植物生态学报  2016 , 40 (2): 116-126 https://doi.org/10.17521/cjpe.2015.0258

Orginal Article

浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征

赵延涛12, 许洺山12, 张志浩3, 周刘丽12, 张晴晴122, 宋彦君12, 阎恩荣12**

1华东师范大学生态与环境科学学院, 上海 200241
2浙江天童森林生态系统国家野外科学观测研究站, 浙江宁波 315114
3上海动物园, 上海 200050
4Department of Environmental Sciences, Abdul Wali Khan University Mardan 23200, Pakistan

Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park, Zhejiang Province, China

ZHAO Yan-Tao12, XU Ming-Shan12, ZHANG Zhi-Hao3, ZHOU Liu-Li12, ZHANG Qing-Qing12, Ali ARSHAD124, SONG Yan-Jun12, YAN En-Rong12*

1School of Ecological and Environment Sciences, East China Normal University, Shanghai 200241, China
2Tiantong National Forest Ecosystem Observation and Research Station, Ningbo, Zhejiang 315114, China
3Shanghai Zoo Garden, Shanghai 200050, China
4Department of Environmental Sciences, Abdul Wali Khan University Mardan 23200, Pakistan

通讯作者:  *通信作者Author for correspondence (E-mail: eryan@des.ecnu.edu.cn)

版权声明:  2016 植物生态学报编辑部 本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。

展开

摘要

水力结构是植物应对环境形成的与水分运输相关的形态策略.探索不同演替阶段和群落不同高度层植物的水力结构特征, 有助于理解植物的水分运输和利用策略.该研究以浙江天童常绿阔叶林演替前中后期群落的上层木(占据林冠层的树种)和下层木(灌木层物种)为对象, 测定了演替共有种(至少存在于两个演替阶段的物种)和更替种(仅存在于某一演替阶段的物种)的枝边材比导率,叶比导率和胡伯尔值, 以及边材疏导面积,末端枝总叶面积和枝条水势, 分析植物水力结构在群落上层木和下层木间以及在演替阶段间的差异, 及其与枝叶性状的相关关系.结果显示: (1)上层木植物边材比导率和叶比导率显著高于下层木植物(p < 0.05); (2)上层木和下层木的边材比导率与叶比导率在演替阶段间均无显著差异(p > 0.05); 上层木的胡伯尔值在演替阶段间无显著差异, 下层木的胡伯尔值随演替显著下降(p < 0.05); (3)上层木共有种仅边材比导率随演替进行显著降低(p < 0.05), 更替种的3个水力结构参数在演替阶段间无显著差异; 下层木共有种水力结构参数在演替阶段间无明显差异, 更替种仅胡伯尔值随演替减小(p < 0.05); (4)植物边材比导率与枝疏导面积和末端枝所支撑的总叶面积显著正相关(p < 0.01), 胡伯尔值与枝条水势及末端枝总叶面积显著负相关(p < 0.01).以上结果表明: 天童常绿阔叶林演替各阶段上层木比下层木具有更大的输水能力和效率; 随着演替进行, 上层木与下层木的共有种和更替种边材比导率的相反变化表明上层木水力结构的变化可能由微生境变化引起, 而下层木水力结构特征的变化可能由物种更替造成.

关键词: 水力结构 ; 共有种 ; 上层木 ; 更替种 ; 下层木

Abstract

Aims Hydraulic architecture is a morphological strategy in plants to transport water in coping with environmental conditions. Change of hydraulic architecture for plants occupying different canopy layers within community and for the same plant at different successional stages reflect existence and adaptation in plant's water transportation strategies. The objective of this study was to examine how hydraulic architecture varies with canopy layers within a community and with forest succession.Methods The study site is located in Tiantong National Forest Park, Zhejiang Province, China. Hydraulic architectural traits studied include sapwood-specific hydraulic conductivity, leaf-specific hydraulic conductivity, Huber value, sapwood channel area of twigs, total leaf area per terminal twig, and water potential of twigs. We measured those traits for species that occur in multiple successional stages (we called it "overlapping species") and for species that occur only in one successional stage (we called it "turnover species") along a successional series of evergreen broadleaved forests. For a given species, we sampled both overstory and understory trees. Hydraulic architectural traits between overstory and understory trees in the same community and at successional stages were compared. Pearson correlation was used to exam the relationship between hydraulic architectural traits and the twig/leaf traits.Important findings Sapwood-specific hydraulic conductivities and leaf-specific hydraulic conductivities were significantly higher in overstory trees than those in understory trees, but did not significantly differ from successional stages. Huber value decreased significantly for understory trees, but did not change for overstory trees through forest successional stages. For overstory trees, a trend of decreasing sapwood-specific hydraulic conductivity was observed for overlapping species but not for turnover species with successional stages. In contrast, for understory trees, a trend of decreasing Huber values was observed for turner species but not for overlapping species with successional stages. Across tree species, sapwood-specific hydraulic conductivity was positively correlated with sapwood channel area and total leaf area per terminal twig size. Huber value was negatively correlated to water potential of twigs and total leaf area per terminal twig size. These results suggest that water transportation capacity and efficiency are higher in overstory trees than in understory trees across successional stages in evergreen broadleaved forests in Tiantong region. The contrasting trends of sapwood-specific hydraulic conductivity between overlapping species and turnover species indicate that shift of microenvironment conditions might lead to changes of hydraulic architecture in overstory trees, whereas species replacement might result in changes of hydraulic architecture in understory trees.

