, 拟南芥在缺氧条件下叶片变厚可能是由于油菜素内酯合成受阻引起, 加入油菜素内酯则可预防其叶片变厚; 低氧下植物叶片光呼吸受到抑制带来的净碳积累, 以及碳水化合物的运输和利用受阻造成淀粉大量累积, 但C4植物(玉米)却不受此影响; 因为库-源关系随植物生长的变化而不同, 低氧对植物整个生育期生长的影响也与植物种类有关。
最近有研究表明, 随着总压和O2分压降低(总压101 kPa、30 kPa、20 kPa、10 kPa), 生菜叶片细胞数目减少、体积增大; 叶绿体基粒发生断裂和堆叠, 体积变大, 总数减少, 片层模糊, 甚至发生解体; 叶绿体体积变小并聚集, 线粒体向叶绿体靠拢; 微管的数量减少, 长度缩短, 且聚集在细胞核附近(Guo et al., 2010)。
2.2 生长特性
低压引起的O2分压下降有利于植物的营养生长, 却抑制了生殖生长(Schwartzkopf et al., 1995)。生菜和小麦在总压50 kPa下(pO2 = 10 kPa)生物量分别增加32%和8% (He et al., 2003); 小麦在50 kPa总压(pO2 = 2.5 kPa)下分蘖增加, 生物量增加, 但严重抑制了种子形成(Guo et al., 2008); 拟南芥在pO2 < 15 kPa (总压101 kPa)时, 种子大小呈直线下降(Porterfield et al., 1999); 水稻、大豆(Glycine max)、小麦、高粱(Sorghum bicolor)、油菜(Brassica napus)和拟南芥在pO2 = 5 kPa下(总压101 kPa), 种子发育均受到完全抑制(Geigenberger, 2003)。另外, 植物根系的生长对O2比较敏感, 在低氧胁迫下, 植物根系干重会显著下降, 整株干物质累积受到明显抑制(汪天等, 2006)。植株的营养生长也会在极低的O2分压下受到抑制, 如pO2 = 2.5 kPa时拟南芥植株矮小, 叶片变厚, 细胞紧密(Ramonell et al., 2001)。O2分压下降时, 植物为减少呼吸和ATP消耗, 大范围的生物合成会受到抑制, 如在2 h内, 当O2分压从21 kPa降低到0时, 蔗糖、氨基酸、蛋白质和脂类物质的合成均受到抑制, 其合成的速率还不到常氧条件下的10% (Geigenberger, 2003)。因此, 过低的O2分压(缺氧)不仅抑制植物的生殖生长, 也会造成植物的营养生长受到抑制, 并最终影响植物的整体生长。所以, 植物种子的代谢、生长和发育均受到内部低O2分压的限制, 植株的营养生长(尤其是根系生长)也需要一定的O2分压来满足其代谢需要。
一些研究认为: 总压下降, CO2传输阻力降低, 植物叶片的光合作用增加, 那么碳的固定也应该增加, 因此会促进植物的生长。然而, 短期低压对植物的影响并不会给植物带来长期效应, 还会因适应低压环境带来相应的负担, 最终导致长期低压下植株的生长与常压相比并没有显著差异(Richards et al., 2006)。小麦在50 kPa总压下的生物量和产量与常压并无显著差异(Guo et al., 2008); 水稻在两种压力(50 kPa和100 kPa)条件下长时间生长, 其分蘖数、鲜重和干重均没有显著差异(Iwabuchi et al., 1996; Goto et al., 2002); 菠菜和生菜在长期低压试验条件下(总压分别为25 kPa和40 kPa), 其生长速率并没有显著增加(Iwabuchi & Kurata, 2003; Tang et al., 2010); 萝卜在低压环境中(33 kPa), 地上部的生物量略有下降, 但地下部的生物量却没有变化(Levine et al., 2008)。另外, 低压下植物叶片的蒸腾速率增加会引起水分胁迫, 从而抑制植株的生长。总压25 kPa时, 菠菜的蒸腾速率可达到11-14 L·m-2·d-1, 增加大气相对湿度能显著提高其生长率(Iwabuchi et al., 1996); 与100 kPa总压相比, 水稻在34 kPa总压下植株的生长明显受到了抑制, 这可能是因为低压条件下水分蒸腾过快, 造成干旱胁迫所致(Goto et al., 2002)。因此, 低压下培养植物需要维持一定的大气湿度(水蒸气分压), 以减少过多的水分损失。上述研究结果表明, 植物对外部环境具有适应性, 在长期低压条件下生长并不能明显促进植物的生长, 如果总压或O2分压过低还会抑制植物的生长。
2.3 养分吸收
