植物生态学报  2015 , 39 (7): 661-673 https://doi.org/10.17521/cjpe.2015.0063

研究论文

阴天和晴天对黄河三角洲芦苇湿地净生态系统CO2交换的影响

初小静12, 韩广轩1*, 邢庆会12, 于君宝1, 吴立新3, 刘海防3, 王光美1, 毛培利1

1中国科学院烟台海岸带研究所, 中国科学院海岸带环境过程与生态修复重点实验室, 山东烟台 264003
2中国科学院大学, 北京 100049
3黄河三角洲国家级自然保护区管理局, 山东东营 257091

Net ecosystem exchange of CO2 on sunny and cloudy days over a reed wetland in the Yellow River Delta, China

CHU Xiao-Jing12, HAN Guang-Xuan1*, XING Qing-Hui12, YU Jun-Bao1, WU Li-Xin3, LIU Hai-Fang3, WANG Guang-Mei1, MAO Pei-Li1

1Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Administration Bureau of the Yellow River Delta National Nature Reserve, Dongying, Shandong 257091, China

通讯作者:  * 通讯作者 Author for correspondence (E-mail: gxhan@yic.ac.cn)

责任编辑:  CHU Xiao-JingHAN Guang-XuanXING Qing-HuiYU Jun-BaoWU Li-XinLIU Hai-FangWANG Guang-MeiMAO Pei-Li

版权声明:  2015 植物生态学报编辑部 本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。

基金资助:  国家自然科学基金(41301083)和国家科技支撑计划项目(2011BAC02-B01)

展开

摘要

云量以及大气气溶胶含量变化引起的阴天和晴天会对局地的微气候环境产生综合效应, 影响地面接收的太阳辐射强度, 同时引起环境因子的变化, 最终对净生态系统CO2交换(NEE)产生影响。该文通过涡度相关系统以及微气象梯度观测系统, 对黄河三角洲芦苇(Phragmites australis)湿地NEE以及环境要素进行了观测。在自然条件下选择12对相邻阴天和晴天数据, 在生物要素(生物量、叶面积指数)、土壤水分以及养分特征保持不变的前提下, 揭示了阴天和晴天变化对湿地生态系统NEE的光响应和温度响应的影响。结果表明: 12对阴天和晴天生态系统NEE的日平均动态均呈“U”型曲线, 但阴天NEE的变幅较小。晴天条件下湿地生态系统NEE的日均值显著高于阴天(p < 0.01)。阴天和晴天湿地生态系统NEE与光合有效辐射(PAR)之间均呈直角双曲线关系, 但晴天条件下, 最大光合速率(Amax)显著大于阴天(p < 0.01), 同时白天生态系统呼吸(Reco,daytime)也显著大于阴天(p < 0.01)。不论阴天还是晴天, Reco,daytime与气温均呈显著的指数关系。晴天湿地生态系统呼吸的温度敏感系数Q10 (5.5)远大于阴天(1.9)。阴天和晴天昼间PAR差值以及气温差值对NEE差值的协同影响达到63%。

关键词: 阴天 ; 晴天 ; 净生态系统CO2交换 ; 白天生态系统呼吸 ; 光响应 ; 温度响应

Abstract

Aims Clouds and aerosols change the radiation level on the land surface and indirectly alter the microclimate. Shifts in sunny and cloudy days, for example, would affect the net ecosystem exchange of CO2 (NEE) between land surface and the atmosphere. Our objective was to analyze the influence of shifts in sunny and cloudy days on NEE, its responses to light and temperature in a reed (Phragmites australis) wetland in the Yellow River Delta, China. Methods Using the eddy covariance technique, we measured the temporal changes in NEE during the growing season over the reed wetland. We selected 12 paired-days during the measurement period following two criteria: (1) the two paired days are adjacent, with one sunny day and another cloudy day; (2) no rain event during the two days. We assumed that: (1) live biomass and leaf area index (LAI) are the same during any paired-days; (2) soil moisture has no significant difference between the two adjacent days. With these criteria, we expected that radiation condition exerted the major control on NEE. Important findings Diurnal change of NEE showed a distinct U-shaped pattern on both sunny and cloudy days, but with substantial variation in its amplitude. During the daytime, NEE on sunny days was significantly higher (p < 0.01) than that on the cloudy days (n = 12). The daytime NEE response to photosynthetically active radiation (PAR) was modeled with the rectangular hyperbolic function (Eq. (1)) for both sunny and cloudy days. There appeared a significant reduction (p < 0.01) in light-saturated NEE (Amax) on cloudy days compared to the sunny days. Similarly, there was a significant decrease (p < 0.01) in daytime ecosystem respiration (Reco,daytime) on cloudy days as compared to that of the sunny day although there existed significant exponential relationships between Reco,daytime and air temperature on both sunny and cloudy days. In addition, the temperature sensitivity of ecosystem respiration (Q10) on cloudy days (1.9) was significantly lower than that of sunny days (5.5). Stepwise multiple regression analyses suggested that PAR and T explained 63% of the changes in NEE between sunny and cloudy days. By taking advantage of the natural shift of sunny and cloudy days without disturbance to the plant-soil system, our results indicated that cloud cover significantly reduced the absorption capacity of CO2 in the wetland. Thus, it is necessary to take into account the shits between sunny and cloudy days on NEE when predicting the ecosystem responses to future climate in the wetland.

Keywords: sunny day ; cloudy day ; net ecosystem CO2 exchange (NEE) ; daytime ecosystem respiration (Reco ; daytime) ; light response ; temperature response

0

PDF (772KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

初小静, 韩广轩, 邢庆会, 于君宝, 吴立新, 刘海防, 王光美, 毛培利. 阴天和晴天对黄河三角洲芦苇湿地净生态系统CO2交换的影响[J]. 植物生态学报, 2015, 39(7): 661-673 https://doi.org/10.17521/cjpe.2015.0063

CHU Xiao-Jing, HAN Guang-Xuan, XING Qing-Hui, YU Jun-Bao, WU Li-Xin, LIU Hai-Fang, WANG Guang-Mei, MAO Pei-Li. Net ecosystem exchange of CO2 on sunny and cloudy days over a reed wetland in the Yellow River Delta, China[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 661-673 https://doi.org/10.17521/cjpe.2015.0063

近年来, 大气污染、气溶胶粒子增加等环境问题日益严重, 云层和大气气溶胶含量的变化给地面接收的直接辐射和散射辐射带来很大影响(Niyogi et al., 2004; Bar-Or et al., 2010; 马金玉等, 2011)。我国华北地区大气环境由于受到西北地区沙尘的影响, 大量滞留在大气中的沙尘成为对流层气溶胶的主要成分, 影响地-气系统辐射能收支, 从而影响区域的气候及生态环境(Min, 2005; 贾漩等, 2010)。研究表明: 近50年来, 地面太阳总辐射从减少到增加(齐月等, 2014)。而云作为一种天气现象会对局地的微气候环境产生综合效应, 当天空有云层出现时, 地面接收的太阳辐射强度及散射辐射与直射辐射的比例会发生变化, 引起生态系统光能与热能的变化, 植被的光合与呼吸作用发生变化, 最终生态系统与大气间的净CO2交换也会受到影响(Letts et al., 2005; Urban et al., 2007)。