Keywords: hydraulic architecture ; overlapping species ; overstory trees ; turnover species ; understory trees

0

PDF (906KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

赵延涛, 许洺山, 张志浩, 周刘丽, 张晴晴, 宋彦君, 阎恩荣. 浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征[J]. 植物生态学报, 2016, 40(2): 116-126 https://doi.org/10.17521/cjpe.2015.0258

ZHAO Yan-Tao, XU Ming-Shan, ZHANG Zhi-Hao, ZHOU Liu-Li, ZHANG Qing-Qing, Ali ARSHAD, SONG Yan-Jun, YAN En-Rong. Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park, Zhejiang Province, China[J]. Chinese Journal of Plant Ecology, 2016, 40(2): 116-126 https://doi.org/10.17521/cjpe.2015.0258

水力结构是植物适应不同的水分供应以及生存竞争所形成的不同形态结构和水分运输策略(李吉跃和翟洪波, 2000; Mencuccini, 2003), 在保证植物体内长距离的水分运输(Thomas, 1997; 万贤崇和孟平, 2007),气孔调节和光合作用(Tyree & Ewers, 1991)等方面起着重要作用, 甚至它能限制植物的生长高度(Ryan & Yoder, 1997; Becker et al., 2000; McCulloh et al., 2015).通常情况下, 植物的水力结构采用导水率(hydraulic conductivity),边材比导率(sapwood-specific hydraulic conductivity),叶比导率(leaf-specific hydraulic conductivity)和胡伯尔值(Haber value)来表征(Tyree & Ewers,1991).这4个水力结构参数分别从不同的角度反映了植物茎段的水分运输能力,输水效率以及叶片供水情况.其中, 导水率反映了植物枝条或茎干的导水能力; 边材比导率是指单位茎段边材疏导面积的导水率, 边材比导率越大说明单位有效面积输送水分的能力越强, 输水效率越高; 叶比导率是指单位叶大小(如面积)的导水率, 表征了叶片的供水状况; 胡伯尔值表示支撑单位叶面积或叶干物质量上的枝条投入量, 胡伯尔值越大, 说明维持单位叶面积水分供给所需的枝条组织投入越多.植物水力结构除受物种遗传特性决定外, 在不同生活型间也表现不同, 例如, 裸子植物与被子植物(Zimmermann, 1978; Zimmermann & Sperry, 1983; Ewers & Zimmermann, 1984),木本植物与藤本植物(Zhu & Cao, 2009), 以及乔木与灌木(Tyree et al., 1983;1991),常绿物种与落叶物种(Drake et al., 2015)间均存在不同的输水策略.另外, 植物水力结构还受生境状况的影响, 尤其是受土壤水分与养分的影响(Carvajal et al., 1996).近年来, 有关亚热带,热带地区森林植物水力结构的研究越来越多地引起关注, 例如: 对植物水力结构与光合作用的耦合研究(Brodribb & Field, 2000; Brodribb et al., 2002; Chen et al., 2009; Fu et al., 2012; Zhu et al., 2013), 以及植物水力结构与枝叶性状关系(Hoeber et al., 2014; Zhu et al., 2015)的研究.

在亚热带森林演替过程中, 物种不断更替, 群落垂直层次趋于复杂, 树木高度分化显著增强, 群落内微环境发生变化, 如群落内光照强度减小, 空气温湿度,土壤含水量与养分等均显著增加(Ashton, 1958; Shukla & Ramakrishnan, 1986; 丁圣彦等, 2005; 阎恩荣等, 2008).在此过程中, 由于物种的更替和微环境的变化, 植物的水力结构具有怎样的变化特征呢?群落演替对不同高度层植物水力学特征的影响是否一致呢?