由于根系的生长代谢需要O2, 因此低氧对植物根系吸收养分的影响较总压改变的影响更为明显。Rajapakse等(2009)报道, 低氧抑制生菜根系对矿质养分的吸收, 如总压为25和101 kPa时, 与pO2 = 21 kPa相比, pO2 = 6 kPa时生菜根系对矿质养分的吸收减少, 植株矿质养分浓度下降, 这可能是由于低氧下植物根系的生长较差, 对水分和养分的吸收减少引起(如pO2 = 6 kPa时, 生菜根系生物量下降50%-70%)。pO2 = 6 kPa时, 总压下降(25 kPa)却有利于生菜根系对多种矿质养分的吸收(He et al., 2007), 这可能与低压有利于提高一些酶的活性, 以及低压下蒸腾增加带来的根系对水分和养分的吸收增加有关系。在田间低氧条件下(常压), 土壤氧化还原电位降低, Mn4+和Fe3+先后被还原为Mn2+和Fe2+, 从而引起毒害, 也会导致植物缺锌。也有研究表明, 生菜和小麦分别在40和50 kPa总压下培养时, 其植株中多种养分的含量并无显著差异(Guo et al., 2008; Tang et al., 2010)。
2.4 营养品质
低氧对植株的功能化合物和营养品质的影响较低压明显。Lenz和Antoszewski (1982)发现: 胡椒(Piper nigrum)在pO2 = 2-5 kPa时, 植株中的可溶性碳水化合物增加, 但光合物质向储藏器官的转移却减少; 生菜叶片中的碳水化合物在低压环境中(25 kPa)下降, 这表明更多的光合物质用于代谢而不是光呼吸, 但过低的O2分压(pO2 = 6 kPa)也会抑制生菜的代谢(He et al., 2007); 当pO2 = 21 kPa, 总压为33 kPa和101 kPa时, 萝卜的感官特征(颜色、外观质地等)、味道(介子甘油、可溶性碳水化合物和黑芥子酶活性)、有机养分(蛋白质、食用纤维、碳水化合物)和活性物质(抗氧化剂等)均没有显著差异, 但叶片中的硝酸盐含量却随总压下降而降低, 这可能是由于低压影响了与氮相关的物质代谢(Levine et al., 2008); 生菜分别在25 kPa总压和6 kPa O2分压, 以及40 kPa总压和8.4 kPa O2分压下生长时, 叶片中的硝酸盐含量均下降, 保护性化合物(如花青素、酚类化合物、碳水化合物)含量增加, 自由基清除能力增加(Rajapakse et al., 2009; Tang et al., 2010); 小麦和生菜分别在50 kPa和40 kPa总压下培养时, 其营养品质与常压相比并没有显著差异(Guo et al., 2008; Tang et al., 2010)。这表明, 在一定的低压下(如25 kPa总压), 只要维持适当的O2分压, 植物的功能化合物含量和营养品质并不会受到太大影响。
2.5 气体交换
第一, 低压下气体的扩散系数增加, CO2、O2和水蒸气的运动速率加快, CO2的吸收和水分损失均增加, 从而导致植物叶片的净光合速率和蒸腾速率增加。气体的扩散系数与其所处环境大气总压成反比, 如总压降到70 kPa, 气体的扩散系统为原来的1.4倍(公式(1))。因此, 低压下CO2的扩散速率增加使其快速达到光合作用位点, 从而提高光合作用速率, 而水分扩散增加也相应地导致植物体内的水分运输改变, 茎叶水势降低, 蒸腾速率随总压下降呈线性增加(Jost, 1960)。菠菜叶片在10 kPa短期处理下, 其水势明显低于常压(100 kPa)下的水势, 而平均蒸腾速率是常压下的3倍(Chamberlain et al., 2002; Chamberlain, 2004), 这可能导致植物在低压下因蒸腾过强而萎蔫。因此, 在低压下必须有足够的水分供应和较高的大气相对湿度, 才能保证植物的正常生长(唐永康等, 2008)。当总压降低到25 kPa时, 菠菜叶片的导度是常压条件下的2.6倍, 而叶片温度也显著下降(叶片温度与蒸腾速率相关联), 这也会加快植物叶片的气体交换速率(Iwabuchi & Kurata, 2003)。另外, 植物叶片的气体交换不是简单的物理过程, 不能根据低压下气体扩散速率变化来直接推导植物叶片的气体交换速率, 如10 kPa下拟南芥的蒸腾速率较常压(101 kPa)下增加50% (Richards et al., 2006), 而不是按公式(1)推导的增加10倍。因此, 植物叶片的气体交换特性还与叶片本身的生理生化特性、叶片结构和植物本身对环境的适应能力等方面有关。
式中, D是扩散系数(m2·s-1); T是绝对温度(K); P是压力(atm); 0是标准状态(Jost, 1960)。