已有研究表明, 阴天和晴天所引起的辐射差异影响着陆地生态系统的交换过程和碳吸收能力(Roderick et al., 2001; Still et al., 2009)。但由于研究方法、地域环境条件以及不同植被类型的差异, 研究结论存在较大差异(Gu et al., 1999, 2002; Alton et al., 2007; Urban et al., 2007)。例如, 中国渭北刺槐(Robinia pseudoacacia)生长初期和旺盛期晴天条件下森林日均固碳量比阴天高8%-16% (郑元等, 2011)。中国西北玉米(Zea mays)农田生态系统阴天条件下净生态系统CO2交换(NEE)的增长速率却高于晴天, 且生态系统总初级生产力(GPP)最大值出现于阴天(Zhang et al., 2011)。对中国西北草地(Bai et al., 2012)和不同温带森林类型(Zhang et al., 2010)的研究也得出类似结论。另外, 也有研究发现加拿大常绿灌木(Letts et al., 2005)和西藏高寒草甸(范玉枝等, 2009)生态系统CO2交换不受阴天和晴天天气条件影响。

黄河口近海与海岸湿地是暖温带增长速度最快和最具代表性的新生近海与海岸湿地, 具有海陆过渡性、原生性和脆弱性的特点(布仁仓等, 1999; 崔树强, 2002)。受水沙量变化、陆地和河流淡水径流、咸水海流多重影响以及人类活动的干扰, 黄河三角洲湿地生态系统CO2交换存在着极大的复杂性和不确定性(Sasaki et al., 2009;Han et al., 2014a, 2014b; 邢庆会等, 2014)。研究表明黄河三角洲芦苇湿地生长季NEE占全年的80%以上, 且碳吸收集中在植物生长旺盛期(7-9月)(杨利琼等, 2013; Han et al., 2014a, 2014b)。而这一时期正值黄河三角洲雨季, 其云雨状况影响太阳辐射, 进而影响湿地生态系统的碳吸收功能。在以往的研究中, 温度、水分、太阳辐射等环境因子, 生物量、叶面积等生物因子以及地下水位、地表水深等水文要素对湿地生态系统NEE的影响机制受到研究者的极大关注(牟长城等, 2009; Zhao et al., 2010; Han et al., 2013; 邢庆会等, 2014)。目前, 有关阴天和晴天条件对生态系统碳交换影响的研究主要集中在森林生态系统(Liu et al., 2006; Zhang et al., 2010; 周丽艳等, 2010; Jiang et al., 2011; Zhao et al., 2011; 刘佳等, 2014)和草原生态系统(Gu et al., 2003; 范玉枝等, 2009)。阴天和晴天状况引起的太阳辐射变化对湿地生态系统NEE和碳汇功能究竟产生怎样的影响目前尚不清楚。

本文基于2013年黄河三角洲芦苇湿地生长季节中的12对阴天和晴天数据, 对比分析阴天和晴天条件下湿地生态系统CO2交换动态及其环境控制机制, 以期阐明以下3个科学问题: (1)阴天和晴天对湿地生态系统NEE日动态变化的影响; (2)阴天和晴天对湿地生态系统NEE光响应和温度响应的影响; (3)阴天和晴天对湿地生态系统碳收支功能的影响。通过分析阴天和晴天太阳辐射变化对湿地生态系统CO2交换的影响, 揭示黄河三角洲地区芦苇湿地生态系统CO2源/汇功能及其影响机制, 并为预测未来随云雨天变化或大气组成及气溶胶含量变化对湿地生态系统碳收支的影响提供数据支持和理论依据。

1 材料和方法

1.1 研究地概况

研究地点位于山东省东营市垦利县的中国科学院黄河三角洲滨海湿地生态试验站(37.75° N, 118.98° E)。该区域属于温带半湿润大陆性季风气候, 光照充足, 四季分明, 雨热同期。年平均气温12.9 ℃, 最高气温41.9 ℃, 最低气温-23.3 ℃, 年降水量530-630 mm, 其中70%的降水量集中在5-9月, 年内分配不均, 年蒸发量为1900-2400 mm。该地区地势平坦, 植物生长茂盛, 土壤质地以轻壤土和中壤土为主, 土壤类型以潮土和盐碱土为主。试验站植被类型以湿地植被为主, 优势种为芦苇(Phragmites australis)、盐地碱蓬(Suaeda salsa)、柽柳(Tamarix chinensis)和白茅(Imperata cylindrica)。植被覆盖度为70%-90%。涡度相关系统设在地势平坦、植物生长茂盛的芦苇湿地中央部, 在降水集中的8-10月, 地面有较多积水。芦苇通常在4月中旬萌动, 在5月中旬处于展叶盛期, 8月中旬开始抽穗, 9月中旬开花, 10月份开始进入枯黄期, 10月底芦苇大多枯萎, 植被高度在1.0-1.8 m。

1.2 涡度和环境要素测定

通量数据运用开路式涡度相关设备与常规气象观测仪器进行长期定位观测。涡度相关系统包括三维超声风速仪(CSAT-3, Campbell Scientific, Logan, USA)和开路红外CO2/H2O分析仪(IRGA, LI-7500, LI-COR, Lincoln, USA), 架设于距地表3 m处, 原始数据采样频率为10 Hz。微气象观测系统包括2 m高度的风向和风速(034B, Campbell Scientific, Logan, USA)、空气温度(HMP45C, Vaisala, Helsinki, Finland)、净辐射(CNR4, Kipp & Zonen, Delft, Netherlands)和降水量(TE525MM, Texas Electronics, Dallas, USA)。土壤因子监测主要包括: 5、10、20、30、50 cm深处的土壤温度(109SS, Campbell Scientific, Logan, USA)和10、20、40、60、80、100 cm深处的土壤含水量(EnviroSMART SDI-12, EnviroScan, Lancaster, USA)。所有数据通过数据采集器(CR1000, Campbell Scientific, Logan, USA)在线采集, 并按30 min计算平均值进行存储。NEE数据为负值表示生态系统吸收CO2, 即碳汇; NEE数据为正值表示生态系统释放CO2, 即碳源。

1.3 通量数据处理

在野外通量观测中, 由于仪器响应、下垫面的起伏、天气状况、大气稳定度及供电系统故障等因素, 会产生异常数据及数据的丢失(Falge et al., 2001)。在对原始通量数据进行分析之前, 需先进行数据的预处理: 坐标旋转、野点去除、WPL校正、夜间通量校正等。分析数据时进行以下处理: 1)去除所有降水时段对应的数据; 2)去除生长季|NEE| > 1 μmol CO2·m-2·s-1的数据。

白天缺失的NEE数据(净辐射> 20 W·m-2), 采用Michaelis-Menten模型(Ruimy et al., 1995)进行插补。

式中, Reco,daytime为白天生态系统呼吸(daytime ecosystem respiration, μmol CO2·m-2·s-1), α为表观量子产量(apparent quantum yield, μmol CO2·μmol-1), Amax为最大光合速率(maximum photosynthesis rate, μmol CO2·m-2·s-1)。NEE为直接从涡度相关仪器测定的CO2通量数据。

夜间(净辐射< 20 W·m-2)缺失的数据采用(1)式, 利用夜间土壤温度(Ts)与夜间通量值(Reco,nighttime, μmol CO2·m-2·s-1)的指数关系插补(Lloyd & Taylor, 1994)。