研究森林演替过程中不同垂直层次植物水力结构的差异, 各演替阶段不同更替种(定义为仅存在于某一演替阶段的物种)水力结构的差异, 以及演替共有种(定义为至少存在于两个演替阶段的物种)(Messier et al., 2010; 杨晓东等, 2013)水力结构在各演替阶段的差异及其形成原因, 有助于理解植物水力结构与森林演替过程中物种更替和群落垂直结构变化的关系, 从而揭示森林演替过程中植物水分运输策略的变化特征.以往的研究表明植物的水力结构受到物种特性,生活型和环境因素等的共同影响(McCulloh et al., 2011), 因此, 针对森林演替过程中植物水力结构的变化特征, 我们试图检验以下两个科学假说: (1)在同一演替阶段植物群落内, 上层木(占据林冠层的树种)(Yepez et al., 2003; Halpern & Lutz, 2013; Jung et al., 2013)的水分运输距离较下层木(灌木层物种)更长, 所遇到的运输阻力更大(Tyree & Zimmermann, 2002; 万贤崇和孟平, 2007), 为获取足够的水分满足正常生理活动, 上层木比下层木必然表现出更大的水分运输有效性, 即: 高的边材比导水率和叶比导率, 用以补偿水分长距离运输造成的阻力的影响; (2)随演替进行过程中物种组成的更替, 相比演替中后期, 演替前期植物生长较快, 干材密度较低, 单位枝干面积上的空隙度大, 赋予其较大的疏导面积, 因此会表现出更大的边材比导率和叶比导率.另一方面, 演替进程中林冠下层光照减少,土壤含水率逐渐增加(Shukla & Ramakrishnan, 1986; 郝占庆和王力华, 1998; 庞学勇等, 2003; 杨晓东等, 2013), 植物为获取更多的光资源, 单位面积枝条上趋于选择更大的叶面积, 进而造成胡伯尔值下降; 此外, 与植物水分运输相关的结构性状必然也会发生相应的改变, 如随演替过程中胡伯尔值的降低, 枝条的输导面积,末端枝支撑的总叶面积和枝条水势等会随之增大, 从而表现出负相关关系.为了检验以上科学假说, 本研究以浙江天童常绿阔叶林次生演替系列为对象, 通过测定常见植物物种的水力结构特征和相关的枝叶性状, 探索演替对植物水力结构特征的影响.

1 研究方法

1.1 研究区域,样地和物种概况

研究地位于浙江省宁波市天童国家森林公园(29.87° N, 121.65° E), 该地区属于中亚热带湿润季风气候, 雨量充沛, 年平均气温16.2 ℃, 年降水量 1 374.7 mm, 年无霜期230-240天, 土壤主要为黄红壤, 土层厚度不一, 一般在1 m以下(宋永昌和王祥荣, 1995).该区域植被由于在不同历史阶段受到不同强度的干扰, 以及保护年限不一, 在较小范围存在着处于不同演替阶段的次生常绿阔叶林植被类型(阎恩荣等, 2010).

本研究选择位于公园外围防火道附近的常绿阔叶林次生演替前期群落檵木(Loropetalum chinense)灌丛, 位于玲珑岩一带的演替中期的木荷(Schima superba)群落和演替后期的栲(Castanopsis fargesii)群落为对象, 在保证海拔,坡度,坡向和土壤类型一致的基础上, 后两个演替阶段各设置了3块20 m × 20 m的重复样地, 演替前期的灌丛设置了3块大小为10 m × 10 m的重复样地, 样地间距25 m以上.样地建立后, 全面调查了样地内胸径大于1 cm的个体.具体群落特征见表1.

表1   浙江天童常绿阔叶林次生林演替系列各阶段样地特征和所选物种

Table 1   Characteristics of study plots in a secondary successional series of evergreen broad-leaved forests in Tiantong, Zhejiang Province

演替阶段
Successional stage
群落类型
Community type
年龄
Age
(a)
优势种
Dominant
species
上层木 Overstory tree下层木 Understory tree
层高
Height
(m)
共有种Overlapping species更替种
Turnover
species
层高Height
(m)
共有种Overlapping species更替种
Turnover
species
S1檵木灌丛
Loropetalum
chinese shrub
20檵木
Loropetalum chinese
赤楠
Syzygium buxifolium
白栎
Quercus fabri
8木荷
Schima
superba
白栎
Quercus
fabri
2.5山矾
Symplocos
sumuntia
窄基红褐柃
Eurya
Rubiginosa
赤楠
Syzygium
buxifolium
S2木荷群落
Schima superba community
60木荷
Schima superba
石栎
Lithocarpus glabra
17石栎
Lithocarpus glabra
4.0马银花
Rhododendron
ovatum
S3栲群落
Castanopsis fargesii community
120
Castanopsis fargesii
22
Castanopsis
fargesii
5.5交让木
Daphniphyllum
macropodum