第二, 低压下O2分压和CO2分压均降低, 使植物体内呼吸代谢途径发生改变, 酶活性也受到影响, 从而导致植物的净光合速率改变。O2是植物体内氧化磷酸化途径中必需的末端电子受体, 它通过从NADH中再生NAD+为细胞代谢提供大量的ATP, 适当地降低O2分压可减少植物的呼吸作用(光呼吸和暗呼吸), 使净光合速率增加。当O2分压下降到15 kPa时, 低氧抑制了植物光合呼吸酶的活性, 使小麦的光合速率增加14.6% (Corey et al., 2002); 101 kPa总压时, pO2 = 2.1 kPa下拟南芥的光合速率较pO2 = 21 kPa时的光合速率高, 而pO2 = 2.1 kPa时, 10 kPa和101 kPa总压下拟南芥的光合速率相近(Richards et al., 2006); 当O2分压不变(pO2 = 12 kPa), 总压发生变化时(总压分别为25 kPa和101 kPa), 生菜对CO2的吸收速率也几乎不变(He et al., 2007)。这些研究结果表明, 低压增加植物叶片的光合速率可能主要是由于降低了O2分压, 继而降低光呼吸所致。因此, 当大气充分混匀时, 总压对光合作用的影响似乎只是O2分压作用的结果, 但这一结论并未得到充分验证(总压也可能影响到与光合作用有关的酶的活性)。
当O2分压过低, 导致植物处于缺氧条件时, 细胞色素氧化酶活性下降(Km[O2] = 14 mmol·L-1, 相当于0.013% O2浓度), 植物细胞通过氧化磷酸化途径来合成ATP受到抑制, 转而通过发酵过程产生ATP。发酵合成ATP的效率非常低(如1 mol葡萄糖或果糖呼吸可以产生39 mol ATP, 而发酵最多产生 3 mol ATP), 相应地影响了细胞的代谢和功能。此外, 发酵还会因为糖酵解导致细胞质的pH下降, 造成乳酸和乙醇积累, 使细胞内的代谢环境遭到破坏。当组织处于缺氧后期时, 恢复O2供应还会导致氧自由基和有害氧化物产生, 令植物迅速产生过氧化伤害(Geigenberger, 2003)。为适应低氧条件, 减少发酵产生的酸对植物的伤害, 植物还存在多种呼吸代谢途径, 如琥珀酸合成和磷酸戊糖代谢途径(汪天等, 2006)。因此, 无氧呼吸是植物对低氧(hypoxia)或无氧(anoxia)逆境的一种适应性反应, 这会导致许多生物合成受到影响, 而植物叶片的气体交换(尤其是光合作用)也会受到明显的抑制。
CO2是植物叶片气体交换的主要物质之一, 其分压范围也直接影响叶片的气体交换。Richards等(2006)认为, 低压下拟南芥的净光合速率增加与否和CO2分压范围密切相关: 当CO2饱和时(0.1-0.07 kPa), 任何总压下光合吸收均没有差异; 当CO2分压小于补偿点(0.04-0.02 kPa)时, 净光合速率随总压和O2分压下降而增加, 尤其在短期处理下, 其差异更为明显(10 kPa时的净光合速率是101 kPa下的1.5倍)。10 kPa低压下拟南芥叶片的蒸腾速率较常压下增加50%, 并且与CO2是否缺乏和低压处理时间长短无关。另外, 暗呼吸速率随总压下降而增加(如10 kPa下暗呼吸速率较101 kPa下增加30%), 这与Corey等(1997)和He等(2007)的研究结果相反, 这可能与O2分压和不同植物种类有关。最近也有研究表明, CO2分压为0.04 kPa时, 萝卜的净光合速率随总压下降而增加; 当CO2分压为0.04-0.18 kPa时, 净光合速率并没有显著增加, 甚至在CO2分压为0.18 kPa时, 33 kPa总压下的净光合速率还小于101 kPa总压下的; 蒸腾速率则随CO2分压(0.04-0.18 kP)的增加而减少, 与总压无关; 暗呼吸速率却随总压的下降而增加(Gohil et al., 2010)。
第三, 植物种类和低压处理时间也影响植物叶片的光合作用和蒸腾作用。C3和C4植物具有不同的叶片解剖结构和光合作用途径, 在50 kPa低压下, C3植物(生菜和菠菜)光呼吸和暗呼吸速率降低, 净光合速率显著增加, 而C4植物(玉米)的净光合速率却没有显著变化(Iwabuchi et al., 1998), 这表明低压对C3植物光合作用的影响要大于对C4植物的影响, 但具体的机理还不清楚。另外, 植物在低压下具有一定的适应性, 虽然短期低压试验时气体的扩散系数增加, 但并不意味着长期低压试验条件下植物的交换速率也显著增加。拟南芥在10 kPa短期处理下的光合速率是101 kPa处理下的1.5倍, 但长期试验表明, CO2的交换速率和蒸腾速率并没有显著改变; 生菜在长期培养下, 低压(40 kPa)与常压(101 kPa)下的光合速率和蒸腾速率差异不明显(Tang et al., 2010)。这可能与植物为适应低压环境而改变叶片结构有关(如低压下菠菜叶片气孔长度和宽度均显著减少), 虽然气体扩散速率增加, 但气体交换速率并没有显著增加(Iwabuchi & Kurata, 2003; Richards et al., 2006)。
3 低压对植物释放乙烯的影响
