植物生态学报  2015 , 39 (9): 890-900 https://doi.org/10.17521/cjpe.2015.0085

Orginal Article

典型固沙植物梭梭生长季蒸腾变化及其对环境因子的响应

徐世琴12, 吉喜斌1*, 金博文1

1中国科学院寒区旱区环境与工程研究所, 兰州 730000
2中国科学院大学, 北京 100049

Dynamics and responses of sap flow of typical sand binding plants Haloxylon ammodendron to environmental variables

XU Shi-Qin12, JI Xi-Bin1*, JIN Bo-Wen1

1Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
2University of Chinese Academy of Sciences, Beijing 100049, China

通讯作者:  * 通讯作者Author for correspondence (E-mail:xuanzhij@ns.lzb.ac.cn)

收稿日期: 2015-01-6

接受日期:  2015-05-28

网络出版日期:  2015-09-03

版权声明:  2015 植物生态学报编辑部 本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。

基金资助:  国家重点基础研究发展计划(973)课题(2013CB429902)和国家自然科学基金(41271036)

展开

摘要

蒸腾是植物重要的生理活动之一, 受到多个环境要素的综合影响。该文利用热平衡包裹式茎干液流仪Flow32监测系统, 对河西走廊中段绿洲—荒漠过渡带主要固沙植物梭梭(Haloxylon ammodendron)生长季的蒸腾过程进行连续监测, 并分析了其对环境要素的响应。结果表明: (1)梭梭茎干液流速率随枝直径的增加而增加, 液流密度随枝直径的增加而降低, 梭梭液流密度日变化呈多峰特征, 整个生长季液流密度变化比较稳定。(2)主成分分析表明第1、2、3主成分能够分别解释环境信息49%、15%、12%的变化, 第一主成分中水汽压亏缺、光合有效辐射及气温反映了大气的蒸腾需求。(3) S型模型对液流密度日变化模拟精度达到0.86, 考虑时滞效应后模拟精度提高至0.9, 降水天气条件下模拟精度降低至0.65。(4)液流密度对主要环境要素存在非对称响应, 同光合有效辐射呈逆时针环状, 同水汽压亏缺、蒸腾需求指数呈顺时针环状。

关键词: 热平衡方法 ; 非对称响应 ; 主成分分析 ; 模拟 ; 茎干液流

Abstract

Aims

Transpiration is one of important physiological activities for plants, which is regulated by many environmental variables. Our objectives were to understand the responses of sap flow density of Haloxylon ammodendron to environmental variables and simulate its diurnal change under different micrometeorological conditions.

Methods

Sap flow in stems of H. ammodendron was measured with stem heat balance method using commercial sap-flow gauges from May to October, 2014, in the oasis-desert ecotone, located in the middle range of Hexi Corridor, Northwestern China.

Important findings

Sap flow velocity of H. ammodendron exhibited a positive relationship with stem diameter, but sap flow density (Js) decreased with stem diameter. The first three axes of principal component analysis (PCA) explained 49%, 15%, 12% of variances in the environmental datasets, respectively, and vapour pressure deficit (VPD), photosynthetically active radiation (PAR), temperature in the first axes indicated the atmospheric evaporative demand. A sigmoid function could explain 86% of the variation in Js in typical sunny days, while only 65% on rainy days. It was worth noting the simulated Js using the established sigmoid function agreed well with the measurements (R2 = 0.90) if the time lags of Js to principle environmental variables were taken into consideration. Plots of 30-min Js against PAR, VPD, and evaporative demand index (EDI) revealed a counter-clockwise hysteresis for PAR, but a clockwise hysteresis for VPD and EDI, it was possibly affected by water stress and time lags of sap flow density to principle environmental variables.

Keywords: heat balance method ; hysteresis ; principle component analysis ; simulation ; stem sap flow

0

PDF (1028KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

徐世琴, 吉喜斌, 金博文. 典型固沙植物梭梭生长季蒸腾变化及其对环境因子的响应. 植物生态学报, 2015, 39(9): 890-900 https://doi.org/10.17521/cjpe.2015.0085

XU Shi-Qin, JI Xi-Bin, JIN Bo-Wen. Dynamics and responses of sap flow of typical sand binding plants Haloxylon ammodendron to environmental variables. Chinese Journal of Plant Ecology, 2015, 39(9): 890-900 https://doi.org/10.17521/cjpe.2015.0085

蒸腾是植物重要的生理活动之一, 该过程一方面促进植物体内水分和营养元素的运输, 另一方面通过气孔控制间接影响光合作用(Jones, 1983)。植物茎干液流(stem sap flow)的90%以上通过叶片蒸腾散失到大气中(蒋高明, 2007), 因此能够将植物茎干液流量用于估算单株或群落蒸腾并获得植物重要的生理生态信息。茎干液流受到植物生理生化特征、环境要素及树形因子的综合影响(Andrade et al., 1998; Meinzer et al., 2001), 其中环境要素主要包括光合有效辐射(PAR)、水汽压亏缺(VPD)和气温等, 而长时间尺度液流变化则受区域气候的制约(Granier et al., 1992; Vertessy et al., 1995; McDowell et al., 2008)。主成分分析(PCA)能将互有联系的环境要素分为不同的复合分量, 在保留原始数据主要信息的基础上实现数据降维, 该方法对于分析植物液流对环境因子的响应十分有效(O’Brien et al., 2004)。