新窗口打开

在获取群落优势度信息后, 在各演替阶段选择不同高度的优势种及常见种, 并筛选出演替阶段的共有种和更替种进行水力结构参数的测定, 每个物种选择3个个体作为重复.各演替阶段选择的优势种信息如下: 演替前期的上层木为木荷和白栎(Quer- cus fabri)两种乔木, 下层木为檵木,窄基红褐柃(Eurya rubiginosa),山矾(Symplocos sumuntia)和赤楠(Syzygium buxifolium); 演替中期上层木为木荷和石栎(Lithocarpus glaber), 下层木为马银花(Rhodod- endron ovatum),山矾和窄基红褐柃; 演替后期上层木为栲, 下层木有交让木(Daphniphyllum macropodum),连蕊茶(Camellia fraterna),山矾和窄基红褐柃.其中, 上层木演替共有种为木荷, 下层木演替共有种为山矾和窄基红褐柃; 上层木更替种为白栎,石栎和栲, 下层木更替种为赤楠,马银花和交让木.

1.2 植物水力结构参数测定与计算

2013年7-8月, 每天早上进行样品采集, 用高枝剪采下所选择物种个体的树冠中上部且南向长势良好的枝条, 立即将切口浸没在盛有水的塑料桶中, 保证切口浸在水面以下, 以防止气泡进入切口出现栓塞现象.另用黑色塑料袋将枝条套住, 减少由于光照或蒸散造成的水分损失, 立即带回实验室进行下一步处理.将枝条带回实验室后, 剪取不同分枝级作为实验对象, 剪取枝条时要将其浸在水中, 剪取10-15 cm的茎段, 各分枝级茎段分成两部分, 一部分用于枝条水势的测定, 一部分用于枝条水力结

构参数的测定.用于测定导水率的茎段标记之后放入盛有水的自封袋中保存, 保证茎段两端均浸没在水下, 避免气泡进入导管造成栓塞.同时采下茎段末端枝条上的所有叶片, 用于测量叶面积.

使用植物导水率高压测量仪(HPFM-Gen3, Dynamax, Houston, USA)测定茎段导水率, 其工作原理是通过匀速增加稳定的压力, 驱动水流(去气蒸馏水)经过被测样品(截取的植物枝条茎段), 根据水流压力以及流速的关系来确定样本的导水率或阻力.本研究中, 每个物种选择了3个个体, 每个个体选择了4种分枝级枝条, 每级枝测量了3个茎段作为重复, 茎段长度为10 cm左右, 末端枝条标记为0级枝, 0级枝着生的枝条为1级枝, 以此类推, 共0,1,2,3四级枝条.测量时, 先将茎段末端连接至压力耦合器, 控制压强从10 kPa开始, 以7 kPa·s-1左右的速率逐渐加压至500 kPa左右, 此过程中, 保存电脑自动输出的流速与压强随时间变化的实时数据图.测量结束后, 对实时数据做线性回归, 其斜率则为被测茎段的导水率.

导水率测量结束后, 将枝条树皮剥去, 用游标卡尺测定茎段横截面上相互垂直的两个方向, 然后取其平均值.之后, 用有色溶液染色法测量每个茎段的功能木质部直径, 由此推算茎段的有效输导面积.

叶面积测定用叶面积仪(LI-3100C Area Meter, LI-COR, Nebraska, USA)完成, 被测样本数与末端枝导水率测定样本数对应, 即每物种取3个个体, 每个体测量3个重复.

茎段水势用露点水势仪(WP4, Decagon, Pullman, Washington, USA)测量, 将茎段沿截面切成2 mm左右的薄片, 单层平铺于不锈钢样品杯中, 进行植物茎段水势的测定.被测样本数也与导水率测定样本数一致.

以上测量结束后, 植物水力结构参数的计算根据Zimmermann (1978)进行, 导水率采用公式(1)计算, 边材比导率采用公式(2)计算, 叶比导率采用公式(3)计算, 胡伯尔值采用公式(4)计算.

Kh = F / ΔP (1)

其中, Kh为导水率, ΔP (MPa)为单位压力梯度, F (kg·min-1)为通过离体茎段的水流量.