植物在整个生长过程中均会释放乙烯, 在地球大气中, 乙烯的浓度一般不超过10 µg·L -1, 对植物生长没有影响。但在地面密闭舱中乙烯浓度会大大增加(Saito et al., 1996)。在美国国家航空航天局(National Aeronautics and Space Administration, NASA)的常压CELSS生物舱中, 小麦累积释放的乙烯浓度达120 µg·L -1, 大豆为60 µg·L -1, 生菜为40 µg·L -1, 马铃薯(Solanum tuberosum)为50 µg·L -1 (Wheeler et al., 1996); 生菜在CELSS生物舱中释放的乙烯达165 µg·L -1 (Tang et al., 2010)。在密闭系统中, 乙烯浓度增加会导致植物发生萎黄病、变色病, 叶片偏向上生长(Klassen & Bugbee, 2004; 唐永康等, 2007); 在俄罗斯和平号空间站以及NASA的国际空间站上, 乙烯累积已经造成小麦不育(Camp- bell et al., 2001); 乙烯累积使生菜对CO2的吸收下降26%和28% (总压25和101 kPa), 叶绿素含量下降, 生长也受到抑制(He et al., 2003, 2009)。因此, 在密闭系统中培养植物必须及时去除乙烯。
一些研究表明, 低压能使植物释放的乙烯减少。生菜和小麦在30 kPa总压条件下释放的乙烯比在101 kPa总压下减少65%, 且低O2分压有利于减少乙烯的释放(He et al., 2003); 25 kPa下生菜释放的乙烯减少了16% (He et al., 2009); 30 kPa下生菜释放的乙烯减少了38.8% (Tang et al., 2010); 低压下储藏的水果(Gao et al., 2006)和蔬菜(An et al., 2009)所释放的乙烯也有所减少, 并且总压降低较O2分压降低对减少乙烯释放更有效。低压环境减少乙烯释放的可能机理是: (1)乙烯合成的最后阶段由1-氨基环丙烷-1-羧酸(ACC)生成乙烯, 需要O2参加, 而低压带来的低氧抑制了乙烯合成酶的活性, 从而减少了乙烯的合成(Burg & Burg, 1996; He et al., 1996), 但低压下拟南芥中ACC合成酶和ACC氧化酶的基因表达均没有差异(Paul et al., 2004; Richards et al., 2006); (2)低压延长水果和蔬菜储存时间的效果可能是由于低氧引起, 而不是乙烯减少所致(Abeles et al., 1992); (3)总压下降带来新的气相平衡, 使乙烯从植物内部组织向外界环境的扩散速率增加(Abeles et al., 1992)。
4 低压诱导的基因表达和调控
近年来, 许多研究开始关注植物在低压环境中的基因表达和相应的调控机理。Paul等(2004)研究了拟南芥对低压胁迫的基因表达, 他们发现低压(10 kPa)下拟南芥有200个基因发生变化, 且其中约一半基因同样能被低氧诱导而表达, 这表明低压较低氧反应更为复杂, 低压也并不等同于低氧。此外, 低压诱导的基因被证实与水分的快速运动有关, 因为这些基因中许多与干旱诱导的基因相互交叉。短期低压下Rubisco酶控制的光呼吸途径受到抑制, 从而使植物的净光合速率增加。但Richards等(2006)发现, 低压对包括Rubisco酶在内的5种与呼吸有关的酶, 以及ACC合成酶和ACC氧化酶的基因表达均没有影响。控制Rubisco酶的8个大亚基的rbcL基因在低压下也没有发生改变(Guo et al., 2010)。
有关低氧诱导植物基因表达的研究主要集中在常压环境条件下。当外部的O2分压降低到5 kPa时, 拟南芥根系中与酒精发酵和乳酸发酵有关的基因转录均增加。这可能是植物为在后续的缺氧环境中连续进行能量代谢的预先适应性反应。另一类由低氧诱导的基因主要涉及对活性氧去除方面, 包括编码过氧化物酶、抗坏血酸过氧化物酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶和超氧化物歧化酶的基因。其中, 编码谷氨酸脱羧酶和丙氨酸转氨酶的短期诱导基因分别涉及4-氨基丁酸和丙氨酸, 这两种酸在缺氧条件下可以防止细胞液酸化(Klok et al., 2002)。上述基因已被用于鉴定和评价耐缺氧和洪涝的关键基因。
为适应低氧环境, 几个编码与细胞壁、脂类和黄烷类合成和防御反应相关酶的基因在低氧下受到抑制。低氧下关联蛋白质降解的基因也受到抑制, 减少了蛋白质的降解, 从而保存了ATP和降低了O2消耗。bZIP (basic leucine zipper)转录因子、血浆膜ATP酶和磷酸丙糖转录蛋白的mRNA水平均在低氧时降低, 这与低氧下代谢活动受到抑制相一致, 但编码糖解酶的mRNA转录水平并没有明显提高(Klok et al., 2002)。低氧也诱导控制乙烯合成、乙烯信号、程序性细胞死亡和细胞壁松散的稳态mRNA的水平变化。乙烯是导致根表皮程序性细胞死亡和影响溶生通气组织结构的信号级联物, 增大的通气组织是限制组织代谢活性和改善O2供应的长期适应性反应(Olson et al., 1995)。