20世纪90年代以来, 茎干液流测定技术被广泛应用在植物单株及群落蒸腾研究上。目前常用的测量方法包括热脉冲(heat pulse method)(Granier, 1985, 1987), 热扩散(thermal dissipation method) (Smith & Allen, 1996)和热平衡(stem heat balance) (Baker & van Bavel, 1987), 它们均能获得植物茎干液流连续变化信息(Čermák et al., 1973; Edwards et al., 1996; Hall et al., 1998)。但前两种方法需要计算树干边材面积, 耗时较多, 且不同方位、不同深度边材上植物液流速率存在的差异也会使测定结果的不确定性增大(Wullschleger & King, 2000; 徐飞等, 2012), 此外, 梭梭(Haloxylon ammodendron)茎干较细, 前两种测定技术在操作上并不可行。热平衡方法直接将加热器包裹在茎干外部对植物液流进行连续监测, 能有效地避免上述问题(Kigalu, 2007)。

梭梭为藜科梭梭属超旱生小乔木(戴岳等, 2014), 是河西走廊中段绿洲—荒漠过渡带的主要固沙植物, 对于维持该区生态系统的稳定性及荒漠化防治发挥着极其重要的作用(李向义等, 2004)。国内学者对该植物的研究涉及叶片光合、蒸腾及水分利用效率(苏培玺等, 2005; 苏培玺和严巧娣, 2006; 常学向等, 2007), 抗旱性能(郭泉水等, 2004), 根系形态特征(弋良朋等, 2007)等方面。目前, 关于植物茎干液流的研究主要集中于对温带、热带地区高大乔木的研究, 关于极端干旱环境条件下荒漠植物长期茎干液流变化特征及其对环境要素的响应并不多见, 对茎干液流变化的模拟也少有报道。本文对梭梭生长季茎干液流及主要环境要素进行了监测, 目的在于: (1)研究梭梭液流变化规律; (2)分析液流对主要环境因子的响应; (3)构建模型模拟液流日变化, 以期为研究荒漠植物耗水和固沙植物品种选育提供科学依据。

1 材料和方法

1.1 研究区概况

野外观测实验场位于河西走廊中段临泽绿洲—荒漠过渡带(39.37° N, 100.14° E, 海拔1386 m), 为典型的大陆性干旱气候, 干旱高温和多风是其气候的主要特点。2005-2014年平均年降水量约123 mm, 近80%降水集中于6-9月, 年日照时数和辐射总量分别为3018 h和6254 MJ·m-2; 年平均气温约8.9 ℃, 最高气温38.6 ℃, 最低气温-26.2 ℃, ≥10 ℃的年积温为3088 ℃。此地主风向为西北风, 风沙活动集中在3-5月, 年均风速2.7 m·s-1, 土壤为砂土。

1.2 仪器的安装和测定

2014年5-10月选取相同生境条件下生长状况良好的梭梭样枝, 利用热平衡包裹茎干液流仪(Flow32, Dynamax, Houston, USA)对所选样枝液流进行测定, 共包裹了9个探头。测定前, 将小的枝条和萌芽去除, 用砂纸轻轻将茎干打磨光滑, 然后用游标卡尺测量样枝直径后, 在打磨好的安装区涂抹油脂, 仔细将加热片安装于被测区, 用铝箔包裹, 最后用胶带密封, 防止雨水进入。将连接探头的电缆线与数据采集器(CR1000)相应接口进行连接, 通过计算机分别将被测样枝的茎干类型、横截面积、探头电压、起始时间、数据记录间隔等参数输入到数据采集器并定期采集数据, 测定期间每两周更换一次探头。本研究的数据采集间隔为60 s, 每30 min计算一次平均值并储存, 由于仪器故障等不可抗因素最终采用探头型号为SGA9、SGA13、SGA13、SGA19、SGA25、SGB25数据作为模型输入数据, 探头型号SGA5数据作为模型验证数据(表1)。

表1   被测样枝参数

Tab1   e 1 Basic parameters of measured stems

编号
Numbers
探头型号
Type of probe
枝直径
Stem diameter (cm)
1SGA50.27
2SGA90.47
3SGA130.75
4SGA130.66
5SGA191.02
6SGA251.32
7SGB251.24