Ks = Kh / SA (2)

其中, Ks为边材比导率, SA (cm2)为茎段边材的输导面积.

Kl = Kh / LA (3)

其中, Kl为叶比导率, LA (cm2)为末端枝条总叶面积.

Hv = SA / LA (4)

其中, Hv为胡伯尔值.

由于植物导水率并不能衡量单位叶片面积或边材面积上的水力导度, 因此在分析过程中只考虑应用边材比导率,叶比导率和胡伯尔值3个水力结构参数.

1.3 数据处理与分析

首先, 采用独立样本t检验(independent-samples t-test)对不同高度层植物水力学参数进行差异性比较, 分别包括综合演替阶段和各演替阶段的层间分析.随后, 用单因素方差分析判断演替是否对各高度层植物水力结构具有显著影响, 数据分析前, 进行方差齐性检验, 满足方差齐性的采用最小显著差别(least significant difference, LSD)方法比较, 不满足则采用Dunnett法.其次, 利用双因素方差分析(two-way ANOVA)检验垂直高度和演替及对植物水力结构的交互影响.另外, 为检验演替系列共有种和更替种植物的水力结构是否随演替进行发生变化, 同样采用了单因素方差分析的处理方法.最后, 采用Pearson相关分析植物水力结构参数与被测茎段特征之间的关系.上述分析通过SPSS 19.0完成.

2 结果

2.1 演替各阶段不同高度层植物的水力结构

在将3个演替阶段的上层木和下层木分别合并后分析发现, 上层木的边材比导率以及叶比导率均显著大于下层木(p < 0.05), 而胡伯尔值差异不显著(p = 0.09) (图1).在演替各阶段, 上层木边材比导率显著大于下层木(p < 0.05), 而叶比导率和胡伯尔值在层间的差异不显著(p > 0.05) (图1).

图1   浙江天童常绿阔叶林演替系列上层木和下层木的水力结构(平均值±标准误差).All表示3个演替阶段合并.S1,S2和S3表示演替阶段.不同大写字母表示同一演替阶段不同高度层之间差异显著(p < 0.05); 不同小写字母表示同一高度层不同演替阶段之间差异显著(p < 0.05).

Fig. 1   Hydraulic architecture of trees between overstory and understory species along a successional series in evergreen broad-leaved forest in Tiantong, Zhejiang (mean ± SE). All means were combined for three successional stages. S1, S2 and S3 represent successional stages. Different capital letters indicate significant difference between canopy layers at the same successional stage (p < 0.05). Different lowercase letters indicate significant difference between successional stages for the same canopy layer (p < 0.05).

随演替进行, 上层木和下层木的3种水力结构参数都表现出了一定的变化趋势(图1).上层木3个边材比导率表现出先减小后增大的趋势, 但不显著(F = 1.83, p > 0.05), 下层木虽然随演替进行逐渐增大, 但演替阶段间差异不显著(F = 2.14, p > 0.05).上层木(F = 1.45, p > 0.05)和下层木(F = 1.35, p > 0.05)的叶比导率均随演替进行降低, 但不显著.上层木的胡伯尔值随演替先增后降, 但不显著(F = 1.75, p > 0.05), 下层木的胡伯尔值随演替进行显著下降(F = 3.67, p < 0.05).

双因素方差分析表明, 高度层对3种水力结构参数均具有显著影响, 而演替及其与高度层的交互作用对边材比导率,叶比导率与胡伯尔值的影响不显著(表2).

表2   高度层与演替阶段及其交互作用对植物水力结构的双因素方差分析结果

Table 2   Results of two-way ANOVA for testing the main effects of canopy layers, succession stages and their interactions on hydraulic architecture of tree species

变量
Variable
高度层
Vertical layer
演替阶段
Succession stage
高度层×演替阶段
Vertical layer × succession stage
dfFpdfFpdfFp
边材比导率 Sapwood-specific hydraulic conductivity143.62<0.00122.440.1021.360.27
叶比导率 Leaf-specific hydraulic conductivity15.18<0.05022.860.0720.320.73
胡伯尔值 Huber value14.65<0.05022.920.0721.140.33

新窗口打开

2.2 演替过程中共有种与更替种的水力结构

上层木共有种的边材比导率和叶比导率随演替进行而下降, 胡伯尔值有所增加, 但仅边材比导率在演替阶段间差异显著(p < 0.05)(图2A).下层木共有种的表现相反, 边材比导率(F = 0.76, p > 0.05),叶比导率(F = 0.19, p > 0.05)和胡伯尔值(F = 0.19, p > 0.05)随演替进行有增高趋势, 但均不显著(图2B).