低氧下相关基因表达的改变是由氧感应系统所激发, 而不是能量代谢改变引起的, 因为植物发生低氧反应时O2的阀值远高于细胞色素氧化酶的Km值, 这证明氧感应系统在起作用。拟南芥的厌氧诱导基因受O2分压的控制, 无氧下启动, 有氧则关闭(Dolferus et al., 1997)。低氧诱导基因的特征在于启动子中的低氧反应元素, 它主要是由一个GC碱基和一个GT碱基组成, 这些碱基对基因活性和低氧诱导非常关键。细胞液Ca2+、ABA和乙烯的浓度是低氧下基因表达发生改变的信号物。在微阵列研究中, 已经明确了还有其他的转录因子和信号转导组件也受到低氧影响, 但它们在低氧反应中的角色还需要进一步研究(Geigenberger, 2003)。
在植物体内, 非共生的血红素被认为是氧感应体(Terwilliger, 1998)。然而, 大多数植物体内的血红素的亲氧性远远高于细胞色素氧化酶, 因此, 它不太可能直接作为氧感应体来促进O2向呼吸链运输(Geigenberger, 2003)。最近的研究却表明, 植物血红素在调节低氧反应方面的确扮演着角色, 低氧诱导了拟南芥、大麦和马铃薯(Solanum tuberosum) class-1血红素基因GLB1 (Klok et al., 2002)。当GLB1过量表达时, 植物的低氧耐性消失, 马铃薯块茎皮孔肥大, 内部O2分压增加。这说明GLB1基因表达的增加与基于血红细胞的氧感应系统是相互关联的, 也诱导了植物以下适应性机理: 外部O2分压高时, 让更多的O2进入植物体内部以防止缺氧, 延长缺氧时的存活时间(Geigenberger, 2003)。
5 小结
综上所述, 低压环境对植物生长的影响比较复杂, 涉及的主要大气环境参数包括: 总压、O2分压、CO2分压、水蒸气分压。总的来说, 总压主要影响气体扩散速率, 降低总压(低压)会增加植物叶片的气体交换, 促进光合作用(短期内), 使叶片变厚, 增加蒸腾速率, 诱导与干旱有关的基因表达, 减少乙烯释放; 低氧主要抑制植物体内的许多生物合成, 改变呼吸代谢途径, 减少光呼吸, 增加净光合速率, 增加乙烯释放; CO2主要是通过改变O2/CO2比例来影响植物的净光合速率; 足够的水蒸气分压可减少低压下植物由于蒸腾速率增加而导致的干旱胁迫。植物在低压环境中具有适应性, 如叶片卷曲(减少蒸腾), 根中皮层组织死亡形成通气组织和皮孔变大(增加O2供应)。另外, 不同低压处理时间和不同植物种类(C3或C4)也会影响植物在低压环境中的反应。
虽然有关低压环境中植物的生长特性及适应机理研究取得了很大进展, 但还有许多方面需要进一步开展深入研究, 具体包括: (1)种子萌发过程中呼吸代谢对低压环境变化的响应机理; (2)总压、O2分压、CO2分压和低压处理时间对植物叶片的结构和气体交换的不同作用机理; (3)明确低压环境中低氧减少乙烯释放或缺氧增加乙烯释放的生理机制和相应的O2浓度/分压临界值; (4)低压环境中, 植物根系活力对不同养分吸收动力学特征及其对植株生长和营养品质的影响; (5)植物如何感受低压环境并进行相应的信号传导?受体蛋白以及关键性酶基因的分离、鉴定和调节功能研究。
参考文献
Effect of hypobaric packaging on respiration and quality of strawberry and curled lettuce
Growth of plants at reduced pressures: experiments in wheat-technological advantages and constraints
Growth and development of Arabidopsis thaliana under hypobaric conditions. In: International Conference on Environmental Systems (ICES) Technical Paper Series, 2003-01-2478
Fruit storage at subatmospheric pressures
The storage life of bananas and other fruits is prolonged by ventilating them with air at less than atmospheric pressure. This procedure accelerates the escape of the ripening hormone ethylene from the tissue; by reducing the oxygen tension it also lowers the fruit's sensitivity to the hormone.