新窗口打开

1.3 环境因子测定

试验地建有8 m微气象观测塔, 植被冠层顶部安装有降水量传感器(TE525MM tipping bucket rain gauges, Texas Electronics, Texas, USA), 冠层顶部2 m高度安装有净辐射传感器(CNR4, Kipp & Zonen, Delft, Netherlands)、光合有效辐射传感器(LI-190SB, LI-COR, Lincoln, USA), 大气温度和湿度传感器(HMP155A, Vaisala, Helsinki, Finlnd), 风速风向传感器(1405-PK-052 WindSonic anemometer, Gill Instruments Ltd., Lymington, UK)。土壤温度探头(109-L, Campbell Scientific, North Logan, USA)及水分探头(CS616, Campbell Scientific, North Logan, USA), 设置深度均为10、20、40、60、80、100 cm (本文采用10 cm处的土壤温度和水分数据)。所有数据通过数据采集器(CR1000-XT, Campbell Scientific, North Logan, USA)自动记录, 每30 min计算平均值并进行存储。

1.4 模型

由于植物茎干液流与环境要素存在较高统计相关性, 本文基于PCA构建梭梭液流密度日变化的经验模型, 选择晴天条件下梭梭液流密度观测数据在Origin 9.0中对观测值进行模拟, 选择模拟精度最高的一个4参数的S型函数, 模型表达式如下:

式中, SSF为标准化液流密度, x为自变量, 即下文提出的蒸腾需求指数(EDI), 模型参数a为方程的低值(方程下渐近线趋近的值), b为方程的高值(方程上渐近线趋近的值), x0为曲点, c为过渡斜率。

2 结果

2.1 茎干液流变化

不同直径梭梭样枝液流速率变化存在显著差异(图1), 平均液流速率随着被测样枝直径的增大而增大(图2A), 变化范围为1.9-59.0 g·h-1, 其斜率反映了梭梭茎干生长对水分传输的需求(Köstner et al., 1998)。将平均液流速率转化为液流密度之后发现: 不同枝直径平均液流密度最低值(10.3 g·h-1·cm-2)与最高值(18.7 g·h-1·cm-2)相差不到2倍, 且随着枝直径的增加而降低(图2B), 这主要是由于随着茎干变粗, 心材所占比例变大, 导致单位横截面积导水率下降。

图1   不同基茎梭梭液流速率变化。A-G测量枝条的直径分别为1.32、1.24、1.02、0.75、0.66、0.47、0.27 cm。

Fig. 1   Variation of sap flow velocity of Haloxylon ammodendron with different diameters. A-G, diameters of 1.32, 1.24, 1.02, 0.75, 0.66, 0.47, 0.27 cm.

图2   枝直径同平均液流速率(A)、密度(B)的关系。

Fig. 2   The relationship between stem diameter and average sap flow velocity (A) and density (B).

梭梭液流密度日变化过程表现为多峰特征, 最高值(34.7 g·h-1·cm-2)出现在10:30左右, 随后, 由于辐射持续增强, 植物遭受光抑制, 气孔暂时关闭, 液流密度迅速降低, 约在12:00之后缓慢上升, 之后由于温度和VPD不断升高造成水分胁迫, 气孔再次关闭, 液流密度也再次降低(图3)。梭梭在夜间依然保持较低液流密度, 主要用于茎干储水组织补水(Goldstein et al., 1998)。

图3   观测期液流密度(平均值±标准偏差)及主要环境要素日变化。

Fig. 3   The diurnal change of sap flow density (mean ± SD) and principle environmental variables during study period. PAR, photosynthetic active radiation; VPD, vapour pressure deficit.

2.2 液流密度对环境因子的响应

相关分析表明各环境因子之间均存在不同程度的相关性(表2)。土壤温度和湿度主要受气温影响, 降水与其他环境要素的相关系数普遍较低。采用PCA对8个环境因子进行分析, 发现前3个主分量能够解释全部数据76%的变化(表3), 其中第一主成分能够解释49%的变化, 与VPDPAR、气温、风速正相关, 与空气相对湿度负相关; 第二主成分能够解释15%的变化, 与土壤湿度、土壤温度、空气相对湿度正相关; 第三主成分能够解释12%的变化, 与降水呈正相关(表4)。茎干液流密度同PARVPD的变化存在明显阈值, 当PAR低于1100 μmol·m-2·s-1, VPD低于2 kPa时, 液流密度几乎同二者呈线性关系, 并随着气温的增加而增加(图4)。

表2   基于30 min时间尺度的环境变量相关分析

Table 2   Correlations among the 30-min averages of weather variables measured during the study period

环境变量
Environmental
variables
RHVPDTaTsHsVP
PAR0.45**0.57**0.54**0.21**0.08**0.36**-0.08**
RH-0.84**-0.65**-0.50**0.05**-0.34**0.22**
VPD0.89**0.72**0.19**0.42**-0.14**
Ta0.85**0.36**0.42**-0.08**
Ts0.36**0.30**-0.02
Hs0.04**-0.01
V-0.02