式中, Reco,nighttime为夜晚生态系统呼吸(μmol CO2·m-2·s-1), T为空气温度或土壤温度(℃), a为参考温度下湿地生态系统呼吸速率(μmol CO2·m-2·s-1), b为温度反应系数。

1.4 数据筛选

基于2013年黄河三角洲芦苇湿地生长季的涡度相关法碳通量和微气象数据, 我们选择相邻的阴天和晴天数据, 选择标准为: (1)以15天为周期, 做出光合有效辐射(PAR)与降水量(PPT)随时间变化的日变化曲线, 并去除降雨天(PPT > 0.1 mm)数据; (2)从剔除后的数据中找出白天PAR日变化表现为光滑且对称单峰曲线的, 确定为晴天; 从确定出的晴天找出相邻PAR日变化表现为曲折多峰的, 确定为阴天。基于以上两条标准, 我们共选取了12对阴天和晴天数据(图1)。由于每对数据是相邻的两天, 且没有降水发生, 因此我们可以假定每对阴天和晴天内生物要素(生物量、叶面积指数、盖度)、土壤湿度以及土壤养分特征在两天内变化不大。在此前提下, 阴天和晴天引起的太阳辐射变化可能是影响湿地生态系统CO2交换的主导因子。

图1   黄河三角洲湿地生态系统2013年生长季12对阴天和晴天的净生态系统CO2交换(NEE)与光合有效辐射(PAR)的日动态。黑线代表晴天PAR, 灰线代表阴天PAR

Fig. 1   Diurnal changes in net ecosystem exchange of CO2 (NEE) and photosynthetically active radiation (PAR) on the 12 paired-days (i.e., a sunny day and an adjacent cloudy day) during the 2013 growing season in the Yellow River Delta wetland. Black and grey solid lines represent PAR on sunny and cloudy days, respectively.

1.5 数据分析

白天生态系统呼吸的温度响应主要通过以下指数模型进行拟合:

式中, Reco,daytime为白天生态系统呼吸(μmol CO2·m-2·s-1), 由(1)式推出; T为空气温度(℃), a为参考温度下湿地生态系统呼吸速率(μmol CO2·m-2·s-1), b为温度反应系数。

白天生态系统呼吸的温度敏感性系数Q10基于以下公式进行计算:

用单因素方差分析法分析阴天和晴天条件下环境因子(PART)以及阴天和晴天NEE平均值的差异性。运用非线性拟合方法分析阴天和晴天白天NEE与光合有效辐射(PAR)的直角双曲线关系(方程(1)); 用指数模型分别拟合Reco,daytimeT的关系(方程(3))以及生态系统白天温度敏感性系数Q10 (方程(4)); 对光响应参数Amaxα以及Reco,daytime, 温度反应系数ab进行方差分析。通过多元回归分析PARTNEE以及Reco,daytime的协同影响作用。所有数据分析均基于统计分析软件SPSS 16.0完成, 相关的图形均基于SigmaPlot 11.0完成。

2 结果

2.1 阴天和晴天NEE日动态变化对比

图1为黄河三角洲湿地生态系统2013年生长季(4-10月) 12对相邻阴天和晴天的PARNEE日动态。晴天, PAR整体表现为光滑的单峰对称分布, 日出后, PAR逐渐增强, 在正午前后达到最大(1500-2000 μmol·m-2·s-1), 之后逐渐减弱, 至日落后PAR又转为0; 阴天, PAR变化曲折, 通常有多个峰值, 整体波动性相对晴天较小(图1, 图2B)。阴天和晴天条件下, NEE日变化均呈现“U”型曲线, 表现为白天吸收, 晚上释放。但阴天条件下, 白天的NEE波动均小于晴天, 说明白天碳吸收能力小于晴天(图1, 图2A)。

图2   2013年黄河三角洲湿地生长季阴天和晴天净生态系统CO2交换(NEE)、光合有效辐射(PAR)与气温(T)的平均日动态(平均值±标准误差)。***, p < 0.001。

Fig. 2   Average diurnal variations of net ecosystem exchange of CO2 (NEE), photosynthetically active radiation (PAR) and air temperature (T) on sunny days and cloudy days during the 2013 growing season in the Yellow River Delta. Bars represent standard errors of the means of 12 sunny days and 12 adjacent cloudy days (mean ± SE). ***, p < 0.001.

为比较阴天和晴天NEEPAR及气温的变化规律, 我们将阴天和晴天NEEPART按每天从0:00到23:30每0.5 h进行平均, 得到生长季阴天和晴天NEEPART的日平均变化特征曲线(图2)。将阴天和晴天昼间NEEPART在日进程中各实测点的观测值分别取平均发现, 晴天NEE (- (7.7 ± 1.99) μmol CO2·m-2·s-1)显著大于阴天(- (2.57 ± 0.57) μmol CO2·m-2·s-1), 对环境因子的方差分析发现, 晴天PAR ((1001.1 ± 28.3) μmol·m-2·s-1)显著大于阴天((472.67 ± 11.62) μmol·m-2·s-1), 同时晴天气温T ((23.56 ± 2.62) ℃)也显著大于阴天((21.26 ± 2.34) ℃)。

2.2 阴天和晴天条件下白天NEEPAR的响应

采用Michaelis-Menten方程拟合发现, 晴天拟合参数AmaxαReco均于8月达到最大值, 分别为38.65 μmol CO2·m-2·s-1、0.13 μmol CO2·μmol-1和24.19 μmol CO2·m-2·s-1, 阴天AmaxαReco均在7月达到最大值, 分别为28.07 μmol CO2·m-2·s-1、0.065 μmol CO2·μmol-1和10.79 μmol CO2·m-2·s-1t检验发现, 晴天条件下, Amax ((28.01 ± 2.91) μmol CO2·m-2·s-1)显著大于阴天((19.63 ± 1.33) μmol CO2·m-2·s-1), 同时Reco,daytime ((7.19 ± 0.67) μmol CO2·m-2·s-1)也显著大于阴天((5.75 ± 0.39) μmol CO2·m-2·s-1), 但α间差异不显著(p > 0.05)。

在整个生长季中, 阴天和晴天条件下NEEPAR均呈直角双曲线关系, 随PAR的增加NEE呈负向增加趋势(图3)。在PAR强度低于400 μmol CO2·m-2·s-1时, 阴天和晴天NEEPAR增加的响应程度基本一致, 且NEE增加的幅度基本相等; 随PAR持续增强, 阴天和晴天NEEPAR的响应差异明显, 当PAR高于400 μmol CO2·m-2·s-1后, 阴天和晴天的响应程度发生明显变化, 晴天的NEE增加幅度明显大于阴天。当晴天PAR大于1400 μmol CO2·m-2·s-1, NEE的增加趋势明显变弱, 维持稳定的碳吸收峰值(11 μmol CO2·m-2·s-1左右)。

图3   2013年黄河三角洲湿地生长季阴天和晴天昼间生态系统CO2交换(NEE)和光合有效辐射(PAR)的关系。黑线代表晴天拟合曲线, 灰线代表阴天拟合曲线。

Fig. 3   Relationships between daytime net ecosystem exchange of CO2 (NEE) and photosynthetically active radiation (PAR) between sunny days and cloudy days during the 2013 growing season in the Yellow River Delta wetland. Black solid line represents fitting curve of sunny days, and grey line represents fitting curve of cloudy days.