Comparative floral development of Mir-grown and ethylene-treated, earth-grown super dwarf wheat
To study plant growth in microgravity, we grew Super Dwarf wheat (Triticum aestivum L.) in the Svet growth chamber onboard the orbiting Russian space station, Mir, and in identical ground control units at the Institute of BioMedical Problems in Moscow, Russia. Seedling emergence was 56% and 73% in the two root-module compartments on Mir and 75% and 90% on earth. Growth was vigorous (produced ca. 1 kg dry mass), and individual plants produced 5 to 8 tillers on Mir compared with 3 to 5 on earth-grown controls. Upon harvest in space and return to earth, however, all inflorescences of the flight-grown plants were sterile. To ascertain if Super Dwarf wheat responded to the 1.1 to 1.7 micromoles mol-1 atmospheric levels of ethylene measured on the Mir prior to and during flowering, plants on earth were exposed to 0, 1, 3, 10, and 20 micromoles mol-1 of ethylene gas and 1200 micromoles mol-1 CO2 from 7 d after emergence to maturity. As in our Mir wheat, plant height, awn length, and the flag leaf were significantly shorter in the ethylene-exposed plants than in controls; inflorescences also exhibited 100% sterility. Scanning-electron-microscopic (SEM) examination of florets from Mir-grown and ethylene-treated, earth-grown plants showed that development ceased prior to anthesis, and the anthers did not dehisce. Laser scanning confocal microscopic (LSCM) examination of pollen grains from Mir and ethylene-treated plants on earth exhibited zero, one, and occasionally two, but rarely three nuclei; pollen produced in the absence of ethylene was always trinucleate, the normal condition. The scarcity of trinucleate pollen, abrupt cessation of floret development prior to anthesis, and excess tillering in wheat plants on Mir and in ethylene-containing atmospheres on earth build a strong case for the ethylene on Mir as the agent for the induced male sterility and other symptoms, rather than microgravity.
The Water Status of Sweet Pepper in Response to Reduced Atmosphere Pressures
Analysis of plant water relations under variable pressures: technical challenge. In: International Conference on Environmental Systems (ICES) Technical Paper Series, 2002-01-2382
.
Photosynthesis and respiration of a wheat stand at reduced atmospheric pressure and reduced oxygen
Toward Martian agriculture: responses of plants to hypobaria
Carbon dioxide exchange of lettuce plants under hypobaric condition
Strategies of gene action in Arabidopsis during hypoxia
Effects of hypobaric storage on physiological and quality attributes of loquat fruit at low temperature
Response of plant metabolism to too little oxygen
The effects of CO 2 on growth and transpiration of radish ( Raphanus sativus) in hypobaria
Growth and development of higher plants under hypobaric conditions. In: International Conference on Environmental Systems (ICES) Technical Paper Series, 2002-01-2439
Effects of low pressure and hypoxia on growth and development of wheat
The ultrastructure and genetic traits of plants under the condition of hypobaric and hypoxia
Separating the effects of hypobaria and hypoxia on lettuce: growth and gas exchange
The objectives of this research were to determine the influence of hypobaria (reduced atmospheric pressure) and reduced partial pressure of oxygen (pO2) [hypoxia] on carbon dioxide (CO2) assimilation (C(A)), dark-period respiration (DPR) and growth of lettuce (Lactuca sativa L. cv. Buttercrunch). Lettuce plants were grown under variable total gas pressures [25 and 101 kPa (ambient)] at 6, 12 or 21 kPa pO2)(approximately the partial pressure in air at normal pressure). Growth of lettuce was comparable between ambient and low total pressure but lower at 6 kPa pO2 (hypoxic) than at 12 or 21 kPa pO2. The specific leaf area of 6 kPa pO2 plants was lower, indicating thicker leaves associated with hypoxia. Roots were most sensitive to hypoxia, with a 50-70% growth reduction. Leaf chlorophyll levels were greater at low than at ambient pressure. Hypobaria and hypoxia did not affect plant water relations. While hypobaria did not adversely affect plant growth or C(A), hypoxia did. There was comparable C(A) and a lower DPR in low than in ambient total pressure plants under non-limiting CO2 levels (100 Pa pCO2, nearly three-fold that in normal air). The C(A)/DPR ratio was higher at low than at ambient total pressure, particularly at 6 kPa pO2- indicating a greater efficiency of C(A)/DPR in low-pressure plants. There was generally no significant interaction between hypoxia and hypobaria. We conclude that lettuce can be grown under subambient pressure ( congruent with25% of normal earth ambient total pressure) without adverse effects on plant growth or gas exchange. Furthermore, hypobaric plants were more resistant to hypoxic conditions that reduced gas exchange and plant growth.