Hs, soil moisture (%); P, precipitation; PAR, photosynthetically active radiation (μmol·m-2·s-1); RH, relative humidity (%); Ta, air temperature (℃); Ts, soil temperature (℃); VPD, vapour pressure deficit (kPa); V, wind speed (m·h-1). **, significant correlation (p < 0.01).Hs, 土壤相对含水量(%); P, 降水; PAR, 光合有效辐射(μmol·m-2·s-1); RH, 相对湿度(%); Ta, 气温(℃); Ts, 土壤温度 (℃); VPD, 水汽压亏缺(kPa); V, 风速(m·h-1)。**, 显著相关(p < 0.01)。

新窗口打开

表3   基于主成分分析的前3个主成分特征值及其解释方差

Table 3   Eigenvalues and the variance explained by the first three axes of principle component analysis on the weather data

主成分
Principle
component
特征值
Eigenvalue
解释方差
Total variance
explained (%)
累积解释方差
Cumulative variance
explained (%)
13.90.490.49
21.20.150.64
31.00.120.76

新窗口打开

表4   环境要素在前三个主成分轴上的载荷

Table 4   Factor loadings of the environmental variables on the first three axes of principle component analysis

环境变量
Environmental variables
主成分1
Factor 1
主成分2
Factor 2
主成分3
Factor 3
PAR0.72-0.02-0.01
VPD0.870.37-0.16
Ts0.540.70-0.07
Hs-0.110.880.02
V0.66-0.030.20
P-0.050.010.96
Ta0.770.58-0.06
RH-0.82-0.080.29

Environmental variables see Table 2.环境变量同表2

新窗口打开

图4   液流密度对光合有效辐射(PAR)(A)、气温(B)和水汽压亏缺(VPD)(C)的响应。

Fig. 4   Response of sap flow density photosynthetically active radiation (PAR) (A), air temperature (B), and vapour pressure deficit (VPD) (C).

2.3 液流密度模拟

观测期间, EDI总体表现为先增加后降低的趋势, 且在7月份最大, 发生降水时EDI明显降低(图5)。基于上述分析, 对连续晴朗天气条件下梭梭液流密度进行模拟, 结果表明4参数的S型模型能够解释液流密度85%的变化, 之后对模型进行残差分析发现残差同土壤水分的相关系数大于同降水的相关系数, 因此将土壤水分的PCA得分加入模型对模型进行线性修正并重新进行参数估计, 模型模拟精度提高到86% (图6), 模型最终表达式为:

式中: x为蒸腾需求指数EDI, 计算EDI时: (1)通过PCA分析从全部环境要素中遴选出前3个主成分; (2)遴选出第一主成分中载荷值最大的前3个环境变量(本文中为VPD、气温、PAR)并计算所选变量的主成分得分; (3)将3个环境变量主成分得分相加并进行标准化即为EDI的值, Z为土壤水分主成分得分。

图5   蒸腾需求指数(EDI)动态变化。

Fig. 5   Daily variation of evaporative demand index (EDI) during the study period.

图6   典型晴天液流密度模拟。SSF, 标准化液流密度。

Fig. 6   Simulation of sap flow density in typical sunny days. SSF, standard sap flow density.

降水当天梭梭茎干液流密度迅速降低, 降水过后液流活动增强。对降水天气条件下梭梭液流密度进行模拟发现液流密度模拟精度降低(图7), 但仍能反映液流密度的变化, 表明降水对日尺度液流密度模拟有一定影响, 主要由于降水条件下土壤水分对液流变化的模拟起着决定作用(Zeppel et al., 2008), 而文中则以蒸腾需求作为模型决定项。

图7   降水天气液流密度模拟。SSF, 标准化液流密度。

Fig. 7   Simulation of sap flow density in typical rainy days. SSF, standard sap flow density.

3 讨论

3.1 液流密度时滞效应

液流密度的时滞效应是指当前树干液流密度的值不是由同期环境因子决定的, 很可能受到之前环境要素影响或者是植物生理特征影响使得液流峰值提前或者滞后于环境要素峰值的现象(王慧梅等, 2011)。梭梭液流密度在6:30之前略微滞后于PAR, 之后迅速增加, 总体提前于PAR最大值约60 min, 提前于VPD最大值约240 min, 提前于EDI最大值约60 min。对EDI数据进行错位后重新对7月10-14日的液流密度进行模拟发现, 考虑EDI时滞效应的模型模拟精度显著升高至90% (图8), 表明时滞效应对模型模拟精度有一定影响。

图8   考虑时滞效应的液流密度模拟。SSF, 标准化液流密度。

Fig. 8   Simulation of sap flow density including sap flow lags. SSF, standard sap flow density.