2.3 阴天和晴天条件下白天生态系统呼吸对温度的响应

采用选取的12对阴天和晴天白天NEE数据通过Mechaelis-Menten模型反推得到Reco,daytime, 结果表明阴天和晴天Reco,daytimeT均存在显著的指数关系(图4), 且晴天Reco,daytime显著高于阴天。晴天条件下, 气温可以解释生态系统呼吸变异的64%; 阴天, 气温可以解释其变异的45%。晴天生态系统基础呼吸a值(0.09 μmol CO2·m-2·s-1)小于阴天(1.43 μmol CO2·m-2·s-1), 但是其温度反应系数b (0.17)却大于阴天(0.06)。因此, 晴天生态系统呼吸的温度敏感系数Q10 (5.5)远大于阴天(1.9)。

图4   2013年黄河三角洲湿地生长季阴天和晴天昼间生态系统呼吸(Reco,daytime)和气温(T)的关系。黑线代表晴天拟合曲线, 灰线代表阴天拟合曲线。

Fig. 4   Relationships between daytime ecosystem respiration (Reco,daytime) and air temperature (T) on sunny days and cloudy days during the 2013 growing season in the Yellow River Delta wetland. Black solid line represents fitting curve of sunny days, and grey line represents fitting curve of cloudy days.

2.4 阴天和晴天PART对湿地生态系统NEE的协同影响

多元回归分析发现, TPAR对晴天NEE的协同影响达到40% (p < 0.01), 对阴天的协同影响为41%, 偏相关分析发现T是晴天NEE变异的主控因子(T: R2 = 0.37, p < 0.001; PAR: R2 = 0.20, p < 0.001), PAR是阴天NEE变异的主控因子(T: R2 = 0.10, p < 0.001; PAR: R2 = 0.38, p < 0.001)。多元回归分析表明, ΔPARΔTΔNEE的协同影响达到63% (R2 = 0.63, p < 0.001; 表2), 说明PART是引起阴天和晴天NEE差异的主要环境因子。

表1   2013年湿地生态系统阴天和晴天净生态系统CO2交换(NEE)和光合有效辐射(PAR)根据Michaclis-Menten模型(方程(3))模拟参数的比较

Table 1   Comparison of the analog parameters from daytime net ecosystem exchange of CO2(NEE) and photosynthetically active radiation (PAR) using a Michaelis-Menten model (Eq.(3)) between sunny days and cloudy days in the wetland

新窗口打开

表2   多元回归分析黄河三角洲湿地生长季阴天和晴天光合有效辐射(PAR)与气温(T)对净生态系统CO2交换(NEE), 阴天和晴天PAR差量(ΔPAR)与T差值(ΔT)对NEE差量(ΔNEE)的协同影响

Table 2   Estimated empirical coefficient of multiple liner regression models for changes in net ecosystem exchange (NEE) with photosynthetically active radiation (PAR) and air temperature (T) on sunny and cloudy days during the growing season in the Yellow River Delta

方程 EquationR2pn
晴天 Sunny dayNEE = -0.005PAR - 0.28T + 4.060.41<0.001288
阴天 Cloudy dayNEE = -0.006PAR - 0.107T + 2.670.42<0.001288
阴天和晴天差量 Difference between sunny and cloudy daysΔNEE = -0.004ΔPAR - 0.123ΔT - 2.540.63<0.001288

ΔNEE, NEE difference between sunny and cloudy days; ΔT, air temperature difference between sunny and cloudy days.ΔNEE, 阴天和晴天NEE差量; ΔT, 气温差量。

新窗口打开

3 讨论

3.1 阴天和晴天对湿地生态系统NEE光响应的 影响

本文研究发现晴天和阴天芦苇湿地NEEPAR的响应趋势一致, 均呈直角双曲线关系, 与先前的很多研究结果一致(Falge et al., 2001; Monson et al., 2002; Zhou et al., 2009; 张弥等, 2009; Han et al., 2014a, 2014b; 邢庆会等, 2014)。PAR是控制阴天和晴天生态系统生长季昼间NEE变化的主要因素(Flanagan & Johnson, 2005; Liu et al., 2006; 薛红喜等, 2012), Michaelis-Menten方程拟合发现, PAR可以解释晴天单天NEE变化的57%-82%, 解释阴天单天NEE变化的53%-81%。云层变化会改变地表接收太阳辐射的强度, 影响PART等环境因子, 进而影响阴天和晴天条件下NEE对光的响应特征(Baldocchi, 1997; Freedman et al., 2001)。

在一定光照强度范围内, 光合作用随PAR的增强而增加(Glenn et al., 2006; Syed et al., 2006; Hao et al., 2011; 同小娟等, 2011)。光能过剩会对光合作用产生不良影响, 出现光抑制, 致使叶绿体光合效率下降(Jiang et al., 2011; Tholen et al., 2012)。晴天PAR显著大于阴天(图2B), 因此, 晴天条件下植被叶片光合作用可能大于阴天, 表现为晴天Amax显著大于阴天(表1)。Zhou等(2009)研究认为Amax与植被的环境条件有关, 其中晴天Amax较阴天条件下提高了30%, 说明在植被生长旺季, 天空有云层覆盖时芦苇的光合能力比晴朗天气无云时有所降低, Law等(2002)总结全球森林、草地、农田以及苔原生态系统碳交换相关研究也得出类似结论。阴天条件下, 伴随天空云量的增多, PAR显著降低(图2B), 尽管阴天和晴天条件下, NEE均随PAR的增大而增加(图3), 但由于阴天PAR较低, 且晴天未出现光抑制现象, 因此其NEE显著低于晴天(图2A)。Alton (2008)在分析北美洲和欧洲6种森林类型2-3年的碳通量观测数据后发现, 这些森林阴天的日固碳量比晴天少60%-80%。相反, 在研究太阳辐射对黄河小浪底人工混交林生态系统碳交换的影响中发现, 多云天气下净碳交换会增加(刘佳等, 2014)。造成研究结论不一致的原因是多方面的, 不同的阴天和晴天划分指标(Graham et al., 2003; Dengel & Grace, 2010)和拟合模型(Zhang et al., 2011)来估计天气对碳通量的影响, 散射光和直射光下的碳交换没有一直处在相同的天气辐射条件下进行对比。此外, 研究地域的差异和不同植被类型的特性也在很大程度上影响了碳交换过程对天气的响应过程。

另外, 太阳辐射变化引起的温度变化也影响NEE对光的响应特征。首先, 温度通过影响酶系列化学反应对光合作用产生影响(Syed et al., 2006), 温度升高有利于光合速率的提高(Pingintha et al., 2010)。相关分析发现, 阴天和晴天AmaxT均为显著的线性正相关(晴天: R2 = 0.80, p < 0.05; 阴天: R2 = 0.63, p < 0.05), 其次, 生态系统呼吸与气温通常显著正相关(Aires et al., 2008; Pingintha et al., 2010)。本研究中虽然晴天条件下Reco,daytime较阴天提高了20%, 但NEE却显著高于阴天的67%, 说明晴天温度对湿地光合固碳能力的提高远超过生态系统呼吸的消耗, 表现为晴天生态系统的碳汇功能更强, 这与已有的研究结果一致(Han et al., 2014a)。