Ethylene reduces gas exchange and growth of lettuce plants under hypobaric and normal atmospheric conditions
Elevated levels of ethylene occur in controlled environment agriculture and in spaceflight environments, leading to adverse plant growth and sterility. The objectives of this research were to characterize the influence of ethylene on carbon dioxide (CO(2)) assimilation (C(A)), dark period respiration (DPR) and growth of lettuce (Lactuca sativa L. cv. Buttercrunch) under ambient and low total pressure conditions. Lettuce plants were grown under variable total gas pressures of 25 kPa (hypobaric) and 101 kPa (ambient) pressure. Endogenously produced ethylene accumulated and reduced C(A), DPR and plant growth of ambient and hypobaric plants. There was a negative linear correlation between increasing ethylene concentrations [from 0 to around 1000 nmol mol(-1) (ppb)] on C(A), DPR and growth of ambient and hypobaric plants. Declines in C(A) and DPR occurred with both exogenous and endogenous ethylene treatments. C(A) was more sensitive to increasing ethylene concentration than DPR. There was a direct, negative effect of increasing ethylene concentration reducing gas exchange as well as an indirect ethylene effect on leaf epinasty, which reduced light capture and C(A). While the C(A) was comparable, there was a lower DPR in hypobaric than ambient pressure plants - independent of ethylene and under non-limiting CO(2) levels (100 Pa pCO(2), nearly three-fold that in normal air). This research shows that lettuce can be grown under hypobaria ( congruent with25% of normal earth ambient total pressure); however, hypobaria caused no significant reduction of endogenous ethylene production.
Effect of hypobaric conditions on ethylene evolution and growth of lettuce and wheat
Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia
Mass transport in a spaceflight plant growth chamber. In: International Conference on Environmental Systems (ICES) Technical Paper Series, 981553
Simulation of photosynthetic rate of C 3 and C 4 plants under low total pressure
Short-term and long-term effects of low total pressure on gas exchange rates of spinach
In this study, spinach plants were grown under atmospheric and low pressure conditions with constant O2 and CO2 partial pressures, and the effects of low total pressure on gas exchange rates were investigated. CO2 assimilation and transpiration rates of spinach grown under atmospheric pressure increased after short-term exposure to low total pressure due to the enhancement of leaf conductance. However, gas exchange rates of plants grown at 25 kPa total pressure were not greater than those grown at atmospheric pressure. Stomatal pore length and width were significantly smaller in leaves grown at low total pressure. This result suggested that gas exchange rates of plants grown under low total pressure were not stimulated even with the enhancement of gas diffusion because the stomatal size and stomatal aperture decreased.
Effect of vapor pressure deficit on spinach growth under hypobaric conditions
Ethylene synthesis and sensitivity in crop plants
Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C2H4). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by both biotic and abiotic stresses, but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.
Expression profile analysis of the low-oxygen response in Arabidopsis root cultures
Effect of low oxygen on green pepper plants
Quality characteristics of the radish grown under reduced atmospheric pressure
Response of respiration during seed germination to environment
The injury of high oxygen concentration to seed germination and seedlings growth
System benefit of a hypobaric hypoxic spacecraft environment. In: International Conference on Environmental Systems (ICES) Technical Paper Series, 2004-01-2483
Analysis of LE-ACS3 a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants
The plant hormone ethylene is produced in response to a variety of environmental stresses. Previous work has shown that flooding or anaerobic stress in the roots of tomato plants caused an increase in the production of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) in the roots, due to flooding-induced activity of ACC synthase (EC 4.4.1.14). RNA was extracted from roots and leaves of tomato plants flooded over a period of 48 h. Blot analysis of these RNAs hybridized with probes for four different ACC synthases revealed that the ACC synthase gene LE-ACS3 is rapidly induced in roots. LE-ACS2 is also induced, but at later times. The genomic clone for LE-ACS3 was isolated and sequenced. At all time points, the probe from the LE-ACS3 coding region hybridized to two bands in the RNA blots. Hybridization using the first and third introns of LE-ACS3 separately as probes indicate that flooding may inhibit processing of the LE-ACS3 transcript. Sequence homology analysis identified three putative cis-acting response elements in the promoter region, corresponding to the anaerobic response element from the maize adh1 promoter, the root-specific expression element from the cauliflower mosaic virus 35S promoter and a recognition element for chloroplast DNA binding factor I from the maize chloroplast ATP synthase promoter.