黄德卫等(2012)发现, 鼎湖山针阔混交林优势种液流峰值出现的时间晚于PAR峰值出现的时间, 与VPD的时滞效应在不同季节存在明显差异, 王华等(2008)发现马占相思(Acacia mangium)树干液流滞后于PAR, 而提前于VPD,王慧梅等(2011)发现兴安落叶松(Larix dahurica)树干液流峰值滞后于PAR约0.5 h, 提前于气温和空气相对湿度0-2 h。有研究认为植物茎干夜间水分的补充是导致时滞效应的重要原因(Phillips et al., 2003; Goldstein et al., 1998; Kumagai, 2009)。此外植物茎干液流与环境要素时滞效应的差异还与植物木质部结构、树干储水性能及树形因子等因素有关(Granier et al., 2000; Ford et al., 2004; Chuang et al., 2006)。有研究指出, 时滞现象通常在小时间尺度发生, 当上推至日或者更大时间尺度时, 这一现象不再明显(Oren et al., 1999; O’Brien et al., 2004)。

3.2 液流密度的非对称性响应

梭梭液流密度与VPD、EDI的日变化响应呈顺时针环状(图9A、9B), 相同VPDEDI条件下上午液流密度更大, 这主要是因为虽然VPDEDI在下午降低, 但是叶片气孔导度并没有恢复至原来水平(Arneth et al., 1996)。液流密度与PAR响应的非对称性减弱且呈逆时针环状(图9C), 主要因为二者的日变化过程更为一致。

图9   液流密度对光合有效辐射(PAR)(A)、水汽压亏缺(VPD)(B)和蒸腾需求指数(EDI)(C)的非对称响应。

Fig. 9   Hysteresis between sap flow density and photosynthetically active radiation (PAR)(A), vapour pressure deficit (VPD)(B), evaporative demand index (EDI)(C) .

O’Brien等(2004)研究了10种热带雨林植物树干液流与环境因子的关系发现, 上述非对称性在液流密度和PAR的变化中最大, 这主要是因为热带雨林的垂直结构较深, 林内光环境差别很大, 而荒漠环境中空气水分条件相比于光环境对梭梭茎干水分传输过程的影响更大(图9)。Stöhr和Lösch (2004)发现当土壤干旱程度加重时, 欧梣(Fraxinus excelsior)树干液流对环境要素响应的非对称性增加, 环的开度更大, 这与Oren等(1999)对落羽杉(Taxodium distichum) 树干液流与辐射、VPD关系的研究结果一致。Motzer等(2005)认为这一现象是植物气孔对蒸腾调节的结果, Meinzer等(1997)认为非对称性的程度取决于辐射和VPD协同变化, 它同植物茎干水分更新密切相关(Jarvis, 1976; Schulze et al., 1985; Wullschleger et al., 1998)。

3.3 大气环境蒸发力对液流的影响

辐射和VPD是表征空气蒸腾需求的主要环境因子。梭梭液流密度在夜间、低辐射或者比较潮湿的环境条件下较低, 随着空气变干、气温升高、风速增大, 液流密度几乎随EDI线性增加至EDI对其变化不再起作用后趋于稳定(图10), 这与空气蒸腾需求对柠檬树蒸腾的研究结果一致(Ortuño et al., 2006), 在典型降水天气, 梭梭液流活动明显变弱也证实了这一结论(图7)。

图10   液流密度观测值和模拟值与蒸腾需求指数(EDI)的关系。

Fig. 10   Plots of sap flow density observed and simulated against evaporative demand index (EDI).

光是影响植物蒸腾的重要环境驱动因子, 但是对气孔导度变化具有消减作用(Meinzer et al., 1995), 从而影响茎干液流变化(Motzer et al., 2005)。当VPD除以PAR以消除光的影响后发现, 液流密度对较低的VPD十分敏感, 且随着VPD的增加线性增加至其最大值后缓慢降低(图11), 而O’Brien等(2004)发现多种热带雨林植物茎干液流密度随VPD增加的速率同降低的速率基本一致, 这一差异表明在空气极端干旱时梭梭通过气孔调节尽可能减少水分损失(谭永芹等, 2011)。Verbeeck等(2007)发现VPD是欧洲赤松(Pinus svlestris)树干液流的主要驱动因子, 当空气十分干燥时植物蒸腾受到抑制。大气环境蒸发力对植物液流的影响还受土壤水分状况以及植物导水率等因素的综合影响(Schulze et al., 1985; Meinzer et al., 1995; Motzer et al., 2005)。Oguntunde (2005)发现当土壤严重干旱时, 空气蒸腾需求仅能解释木薯(Manihot esculenta)茎干液流24%的变化。

图11   液流密度同标准化水汽压亏缺(VPD/PAR)的关系。

Fig. 11   Sap flow density in relation to vapour pressure deficit (VPD) normalized by photosynthetically active radiation (PAR).

4 结论

本文采用基于热平衡原理的包裹式茎干液流仪flow32对梭梭液流进行监测, 并结合气象数据通过上述分析得出如下4点结论:

(1)梭梭液流速率、液流密度同茎径大小密切相关, 液流密度日变化过程呈多峰特征。

(2)环境要素PCA分析的前3个主成分分别能够解释梭梭生长环境49%、15%和12%的变化, S型模型能够较好地模拟日尺度梭梭液流密度的变化, 考虑液流密度对EDI的时滞效应能够显著提高模型模拟精度。

(3)液流密度与PARVPDEDI之间存在非对称响应, 与PAR呈逆时针环状, 与VPD和蒸腾需求指数呈顺时针环状。

(4)梭梭液流密度起初随EDI线性增加至EDI对液流变化不再起作用后趋于稳定, 且对VPD变化十分敏感。

The authors have declared that no competing interests exist.