3.2 阴天和晴天对湿地生态系统呼吸温度响应的影响

阴天和晴天生态系统Reco,daytimeT均呈显著的正相关关系, 两者呈指数关系, 与以往很多研究的结果一致(石培礼等, 2006; Zhou et al., 2009; Zhao et al., 2010; Han et al., 2013, 2014a; 邢庆会等, 2014)。T是影响生态系统呼吸的主要因素(Law et al., 2002; Reichstein et al., 2005; Urban et al., 2007), 本文研究发现: 黄河三角洲芦苇湿地晴天气温相对阴天提高了10%, 其阴天和晴天的气温差高于美国阿尔卑斯山脉南部森林的阴天和晴天的气温差(Berry & Smith, 2012), 黄河三角洲芦苇湿地晴天对应的生态系统呼吸相对阴天提高了20% (p < 0.05), 说明阴天条件下, 植被地上部分尤其是叶面温度较晴朗天气强太阳辐射条件下的低, 叶片以及植被茎干呼吸受到一定的抑制(Urban et al., 2007)。

Q10值被广泛应用于评价生态系统呼吸对温度变化的敏感程度(杨庆朋等, 2011; 杨利琼等, 2013; Han et al., 2014a, 2014b), Q10值越大, 说明生态系统呼吸对温度变化的响应越敏感。黄河三角洲芦苇湿地生态系统阴天和晴天Q10值均在已有的湿地Q10范围(1.0-7.7)内(Chapman & Thurlow, 1996; Silvola et al., 1996; Lafleur et al., 2001; Bonneville et al., 2008; Zhou et al., 2009; 周丽艳等, 2010), 其中晴天白天Q10为5.5, 远高于阴天白天的Q10 (1.9), 说明晴天白天生态系统呼吸对温度变化的敏感性相对较高。分析其原因, 一方面生态系统温度敏感性与气温有关(Kirschbaum, 1995; Xu & Qi, 2001; Janssens & Pilegaard, 2003; Davidson & Janssens., 2006; 张雷明等, 2006; Jassal et al., 2008), 气温对Q10产生影响主要通过影响光合与呼吸作用酶的活性实现(Davidson & Janssens, 2006)。晴天气温T ((23.56 ± 2.62) ℃)显著大于阴天((21.26 ± 2.34) ℃), 阴天由于酶促反应需要一定的活化酶, 光合与呼吸作用酶的活性一般受到限制; 而晴天随着辐射增强, 气温升高, 越来越多的分子达到或超过了自身的活化能, 反应加快(Xiang & Freeman, 2009; Karhu et al., 2010)。另一方面, 晴天相对阴天较高的PAR使得晴天光合作用更强, 产生输送的有机质增多(Curiel Yuste et al., 2007; Jassal et al., 2008), 自养呼吸增强, 同时地上植被以及土壤异养微生物呼吸对气温的响应能力增强(Edwards et al., 2004; Heinemeyer et al., 2006; Moyano et al., 2008), 而阴天由于底物基质供应不足使得自养、异养呼吸受到抑制(Gershenson et al., 2009)。

3.3 本研究的特色与不足

本研究以黄河三角洲芦苇湿地为研究对象, 在自然条件下选择相邻的阴天和晴天, 在生物要素(生物量、叶面积指数)、土壤水分以及养分特征保持不变的前提下, 分析阴天和晴天引起的辐射变化对生态系统NEE的影响机制。目前, 有关太阳辐射对生态系统NEE的影响机制大都以晴空指数为指标(Gu et al., 2003; Liu et al., 2006; 范玉枝等, 2009; Zhang et al., 2010; 周丽艳等, 2010; 蒋琰等, 2011; Zhao et al., 2011; 刘佳等, 2014)。这种研究方法的最大不足就是研究阶段中, 太阳辐射、生物要素(生物量、叶面积指数)、土壤湿度等环境因子都在发生变化, 这对阐明太阳辐射这一单因素对NEE的控制机制研究带来一定困难。而本研究巧妙地在自然条件下选择相邻的阴天和晴天, 在日尺度上实现了对单一变量PAR的控制。利用这种研究方法, Han等(2014a)通过对比分析阴天和晴天植物冠层光合作用的差异性, 定量分析了光合作用在日尺度上对土壤呼吸的调节作用。此外, 我们已有研究发现PAR改变所引起的植物光合作用变化对生态系统呼吸会产生一定的影响(Tang et al., 2005; Baldocchi et al., 2006; Moyano et al., 2008; Wingate et al., 2010; Han et al., 2012)。但是, 以往的研究多通过夜间生态系统呼吸与气温函数关系外延的方法来估算白天生态系统呼吸(Doughty et al., 2010; Zhang et al., 2011), 忽略了PAR对白天生态系统呼吸的影响, 因而具有一定的局限性。考虑到白天PAR的变化, 本研究采用Michaelis-Menten模型对白天生态系统呼吸进行推算, 使得生态系统呼吸的温度响应数据更具有说服力。

本研究通过利用自然条件下阴天和晴天的转换, 较好地证明了阴天和晴天引起的太阳辐射变化对湿地生态系统碳吸收功能的影响, 为云量以及大气气溶胶含量变化对区域CO2交换的潜在影响提供了有力证据。本研究只涉及生长季节的12对阴天和晴天数据, 数据并没有涵盖整个生长季, 而且由于9月份连续降雨, 我们并没有在9月份找到相邻的阴天和晴天数据对。此外, 本次研究我们主要探讨了PAR对生态系统生长季NEE的影响, 而NEE是植被光合固定碳(生态系统总生产力, GPP)与生态系统呼吸释放碳(生态系统呼吸, Reco)之间相互平衡的结果, PAR对植被光合作用以及生态系统呼吸强度的影响机制, 本次研究没有涉及。因此, 在下一步研究中, 除了加强对生长季生态系统NEE以及环境因子长期的、连续观测外, 增加植被光合作用的探讨有助于深刻理解分析PAR变化对黄河三角洲芦苇湿地生态系统碳收支过程产生的影响。

致谢 感谢中国科学院黄河三角洲滨海湿地生态试验站杨长利、马秀枝在野外监测工作中给予的帮助。

The authors have declared that no competing interests exist.

作者声明没有竞争性利益冲突.


参考文献

[1] Aires LMI, Pio CA, Pereira JS (2008).

Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years.

Global Change Biology, 14, 539-555.

[本文引用: 1]     

[2] Alton PB (2008).

Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies.

Agricultural and Forest Meteorology, 148, 1641-1653.

[3] Alton PB, North PR, Los SO (2007).

The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes.

Global Change Biology, 13, 776-787.

[本文引用: 1]     

[4] Bai YF, Wang J, Zhang BC, Zhang ZH, Liang J (2012).

Comparing the impact of cloudiness on carbon dioxide exchange in a grassland and a maize cropland in northwestern China.

Ecological Research, 27, 615-623.

[本文引用: 1]     

[5] Baldocchi D (1997).

Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought.

Plant, Cell & Environment, 20, 1108-1122.

[本文引用: 1]     

[6] Baldocchi D, Tang JW, Xu LK (2006).

How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna.

Journal of Geophysical Research: Biogeosciences, 111, G02008.

[本文引用: 1]     

[7] Bar-Or RZ, Koren I, Altaratz O (2010).

Estimating cloud field coverage using morphological analysis.

Environmental Research Letters, 5, 123-129.

[本文引用: 1]     

[8] Berry ZC, Smith WK (2012).

Cloud pattern and water relations in Picea rubens and Abies fraseri, southern Appalachian Mountains, USA.

Agricultural and Forest Meteorology, 162-163, 27-34.