The biology of low atmospheric pressure-implications for exploration mission design and advanced life support
Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure
As a step in developing an understanding of plant adaptation to low atmospheric pressures, we have identified genes central to the initial response of Arabidopsis to hypobaria. Exposure of plants to an atmosphere of 10 kPa compared with the sea-level pressure of 101 kPa resulted in the significant differential expression of more than 200 genes between the two treatments. Less than one-half of the genes induced by hypobaria are similarly affected by hypoxia, suggesting that response to hypobaria is unique and is more complex than an adaptation to the reduced partial pressure of oxygen inherent to hypobaric environments. In addition, the suites of genes induced by hypobaria confirm that water movement is a paramount issue at low atmospheric pressures, because many of gene products intersect abscisic acid-related, drought-induced pathways. A motivational constituent of these experiments is the need to address the National Aeronautics and Space Administration's plans to include plants as integral components of advanced life support systems. The design of bioregenerative life support systems seeks to maximize productivity within structures engineered to minimize mass and resource consumption. Currently, there are severe limitations to producing Earth-orbital, lunar, or Martian plant growth facilities that contain Earth-normal atmospheric pressures within light, transparent structures. However, some engineering limitations can be offset by growing plants in reduced atmospheric pressures. Characterization of the hypobaric response can therefore provide data to guide systems engineering development for bioregenerative life support, as well as lead to fundamental insights into aspects of desiccation metabolism and the means by which plants monitor water relations.
Effects of waterlogging on seed germination of three Mediterranean oak species: ecological implications
Oxygen-depleted zones inside reproductive structures of Brassicaceae: implications for oxygen control of seed development
Growth of Arabidopsis thaliana (L.) Heynh. in decreasing oxygen partial pressures revealed a linear decrease in seed production below 15 kPa, with a complete absence of seed production at 2.5 kPa oxygen. This control of plant reproduction by oxygen had previously been attributed to an oxygen effect on the partitioning between vegetative and reproductive growth. However, plants grown in a series of decreasing oxygen concentrations produced progressively smaller embryos that had stopped developing at progressively younger stages, suggesting instead that their growth is limited by oxygen. Internal oxygen concentrations of buds, pistils, and developing siliques of Brassica rapa L. and siliques of Arabidopsis were measured using a small-diameter glass electrode that was moved into the structures using a micromanipulator. Oxygen partial pressures were found to be lowest in the developing perianth (11.1 kPa) and pistils (15.2 kPa) of the unopened buds. Pollination reduced oxygen concentration inside the pistils by 3 kPa after just 24 h. Inside Brassica silique locules, partial pressures of oxygen averaged 12.2 kPa in darkness, and increased linearly with increasing light levels to 16.2 kPa. Measurements inside Arabidopsis siliques averaged 6.1 kPa in the dark and rose to 12.2 kPa with light. Hypoxia in these microenvironments is postulated to be the point of control of plant reproduction by oxygen.
Hypobaira and hypoxia affects growth and phytochemical contents of lettuce
Exposure of Arabidopsis thaliana to hypobaric environments: implications for low-pressure bioregenerative life support system for human exploration missions and terraforming on Mars
Understanding how hypobaria can affect net photosynthetic (P (net)) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO(2) levels were allowed to drawdown from 0.1 kPa to CO(2) compensation points to assess P (net) rates under different hypobaric conditions. Results showed that P (net) increased as the pressures decreased from 101 to 10 kPa when CO(2) partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO(2) was in the nonlimiting range from 0.10 to 0.07 kPa, the P (net) rates were insensitive to decreasing pressures. Thus, if CO(2 )concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P (net) rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.
Low pressure greenhouse concepts for Mars: atmospheric composition. In: International Conference on Environmental Systems (ICES) Technical Paper Series, 2002-01-2392
Rates of ethylene release, photosynthesis and transpiration of rice measured in closed-type chamber
Design of a low atmospheric pressure plant growth chamber. In: International Conference on Environmental Systems (ICES) Technical Paper Series, 951709
Germination and growth of lettuce ( Lactuca sativa) at low atmospheric pressure
The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.
Development of a space ethylene filter prototype facility for use in ground-based experiments
A study of growth and development of wheat under low atmospheric pressure
Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce
Functional adaptations of oxygen transport proteins
Research advances about hypoxia-stress damage and hypoxia-stress-adapting mechanism in plants
Ethylene production by plants in a closed environment
Ethylene production by 20-m2 stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml m-2 day-1 during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 nl g-1 fresh weight h-1. Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.
Plant growth and human life support for space travel. In: Pessarakli M ed. Handbook of Plant and Crop Physiology, 2nd edn
Effects of high pressure on the germination of rice seeds
/
〈 |
|
〉 |