作者声明没有竞争性利益冲突.


参考文献

[1] Andrade JL, Meinzer FC, Goldstein G, Holbrook NM, Cavelier J, Jackson P, Silvera K (1998).

Regulation of water flux through trunks, branches, and leaves in trees of a lowland tropical forest.

Oecologia, 115, 463-471.

[本文引用: 1]     

[2] Arneth A, Kelliher FM, Bauer G, Hollinger DY, Byers JN, Hunt JE, Mcseveny TM, Ziegler W, Vygodskaya NN, Milukova I, Sovachov A, Varlagin A, Schulze E-D (1996).

Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia.

Tree Physiology, 16, 247-255.

[本文引用: 1]     

[3] Baker JM, van Bavel CHM (1987).

Measurement of mass flow of water in the stems of herbaceous plants.

Plant, Cell & Environment, 10, 777-782.

[本文引用: 1]     

[4] Čermák J, Deml J, Penka M (1973).

A new method of sap flow determination in trees.

Biologia Plantrum, 15, 171-178.

[本文引用: 1]     

[5] Chang XX, Zhao WZ, Zhang ZH (2007).

Water consumption characteristic of Haloxylon ammodendron for sand binding in desert area.

Acta Ecologica Sinica, 27, 1826-1837.(in Chines with English abstract)

[本文引用: 1]     

[常学向, 赵文智, 张智慧 (2007).

荒漠区固沙植物梭梭(Haloxylon ammodendron)耗水特征

. 生态学报, 27, 1826-1837.]

[本文引用: 1]     

[6] Chuang YL, Oren R, Bertozzi AL, Phillips N, Katul GG (2006).

The porous media model for the hydraulic system of a conifer tree: Linking sap flux data to transpiration rate.

Ecological Modelling, 191, 447-468.

[本文引用: 1]     

[7] Dai Y, Zheng XJ, Tang LS, Li Y (2014).

Dynamics of water usage in Haloxylon ammodendron in the southern edge of the Gurbantünggüt Desert.

Chinese Journal of Plant Ecology, 38, 1214-1225.(in Chinese with English abstract)

[本文引用: 1]     

[戴岳, 郑新军, 唐立松, 李彦 (2014).

古尔班通古特沙漠南缘梭梭水分利用动态

. 植物生态学报, 38, 1214-1225.]

[本文引用: 1]     

[8] Edwards WRN, Becker P, Èermák J (1996).

A unified nomenclature for sap flow measurements.

Tree Physiology, 17, 65-67.

[本文引用: 1]     

[9] Ford CR, Goranson CE, Mitchell BJ, Will RE, Teskey RO (2004).

Diurnal and seasonal variability in the radial distribution of sap flow: Predicting total stem flow in Pinus taeda trees.

Tree Physiology, 24, 951-960.

[本文引用: 1]     

[10] Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Cavelier J, Jackson P, Celis A (1998).

Stem water storage and diurnal patterns of water use in tropical forest canopy trees

. Plant, Cell & Environment, 21, 397-406.

[本文引用: 2]     

[11] Granier A (1985).

A new method of sap flow measurement in tree stems.

Annales of Forest Science, 42, 193-200.

[本文引用: 1]     

[12] Granier A (1987).

Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements.

Tree Physiology, 3, 309-320.

[本文引用: 1]     

[13] Granier A, Bimn P, Lemoine D (2000).

Water balance, transpiration and canopy conductance in two beech stands.

Agricultural and Forest Meteorology, 100, 291-308.

[本文引用: 1]     

[14] Granier A, Huc R, Colin F (1992).

Transpiration and stomatal conductance of two rain forest species growing in plantations (Simarouba amara and Goupia glabra) in French Guyana.

Annals of Forest Science, 49, 17-24.

[本文引用: 1]     

[15] Guo QS, Tan DY, Liu YJ, Wang CL (2004).

Advance in studies of Haloxylon Bunge’s mechanism of adapation and resistance to drought.

Forest Research, 17, 796-803.(in Chinese with English abstract)

[本文引用: 1]     

[郭泉水, 谭德远, 刘玉军, 王春玲 (2004).

梭梭对干旱的适应及抗旱机理研究进展

. 林业科学研究, 17, 796-803.]

[本文引用: 1]     

[16] Hall RL, Allen SJ, Rosier PTW, Hopkins R (1998).

Transpiration from coppiced poplar and willow measured using sap-flow methods.

Agricultural and Forest Meteorology, 90, 275-290.

[本文引用: 1]     

[17] Huang DW, Zhang DQ, Zhou GY, Liu SZ, Dennis O, Li YL (2012).

Characteristics of dominant tree species stem sap flow and their relationships with environmental factors in a mixed conifer-broadleaf forest in Dinghushan, Guangdong Province of South China.