[本文引用: 1]     

[9] Bonneville MC, Strachan IB, Humphreys ER, Roulet NT (2008).

Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties.

Agricultural and Forest Meteorology, 148, 69-81.

[本文引用: 1]     

[10] Bu RC, Wang XL, Xiao DN (1999).

Analysis on landscape elements and fragmentation of Yellow River delta.

Chinese Journal of Applied Ecology, 10, 321-324.

[本文引用: 1]     

(in Chinese with English abstract) [布仁仓, 王宪礼, 肖笃宁 (1999).

黄河三角洲景观组分判定与景观破碎化分析

. 应用生态学报, 10, 321-324.]

[本文引用: 1]     

[11] Chapman SJ, Thurlow M (1996).

The influence of climate on CO2 and CH4 emissions from organic soils.

Agricultural and Forest Meteorology, 79, 205-217.

[本文引用: 1]     

[12] Cui SQ (2002).

Influence of water discharge cut-off of Huanghe on environment of its delta.

Marine Sciences, 26(7), 42-46.

[本文引用: 1]     

(in Chinese with English abstract) [崔树强 (2002).

黄河断流对黄河三角洲生态环境的影响

. 海洋科学, 26(7), 42-46.]

[本文引用: 1]     

[13] Curiel Yuste J, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007).

Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture.

Global Change Biology, 13, 2018-2035.

[本文引用: 1]     

[14] Davidson EA, Janssens IA (2006).

Temperature sensitivity of soil carbon decomposition and feedbacks to climate change.

Nature, 440, 165-173.

[本文引用: 1]     

[15] Dengel S, Grace J (2010).

Carbon dioxide exchange and canopy conductance of two coniferous forests under various sky conditions.

Oecologia, 164, 797-808.

[本文引用: 1]     

[16] Doughty CE, Flanner MG, Goulden ML (2010).

Effect of smoke on subcanopy shaded light, canopy temperature, and carbon dioxide uptake in an Amazon rainforest.

Global Biogeochemical Cycles, 24, GB3015.

[本文引用: 1]     

[17] Edwards EJ, Benham DG, Marland LA, Fitter AH (2004).

Root production is determined by radiation flux in a temperate grassland community.

Global Change Biology, 10, 209-227.

[本文引用: 1]     

[18] Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001).

Gap filling strategies for defensible annual sums of net ecosystem exchange.

Agricultural and Forest Meteorology, 107, 43-69.

[本文引用: 2]     

[19] Fan YZ, Zhang XZ, Shi PL (2009).

Influence of diffuse radiation on the net CO2 exchange of alpine meadow ecosystem on Tibet Plateau.

Geographical Research, 28, 1673-1681.

[本文引用: 3]     

(in Chinese with English abstract) [范玉枝, 张宪洲, 石培礼 (2009).

散射辐射对西藏高原高寒草甸净生态系统CO2交换的影响

. 地理研究, 28, 1673-1681.]

[本文引用: 3]     

[20] Flanagan LB, Johnson BG (2005).

Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland.

Agricultural and Forest Meteorology, 130, 237-253.

[本文引用: 1]     

[21] Freedman JM, Fitzjarrald DR, Moore KE, Sakai RK (2001).

Boundary layer clouds and vegetation-atmosphere feedbacks.

Journal of Climate, 14, 180-197.

[本文引用: 1]     

[22] Gershenson A, Bader NE, Cheng WX (2009).

Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition.

Global Change Biology, 15, 176-183.

[本文引用: 1]     

[23] Glenn AJ, Flanagan LB, Syed KH, Carlson PJ (2006).

Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex.

Agricultural and Forest Meteorology, 140, 115-135.

[本文引用: 1]     

[24] Graham EA, Mulkey SS, Kitajima K, Phillips NG, Wright SJ (2003).

Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons.

Proceedings of the National Academy of Sciences of the United States of America, 100, 572-576.

[本文引用: 1]     

[25] Gu LH, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002).

Advantages of diffuse radiation for terrestrial ecosystem productivity.

Journal of Geophysical Research, 107, ACL 2-1-ACL 2-23 D6, doi: 10.1029/2001 JD001242.

[本文引用: 1]     

[26] Gu LH, Fuentes JD, Shugart HH, Staebler RM, Black TA (1999).

Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North American deciduous forests.

Journal of Geophysical Research, 104, 31421-31434.

[本文引用: 1]     

[27] Gu S, Tang YH, Du MY, Kato T, Li YN, Cui XY, Zhao XQ (2003).

Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai- Tibetan Plateau.

Journal of Geophysical Research, 108, 4670.

[本文引用: 2]     

[28] Han GX, Luo YQ, Li DJ, Xia JY, Xing QH, Yu JB (2014a).

Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland.

Soil Biology & Biochemistry, 68, 85-94.

[本文引用: 6]     

[29] Han GX, Xing QH, Yu JB, Luo YQ, Li DJ, Yang LQ, Wang GM, Mao PL, Xie BH, Mikle N (2014b).

Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta.

Agriculture, Ecosystems and Environment, 196, 187-198.

[本文引用: 4]     

[30] Han GX, Yang LQ, Yu JB, Wang GM, Mao PL, Gao YJ (2013).

Environmental controls on net ecosystem CO2 exchange over a reed (Phragmites australis) wetland in the Yellow River Delta, China.

Estuaries and Coasts, 36, 401-413.

[本文引用: 2]     

[31] Han GX, Yu JB, Li HB, Yang LQ, Wang GM, Mao PL, Gao YJ (2012).

Winter soil respiration from different vegetation patches in the Yellow River Delta, China.

Environmental Management, 50, 39-49.

[本文引用: 1]     

[32] Hao YB, Cui XY, Wang YF, Mei XR, Kang XM, Wu N, Luo P, Zhu D (2011).

Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of southwest China.

Wetlands, 31, 413-422.

[本文引用: 1]     

[33] Heinemeyer A, Ineson P, Ostle N, Fitter AH (2006).

Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.

New Phytologist, 171, 159-170.

[本文引用: 1]     

[34] Janssens IA, Pilegaard K (2003).

Large seasonal changes in Q10 of soil respiration in a beech forest.

Global Change Biology, 9, 911-918.

[本文引用: 1]     

[35] Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008).

Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas- fir stand.

Global Change Biology, 14, 1305-1318.

[本文引用: 2]     

[36] Jia X, Wang WC, Chen YH, Huang JP, Chen JM, Zhang H, Bai HT, Zhang P (2010).

Influence of dust aerosols on cloud radiative forcing over Northern China.

China Environmental Science, 30, 1009-1014.

[本文引用: 1]     

(in Chinese with English abstract) [贾漩, 王文彩, 陈勇航, 黄建平, 陈建民, 张华, 白鸿涛, 张萍 (2010).

华北地区沙尘气溶胶对云辐射强迫的影响

. 中国环境科学, 30, 1009-1014.]

[本文引用: 1]     

[37] Jiang CD, Wang X, Gao HY, Shi L, Chow WS (2011).

Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in Sorghum.

Plant Physiology, 155, 1416-1424.

[本文引用: 2]     

[38] Jiang Y, Hu HB, Zhang XS, Xue JH (2011).

The carbon flux and its environmental factors in a north subtropical secondary oak forest ecosystem. Journal of Nanjing Forestry University (

Natural Science Edition), 35(3), 38-42.