上层木更替种的3种水力结构参数在各演替阶段无显著差异(p > 0.05)(图2C).下层木更替种随演替进行, 仅胡伯尔值显著下降(p < 0.05), 其边材比导率表现出增高趋势, 叶比导率呈现降低趋势, 但

均不显著(p > 0.05) (图2D).

图2   浙江天童常绿阔叶林演替系列上共有种和更替种的水力结构差异(平均值±标准误差).A, 上层木共有种.B, 下层木共有种.C, 上层木更替种.D, 下层木更替种.S1,S2和S3表示演替阶段.不同演替阶段不同小写字母表示差异显著(p < 0.05), Fp表示单因素方差分析结果.

Fig. 2   Differences of hydraulic architecture for over lapping and turnover species in both overstory and understory layers along a successional series in evergreen broad-leaved forest in Tiantong, Zhejiang (mean ± SE). A, Overstory over lapping species. B, Understory over lapping species. C, Overstory turnover species. D, Understory turnover species. S1, S2 and S3 represent successional stages. Different letters among successional stages indicate significant difference (p < 0.05). F and p are results of one-way ANOVA.

2.3 植物水力结构参数与枝叶性状的相关性

表3所示, 植物边材比导率与叶比导率显著正相关(p < 0.01), 胡伯尔值仅与叶比导率显著正相关(p < 0.001).边材比导率与枝条输导面积和末端枝所支撑的总叶面积均显著正相关(p < 0.01), 胡伯尔值与枝条水势及末端枝总叶面积显著负相关(p < 0.01).枝条输导面积,枝条所支撑的总叶面积和枝条水势间两两显著正相关(p < 0.01).其中, 被测枝条水势范围为-3.18- -0.78 MPa.

表3   浙江天童常绿阔叶林植物水力结构与枝叶性状的Pearson相关系数

Table 3   Coefficients of Pearson correlation between plant hydraulic architecture and branch and leaf traits in evergreen broad-leaved forests in Tiantong, Zhejiang

边材比导率
Sapwood-specific hydraulic conductivity
叶比导率
Leaf-specific hydraulic conductivity
胡伯尔值
Huber value
枝条输导面积
Branches channel
area
末端枝条总叶面积
Terminal leaf area
叶比导率 Leaf-specific hydraulic conductivity0.50***
胡伯尔值 Huber value-0.120.55***
枝条输导面积 Branches channel area0.38**0.02-0.17
末端枝条总叶面积 Terminal leaf area0.33**-0.09-0.36**0.75***
枝条水势 Branches water potential0.13-0.10-0.37**0.56***0.50***

**, p < 0.01; ***, p < 0.001.

新窗口打开

3 讨论

3.1 群落不同高度层植物水力结构的差异

水力结构是植物在形态和输水策略上对环境和生存竞争的适应表现, 主要取决于物种的生物学特征和生长过程中对环境的适应.在一个群落中, 上层木和下层木植物高度的分化除受其遗传因素影响外, 也与植物的水分动力学机制有关.本研究通过检验天童地区常绿阔叶林植物群落中不同高度层植物水力结构的差异发现: 上层木植物的导水率,边材比导率和叶比导率显著高于下层木, 证明了在天童地区森林中, 上层木植物表现出了更大的水分运输能力和水分运输效率, 这符合本研究提出的第一个科学假说.

蒸腾-内聚力-张力学说常被用来解释植物水力结构随树高变化的现象, 即: 叶片蒸腾产生拉力, 通过木质部中的连续水柱将水分不断提升到树冠部分, 进行水气交换.内聚力学说认为: 蒸腾拉力是水分在植物体内向上运输的主要驱动力(Zimmer- mann et al., 2002).随树高的增加, 植物水分胁迫越来越严重(Koch et al., 2004).解剖观察(Fahn, 1964)和理论推测(West et al., 1999)均表明, 导管或管胞直径随树高的增加而逐渐变小.根据Hagen- Poiseuille理论, 水分输导能力随管道直径成4次方指数的变化, 除了水柱重力越来越大外, 输水路径的阻力也越来越大, 因此, 乔木在水分运输过程中, 要克服更大的水分重力和输导阻力.水分蒸散产生的拉力大小主要取决于蒸腾通量, 而植物蒸腾通量主要由边材解剖特征决定, 如导管直径的大小,导管的数量及密度等(樊大勇和谢宗强, 2004).乔木与灌木相比往往具有更大的导管直径(Carlquist & Hoekman, 1985),较粗的末端枝条, 因此上层木表现出了较大的边材比导率和叶比导率(图1), 即较大的输水能力和较高的输水效率, 从而弥补了长距离水分运输较大阻力带来的影响, 以确保足够的水分供应, 满足正常的生理活动需要.