Chinese Journal of Applied Ecology, 23, 1159-1166.(in Chinese with English abstract)

[本文引用: 1]     

[黄德卫, 张德强, 周国逸, 刘世忠, Dennis O, 李跃林 (2012).

鼎湖山针阔叶混交林优势种树干液流特征及其与环境因子的关系

. 应用生态学报, 23, 1159-1166.]

[本文引用: 1]     

[18] Jarvis PG (1976).

The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field.

Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 273, 593-610.

[本文引用: 1]     

[19] Jiang GM (2007). Plant Physioecology. 3rd edn. Higher Education Press, Beijing.(in Chinese)

[本文引用: 1]     

[蒋高明 (2007). 植物生理生态学. 第三版. 高等教育出版社, 北京.]

[本文引用: 1]     

[20] Jones HG (1983). Plants and Microclimate. 2nd edn. Cambridge University Press, Cambridge, UK.

[本文引用: 1]     

[21] Kigalu JM (2007).

Effects of planting density on the productivity and water use of tea (Camellia sinensis L.) clones: I. Measurement of water use in young tea using sap flow meters with a stem heat balance method.

Agricultural Water Management, 90, 224-232.

[本文引用: 1]     

[22] Köstner B, Granier A, Cermák J (1998).

Sapflow measurements in forest stands: Methods and uncertainties.

Annals of Forest Science, 55, 13-27.

[本文引用: 1]     

[23] Kumagai T, Aoki S, Otsuki K, Utsumi Y (2009).

Impact of stem water storage on diurnal estimates of whole-tree transpiration and canopy conductance from sap flow measurements in Japanese cedar and Japanese cypress trees.

Hydrological Processes, 23, 2335-2344.

[本文引用: 1]     

[24] Li XY, Zhang XM, He XY, Zeng FJ, Foetaki A, Thoms FM (2004).

Water relation characteristics of four perennial plant species growing in the transition zone between oasis and open desert.

Acta Ecologica Sinica, 24, 1164-1171.(in Chinese with English abstract)

[本文引用: 1]     

[李向义, 张希明, 何兴元, 曾凡江, Foetzki A, Thomas FM (2004).

沙漠-绿洲过渡带四种多年生植物水分关系特征

. 生态学报, 24, 1164-1171.]

[本文引用: 1]     

[25] McDowell NG, White S, Pockman WT (2008).

Transpiration and stomatal conductance across a steep climate gradient in the southern Rocky Mountains.

Ecohydrology, 1, 193-204.

[本文引用: 1]     

[26] Meinzer FC, Goldstein G, Andrade JL (2001).

Regulation of water flux through tropical forest canopy trees: Do universal rules apply?

Tree Physiology, 21, 19-26.

[本文引用: 1]     

[27] Meinzer FC, Goldstein G, Jackson P, Holbrook NM. Gutiérrez MV, Cavelier J (1995).

Environmental and physiological regulation of transpiration in tropical forest gap species: The influence of boundary layer and hydraulic properties.

Oecologia, 101, 514-522.

[本文引用: 2]     

[28] Meinzer FC, Hinckley TM, Ceulemans R (1997).

Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy.

Plant, Cell & Environment, 20, 1301-1308.

[本文引用: 1]     

[29] Motzer T, Munz N, Küppers M, Schmitt D, Anhuf D (2005).

Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes.

Tree Physiology, 25, 1283-1293.

[本文引用: 3]     

[30] O’Brien JJ, Oberbauer SF, Clark DB (2004).

Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest.

Plant, Cell & Environment, 27, 551-567.

[本文引用: 4]     

[31] Oguntunde PG (2005).

Whole-plant water use and canopy conductance of cassava under limited available soil water and varying evaporative demand.

Plant and Soil, 278, 371-383.

[本文引用: 1]     

[32] Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP (1999).

Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest.

Tree Physiology, 19, 337-347.

[本文引用: 2]     

[33] Ortuño MF, García-Orellana Y, Conejero W, Ruiz-Sánchez MC, Mounzer O, Alarcón JJ, Torresillas A (2006).

Relationships between climatic variables and sap flow, stem water potential and maximum daily trunk shrinkage in lemon trees.

Plant and Soil, 279, 229-242.

[本文引用: 1]     

[34] Phillips NG, Ryan MG, Bond BJ, McDowell NG, Hinckley TM, Čermák J (2003).

Reliance on stored water increases with tree size in three species in the Pacific Northwest.

Tree Physiology, 23, 237-145.

[本文引用: 1]     

[35] Schulze E-D, Čermák J, Matyssek M, Penka M, Zummermann R, Vasícek F, Gries W, Kučera J (1985).

Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees — A comparison of xylem flow, porome- ter and cuvette measurements.

Oecologia, 66, 475-483.

[本文引用: 2]     

[36] Smith DM, Allen SJ (1996).

Measurement of sap flow in plant stems.

Journal of Experimental Botany, 47, 1833-1844.