[本文引用: 1]     

(in Chinese with English abstract) [蒋琰, 胡海波, 张学仕,薛建辉 (2011).

北亚热带次生栎林碳通量及其影响因子研究

. 南京林业大学学报(自然科学版), 35(3), 38-42.]

[本文引用: 1]     

[39] Karhu K, Fritze H, Tuomi M, Vanhala P, Spetz P, Kitunen V, Liski J (2010).

Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles.

Soil Biology & Biochemistry, 42, 72-82.

[本文引用: 1]     

[40] Kirschbaum MUF (1995).

The temperature dependence of soil organic-matter decomposition, and the effect of global warming on soil organic C storage.

Soil Biology & Biochemistry, 27, 753-760.

[本文引用: 1]     

[41] Lafleur PM, Roulet NT, Admiral SW (2001).

Annual cycle of CO2 exchange at a bog peatland.

Journal of Geophysical Research: Atmospheres, 106, 3071-3081.

[本文引用: 1]     

[42] Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw U KT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002).

Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation.

Agricultural and Forest Meteorology, 113, 97-120.

[本文引用: 1]     

[43] Letts MG, Lafleur PM, Roulet NT (2005).

On the relationship between cloudiness and net ecosystem carbon dioxide exchange in a peatland ecosystem.

Ecoscience, 12, 53-59.

[本文引用: 2]     

[44] Liu J, Tong XJ, Zhang JS, Meng P, Li J, Zheng N (2014).

Impacts of solar radiation on net ecosystem carbon exchange in a mixed plantation in the Xiaolangdi Area.

Acta Ecologica Sinica, 34, 2118-2127.

[本文引用: 3]     

(in Chinese with English abstract) [刘佳, 同小娟, 张劲松, 孟平, 李俊, 郑宁 (2014).

太阳辐射对黄河小浪底人工混交林净生态系统碳交换的影响

. 生态学报, 34, 2118-2127.]

[本文引用: 3]     

[45] Liu YF, Yu GR, Wen XF, Wang YH, Song X, Li J, Sun XM, Yang FT, Chen YR, Liu QJ (2006).

Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem.

Science in China Series D: Earth Sciences, 49, 99-109.

[本文引用: 3]     

[46] Lloyd J, Taylor JA (1994).

On the temperature dependence of soil respiration.

Functional Ecology, 8, 315-323.

[本文引用: 1]     

[47] Ma JY, Liang H, Luo Y, Li SK (2011).

Variation trend of direct and diffuse radiation in China over recent 50 years.

Acta Physica Sinica, 60, 859-872.

[本文引用: 1]     

(in Chinese with English abstract) [马金玉, 梁宏, 罗勇, 李世奎 (2011).

中国近50年太阳直接辐射和散射辐射变化趋势特征

. 物理学报, 60, 859-872.]

[本文引用: 1]     

[48] Min QL (2005).

Impacts of aerosols and clouds on forest- atmosphere carbon exchange.

Journal of Geophysical Research: Atmospheres, 110, D06203. doi: 10.1029/2004 JD004858.

[本文引用: 1]     

[49] Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002).

Carbon sequestration in a high-elevation, subalpine forest.

Global Change Biology, 8, 459-478.

[本文引用: 1]     

[50] Moyano FE, Kutsch WL, Rebmann C (2008).

Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands.

Agricultural and Forest Meteorology, 148, 135-143.

[本文引用: 2]     

[51] Mu CC, Shi LY, Sun XX (2009).

Fluxes and controls of CO2, CH4 and N2O in a marsh wetland of Xiaoxing’an Mountains, northeastern China.

Chinese Journal of Plant Ecology, 33, 617-623.

[本文引用: 1]     

(in Chinese with English abstract) [牟长城, 石兰英, 孙晓新 (2009).

小兴安岭典型草丛沼泽湿地CO2、CH4和N2O的排放动态及其影响因素

. 植物生态学报, 33, 617-623.]

[本文引用: 1]     

[52] Niyogi D, Chang HI, Saxena VK, Holt T, Alapaty K, Booker F, Chen F, Davis KJ, Holben B, Matsui T, Meyers T, Oechel WC, Peilke RA, Well R, Wilson K, Xue YK (2004).

Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes.

Geophysical Research Letters, 31, L20506.

[本文引用: 1]     

[53] Pingintha N, Leclerc MY, Beasley JP, Durden D, Zhang G, Senthong C, Rowland D (2010).

Hysteresis response of daytime net ecosystem exchange during drought.

Biogeosciences, 7, 1159-1170.

[本文引用: 2]     

[54] Qi Y, Fang SB, Zhou WZ (2014).

Variation and spatial distribution of surface solar radiation in China over recent 50 years.

Acta Ecologica Sinica, 34, 7444-7453.

[本文引用: 1]     

(in Chinese with English abstract) [齐月, 房世波, 周文佐 (2014).

近50年来中国地面太阳辐射变化及其空间分布

. 生态学报, 34, 7444-7453.]

[本文引用: 1]     

[55] Reichstein M, Fagle E, Baldocchi D, Palale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyer T, Migiletta F, Ourcival JM, Pumpaney J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005).

On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm.

Global Change Biology, 11, 1424-1439.

[本文引用: 1]     

[56] Roderick ML, Farquhar GD, Berry SL, Noble IR (2001).

On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation.

Oecologia, 129, 21-30.

[本文引用: 1]     

[57] Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995).

CO2 fluxes over plant canopies and solar radiation: A review.

Advances in Ecological Research, 26, 1-68.

[本文引用: 1]     

[58] Sasaki A, Hagimori Y, Nakatubo T, Hoshika A (2009).

Tidal effects on the organic carbon mineralization rate under aerobic conditions in sediments of an intertidal estuary.

Ecological Research, 24, 723-729.

[本文引用: 1]     

[59] Shi PL, Sun XM, Xu LL, Zhang XZ, He YT, Zhang DQ, Yu GR (2006).

The net ecosystem CO2 exchange and its influence factor in pole grass meadow, Tibet Plateau.

Science in China Series D: Earth Sciences, 36, 194-203.

[本文引用: 1]     

(in Chinese) [石培礼, 孙晓敏, 徐玲玲, 张宪洲, 何永涛, 张东秋, 于贵瑞 (2006).

西藏高原草原化嵩草草甸生态系统CO2净交换及其影响因子

. 中国科学D辑: 地球科学, 36, 194-203.]

[本文引用: 1]     

[60] Silvola J, Alm J, Ahlholm U, Nykanen H, Martikainen PJ (1996).

CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions.

Journal of Ecology, 84, 219-228.

[本文引用: 1]     

[61] Still CJ, Riley WJ, Biraud SC, Noone DC, Buenning NH, Randerson JT, Torn MS, Welker J, White JWC, Vachon R, Farquhar GD, Berry JA (2009).

Influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exchanges.

Journal of Geophysical Research Biogeosciences, 114, G01018. doi: 10.1029/2007JG000675.

[本文引用: 1]     

[62] Syed KH, Flanagen LB, Carlson PJ, Glenn AJ, van Gaalen KE (2006).

Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta.

Agricultural and Forest Meteorology, 140, 97-114.

[本文引用: 2]     

[63] Tang JW, Baldocchi DD, Xu LK (2005).

Tree photosynthesis modulates soil respiration on a diurnal time scale.

Global Change Biology, 11, 1298-1304.

[本文引用: 1]     

[64] Tholen D, Boom C, Zhu XG (2012).