3.2 不同演替阶段植物水力结构的差异

由于植物的水力结构特征存在垂直高度差异, 在演替序列上我们将上层木和下层木分别进行比较分析, 以判断不同高度层植物的水力结构如何随常绿阔叶林次生演替的进行而变化.

随演替进行, 上层木和下层木水力结构特征都有所变化(图1), 这是由于不同演替阶段群落内环境因子的差异造成的, 如光照和土壤含水量等.前期的灌丛群落高度较低, 尚未形成明显复杂的垂直结构, 群落林冠植物对林下层植物的遮阴效果较弱, 大量的太阳直射光直接进入群落, 使得前期群落具有较高的光照强度.同时造成了群落内空气温度的增高, 促进群落内和土壤水分的挥发, 造成空气湿度和土壤含水率较低.后期群落层次趋于复杂化, 高大乔木的林冠遮挡了绝大部分的太阳直射, 光照强度明显下降, 进而空气湿度和土壤含水率较高.研究发现, 随着群落演替的进行, 下层木植物的胡伯尔值显著下降, 这是由于在演替后期, 下层木所处的光环境较差, 光资源成为群落内下层木生长的限制因子, 植物为获取更多的光照, 必须加大对单位枝横截面积上承载的总叶面积的投资(章建红等, 2014).同时, 植物也会通过构型的改变进行光照补偿, 如水平枝比例增加和叶面积的增大(杨晓东等, 2013), 构型的这种变化必然需要有更大的水分运输能力和更高的水分利用效率作为基础保障.

在此研究中, 为剔除植物进化谱系的影响, 我们对群落不同高度层的演替共有种和更替种植物水力结构分别进行分析(图2), 以明确演替过程中物种更替对植物水力结构的影响.本研究发现上层木共有种的水力结构在演替系列上呈下降趋势, 其中边材比导率显著降低(p < 0.05), 而更替种未表现出明显变化; 下层木共有种的水力结构没有发生显著变化, 而更替种的边材比导率逐渐增大.这说明本研究提出的第二个科学假说得到了验证, 表明演替过程中的微环境尤其是土壤含水率的变化是造成上层木水力结构变化的重要原因, 而物种更替是造成下层木水力结构在演替系列上发生变化的直接原因.当然, 下层木的物种更替终究是由微环境如光水条件的变化引起的, 前中期下层木的先锋种为适应相对干旱的环境, 植物输水系统采取保守策略, 只有具较低导水率,低蒸腾的物种才能生存.演替后期的下层木水环境明显改善, 光环境处于劣势, 植物为获取更多的林下光照, 趋于选择具有更大的末端枝总叶面积的物种.下层木的共有种由于物种特 性一致, 其水力结构在演替各阶段未表现出明显 差异.

此外, 演替系列上各群落的土壤养分差异也可能是造成植物导水率变化的原因.有研究表明, 氮,磷等养分的亏缺会影响根系水分的吸收, 从而降低植物茎段导水率(Quintero et al., 1999; Carvajal et al., 1996; 慕自新等, 2003; 谭勇等, 2007), 即使是在充足供水条件下, 养分亏缺也能导致气孔部分或完全关闭.天童地区常绿阔叶林土壤和地表凋落物的氮,磷等养分含量随演替进行呈增长趋势(张庆费等, 1999; 马文济等, 2014), 而植物边材比导率并未表现出明显差异, 叶比导率呈不显著下降, 说明研究区域演替前期土壤养分并没有低至足以影响植物水力学结构的水平, 天童常绿林充足的养分条件证明了演替系列上土壤养分的变化不是造成植物水力结构发生变化的原因.

3.3 植物水力结构与枝叶性状的关系

通过对植物水力结构与枝叶性状的相关性检验发现, 天童地区植物茎段边材比导率,叶比导率与胡伯尔值等水力结构参数与枝条输导面积,末端枝条支撑的总叶面积及枝条水势等枝叶性状之间存在显著的相关关系(表3), 此结果也与本研究提出的第二个科学假说基本一致.