[本文引用: 1]     

[37] Stöhr A, Lösch R (2004).

Xylem sap flow and drought stress of Fraxinus excelsior saplings.

Tree Physiology, 24, 169-180.

[本文引用: 1]     

[38] Su PX, An LZ, Ma RJ, Liu XM (2005).

Kranz anatomy and C4 photosynthetic characteristics of two desert plants, Haloxylon ammodendron and Calligonum mongolicum.

Acta Phytoecologica Sinica, 29, 1-7.(in Chinese with English abstract)

[本文引用: 1]     

[苏培玺, 安黎哲, 马瑞君, 刘新民 (2005).

荒漠植物梭梭和沙拐枣的花环结构及C4光合特征

. 植物生态学报, 29, 1-7.]

[本文引用: 1]     

[39] Su PX, Yan QD (2006).

Photosynthetic characteristics of C4 desert species Haloxylon ammodendron and Calligonum mongolicum under different moisture conditions.

Acta Ecologica Sinica, 26, 75-82.(in Chinese with English Abstract)

[本文引用: 1]     

[苏培玺, 严巧娣 (2006).

C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征

. 生态学报, 26, 75-82.]

[本文引用: 1]     

[40] Tan YQ, Bo XF, Zhu JJ, Wang ZL, Liu LD (2011).

An analysis on the water status in twigs and its relations to the drought resistance in five woody plants living in arid zone.

Acta Ecologica Sinica, 31, 6815-6823.(in Chinese with English abstract)

[本文引用: 1]     

[谭永芹, 柏新富, 朱建军, 王仲礼, 刘林德 (2011).

干旱区五种木本植物枝叶水分状况与其抗旱性能

. 生态学报, 31, 6815-6823.]

[本文引用: 1]     

[41] Verbeeck H, Steppe K, Nadezhdina N, Op De Beeck M, Deckmyn G, Meiresonne L, Lemeur R, Čermák J, Ceulemans R, Janssens IA (2007).

Model analysis of the effects of atmospheric drivers on storage water use in Scots Pine.

Biogeosciences, 4, 657-671.

[本文引用: 1]     

[42] Vertessy RA, Benyon RG, O’Sullivan SK, Gribben PR (1995).

Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.

Tree Physiology, 15, 559-567.

[本文引用: 1]     

[43] Wang H, Zhao P, Cai XA, Ma L, Rao XQ, Zeng XP (2008).

Time lag effect between stem sap flow and photosynthetically active radiation, vapor pressure deficit of Acacia mangium.

Chinese Journal of Applied Ecology, 19, 225-230.(in Chinese with English abstract)

[本文引用: 1]     

[王华, 赵平, 蔡锡安, 马玲, 饶兴权, 曾小平 (2008).

马占相思树干液流与光合有效辐射和水汽压亏缺间的时滞效应

. 应用生态学报, 19, 225-230.]

[本文引用: 1]     

[44] Wang HM, Sun W, Zu YG, Wang WJ (2011).

Complexity and its integrative effects of the time lags of environment factors affecting Larix gmelinii stem sap flow.

Chinese Journal of Applied Ecology, 22, 3109-3116.(in Chinese with English abstract)

[本文引用: 2]     

[王慧梅, 孙伟, 祖元刚, 王文杰 (2011).

不同环境因子对兴安落叶松树干液流的时滞效应复杂性及其综合影响

. 应用生态学报, 22, 3109-3116.]

[本文引用: 2]     

[45] Wullschleger SD, King AW (2000).

Radial variation in sap velocity as a function of stem diameter and sapwood thick- ness in yellow-poplar trees.

Tree Physiology, 20, 511-518.

[本文引用: 1]     

[46] Wullschleger SD, Meinzer FC, Vertessy RA (1998).

A review of whole-plant water use studies in tree.

Tree Physiology, 18, 499-512.

[本文引用: 1]     

[47] Xu F, Yang FT, Wang HM, Dai XQ (2012).

Review of advances in radial patterns of stem sap flow.

Chinese Journal of Plant Ecology, 36, 1004-1014.(in Chinese with English abstract)

[本文引用: 1]     

[徐飞, 杨风婷, 王辉民, 戴小琴(2012).

树干液流径向分布格局研究进展

. 植物生态学报, 36, 1004-1014.]

[本文引用: 1]     

[48] Yi LP, Ma J, Li Y (2007).

The comparisons of root system and root hair morphological characteristics among three desert halophytes.

Bulletin of Botanical Research, 27, 204-211.(in Chinese with English abstract)

[本文引用: 1]     

[弋良朋, 马健, 李彦 (2007).

3种荒漠盐生植物根系及根毛形态特征的比较研究

. 植物研究, 27, 204-211.]

[本文引用: 1]     

[49] Zeppel M, Macinnis-Ng CMO, Ford CR, Eamus D (2008).

The response of sap flow to pulses of rain in a temperate Australian woodland.

Plant and Soil, 305, 121-130.

[本文引用: 1]     

/