Opinion: Prospects for improving photosynthesis by altering leaf anatomy.

Plant Science, 197, 92-101.

[本文引用: 1]     

[65] Tong XJ, Li J, Liu D (2011).

Characteristics and controlling factors of photosynthesis in a maize ecosystem on the North China Plain.

Acta Ecologica Sinica, 31, 4889-4899.

[本文引用: 1]     

(in Chinese with English abstract) [同小娟, 李俊, 刘渡 (2011).

华北平原玉米田生态系统光合作用特征及影响因素

. 生态学报, 31, 4889-4899.]

[本文引用: 1]     

[66] Urban O, Janouš D, Acosta M, Czerný R, Marková I, Navrátil M, Pavelka M, Pokorný R, Šprtová M, Zhang R, Špunda V, Grace J, Marek MV (2007).

Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation.

Global Change Biology, 13, 157-168.

[本文引用: 3]     

[67] Wingate L, Ogée J, Burlett R, Bosc A, Devaux M, Grace J, Loustau D, Gessler A (2010).

Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration.

New Phytologist, 188, 576-589.

[本文引用: 1]     

[68] Xiang W, Freeman C (2009).

Annual variation of temperature sensitivity of soil organic carbon decomposition in North peatlands: Implications for thermal responses of carbon cycling to global warming.

Environmental Geology, 58, 499-508.

[本文引用: 1]     

[69] Xing QH, Han GX, Yu JB, Wu LX, Yang LQ, Mao PL, Wang GM, Xie BH (2014).

Net ecosystem CO2 exchange and its controlling factors during the growing season in an inter-tidal salt marsh in the Yellow River Estuary, China.

Acta Ecologica Sinica, 34, 4966-4979.

[本文引用: 4]     

(in Chinese with English abstract) [邢庆会, 韩广轩, 于君宝, 吴立新, 杨利琼, 毛培利, 王光美, 谢宝华 (2014).

黄河口潮间盐沼湿地生长季净生态系统CO2交换特征及其影响因素

. 生态学报, 34, 4966-4979.]

[本文引用: 4]     

[70] Xu M, Qi Y (2001).

Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest.

Global Biogeochemical Cycles, 15, 687-696.

[本文引用: 1]     

[71] Xue HX, Li F, Li Q, Wang LX, Wang YL, Hu ZH (2012).

Research progress on carbon flux over agro-ecosystem based on the eddy covariance method in China.

Journal of Nanjing University of Information Science and Technology, 4, 226-232.

[本文引用: 1]     

(in Chinese with English abstract) [薛红喜, 李峰, 李琪, 王连喜, 王云龙, 胡正华 (2012).

基于涡度相关法的中国农田生态系统碳通量研究进展

. 南京信息工程大学学报, 4, 226-232.]

[本文引用: 1]     

[72] Yang LQ, Han GX, Yu JB, Wu LX, Zhu M, Xing QH, Wang GM, Mao PL (2013).

Effects of reclamation on net ecosystem CO2 exchange in wetland in the Yellow River Delta, China.

Chinese Journal of Plant Ecology, 37, 503-516.

[本文引用: 2]     

(in Chinese with English abstract) [杨利琼, 韩广轩, 于君宝, 吴立新, 朱敏, 邢庆会, 王光美, 毛培利 (2013).

开垦对黄河三角洲湿地净生态系统CO2交换的影响

. 植物生态学报, 37, 503-516.]

[本文引用: 2]     

[73] Yang QP, Xu M, Liu HS, Wang JS, Liu LX, Chi YG, Zheng YP (2011).

Impact factors and uncertainties of the temperature sensitivity of soil respiration.

Acta Ecologica Sinica, 31, 2301-2311.

[本文引用: 1]     

(in Chinese with English abstract) [杨庆朋, 徐明, 刘洪升, 王劲松, 刘丽香, 迟永刚, 郑云普 (2011).

土壤呼吸温度敏感性的影响因素和不确定性

. 生态学报, 31, 2301-2311.]

[本文引用: 1]     

[74] Zhang BC, Cao JJ, Bai YF, Yang SJ, Hu L, Ning ZG (2011).

Effects of cloudiness on carbon dioxide exchange over an irrigated maize cropland in northwestern China.

Biogeosciences Discussions, 8, 1669-1691.

[本文引用: 3]     

[75] Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Song X, Liu YF, Guan DX, Yan JH, Zhang YP (2006).

Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China.

Science in China Series D: Earth Sciences, 49, 47-62.

[本文引用: 1]     

(in Chinese) [张雷明, 于贵瑞, 孙晓敏, 温学发, 任传友, 宋霞, 刘允芬, 关德新, 闫俊华, 张一平 (2006).

中国东部森林样带典型生态系统碳收支的季节变化

. 中国科学D辑: 地球科学, 36, 45-59.]

[本文引用: 1]     

[76] Zhang M, Yu GR, Zhang LM, Sun XM, Wen XF, Han SJ (2009).

Effects of solar radiation on net ecosystem exchange of broadleaved-korean pine mixed forest in Changbai Mountain, China.

Chinese Journal of Plant Ecology, 33, 270-282.

[本文引用: 1]     

(in Chinese with English abstract) [张弥, 于贵瑞, 张雷明, 孙晓敏, 温学发, 韩士杰 (2009).

太阳辐射对长白山阔叶红松林净生态系统碳交换的影响

. 植物生态学报, 33, 270-282.]

[本文引用: 1]     

[77] Zhang M, Yu GR, Zhang LM, Sun XM, Wen XF, Han SJ, Yan JH (2010).

Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China.

Biogeosciences Discussions, 6, 8215-8245.

[本文引用: 3]     

[78] Zhao L, Li J, Xu S, Zhou H, Li Y, Gu S, Zhao X (2010).

Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau.

Biogeosciences, 7, 1207-1221.

[本文引用: 2]     

[79] Zhao ZH, Zhang LP, Kang WX, Tian DL, Xiang WH, Yan WD, Peng CH (2011).

Characteristics of CO2 flux in a Chinese fir plantation ecosystem in Huitong County, Hunan Province.

Scientia Silvae Sinicae, 47, 6-12.

[本文引用: 2]     

[80] Zheng Y, Zhao Z, Zhou H, Zhou JJ (2011).

Effects of sunny and cloudy days on photosynthetic and physiological characteristics of Black Locust.

Scientia Silvae Sinicae, 47(5), 60-67.

[本文引用: 1]     

(in Chinese with English abstract) [郑元, 赵忠, 周慧, 周靖靖 (2011).

晴天和阴天对刺槐光合生理特性的影响

. 林业科学, 47(5), 60-67.]

[本文引用: 1]     

[81] Zhou L, Zhou GS, Jia QY (2009).

Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China.

Aquatic Botany, 91, 91-98.

[本文引用: 3]     

[82] Zhou LY, Jia BR, Zeng W, Wang Y, Zhou GS (2010).

Net ecosystem CO2 exchange of virgin Larix gmelinii forest and its characteristics of light response.

Acta Ecologica Sinica, 30, 6919-6926.

[本文引用: 3]     

(in Chinese with English abstract) [周丽艳, 贾丙瑞, 曾伟, 王宇, 周广胜 (2010).

原始兴安落叶松林生长季净生态系统CO2交换及其光响应特征

. 生态学报, 30, 6919-6926.]

[本文引用: 3]     

/