植物的水分生理活动是通过根茎叶等一系列器官实现的, 枝条作为植物水分运输的中端载体, 枝性状如末端枝条的直径将显著影响植物水力结构.较粗的末端枝条往往含有更多的导管, 且导管更大, 赋予个体更大的输导面积, 导致更大的导水率, 这也与我们的结果相符, 即枝条输导面积与植物茎段边材比导率存在显著正相关关系(p < 0.01)(表3).末端枝条水势越高的物种其单位截面积的茎段上能够承载更大的叶面积, 即表现为较低的胡伯尔值, 这是由于在水汽压亏缺一致的条件下, 具有较高水势的植物枝条能够满足更大叶面积的蒸腾需求量, 因此枝条水势与胡伯尔值表现出了明显的负相关(表3).另外, 枝条木质部如有气穴化现象即栓塞的发生, 会使得植物水力传导能力下降(Cochard, 2002).

叶片是植物进行光合作用与呼吸作用的重要场所, 其形态和生理特征控制蒸腾作用进程, 进而影响植物的水力结构特征.从叶片形态结构讲, 叶面积影响植物蒸腾作用(何春霞等, 2007), 较大的叶面积会散失更多水分.在气孔导度相同的情况下, 叶面积较大的植物需要运输更多的水分至叶片, 以供蒸腾所需.因此, 具有较大叶面积的植物, 通常具有更大的输水能力和更高的输水效率, 这个结果在我们的研究中得到了验证(表3), 末端枝条总叶面积显著影响着植物水力结构如边材比导率和胡伯尔值(p < 0.01).从叶片生理结构特征讲, 植物叶片气孔是蒸腾作用的关键通道, 植物通过气孔对蒸腾速率进行调控, 维持植物蒸腾失水与SPAC系统有效供水之间的动态平衡.因此叶片气孔导度即气孔大小和气孔密度也是影响植物水力结构的重要因子.

总之, 通过对浙江天童常绿阔叶林不同演替阶段上植物水力结构的研究发现, 植物的水力结构存在垂直层次差异, 即上层木植物具有更大的边材比导率和叶比导率, 以满足个体生长需要.演替的发生造成了植物水力结构的变化, 主要是由群落微环境的变化和物种的更替造成的.本研究仅探讨了演替系列上的植物水力结构特征, 造成植物水力结构差异的生理结构解剖特征以及水力结构对SPAC连续体碳水循环的影响等问题还有待考究.

致谢 本研究得到宁波市重大科技攻关项目(2012- C10027)资助, 特此致谢.

The authors have declared that no competing interests exist.

作者声明没有竞争性利益冲突.


参考文献

[1] Ashton PS (1958).

Light intensity measurements in rain forest near Santarem, Brazil.

Journal of Ecology, 45, 65-70.

[本文引用: 1]     

[2] Becker P, Meinzer FC, Wullschleger SD (2000).

Hydraulic limitation of tree height: A critique.

Functional Ecology, 14, 4-11.

[本文引用: 1]     

[3] Brodribb TJ, Field FS (2000).

Stem hydraulic supply is linked to leaf photosynthetic capacity: Evidence from New Caledonian and Tasmanian rainforests.

Plant, Cell & Environment, 23, 1381-1388.

[本文引用: 1]     

[4] Brodribb TJ, Holbrook NM, Gutiérrez MV (2002).

Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees.

Plant, Cell & Environment, 25, 1435-1444.

[本文引用: 1]     

[5] Carlquist S, Hoekman DA (1985).

Ecological wood anatomy of the woody southern Californian flora.

IAWA Journal, 6, 319-347.

[本文引用: 1]     

[6] Carvajal M, Cooke DT, Clarkson DT (1996).

Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function.

Planta, 199, 372-381.

[本文引用: 2]     

[7] Chen JW, Zhang Q, Cao KF (2009).

Inter-species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in southwestern China.

Ecological Research, 24, 65-73.

[本文引用: 1]     

[8] Cochard H (2002).

Xylem embolism and drought-induced stomatal closure in maize.

Planta, 215, 466-471.

[本文引用: 1]     

[9] Ding SY, Lu XL, Li HM (2005).

A comparison of light environmental characteristics for evergreen broad-leaved forest communities from different successional stages in Tiantong National Forest Park.

Acta Ecologica Sinica, 25, 2862-2867(in Chinese with English abstract) .
[丁圣彦, 卢训令, 李昊民 (2005).

天童国家森林公园常绿阔叶林不同演替阶段群落光环境特征比较

. 生态学报,25, 2862-2867.]

[本文引用: 1]     

[10] Drake PL, Price CA, Poot P, Veneklaas EJ (2015).

Isometric partitioning of hydraulic conductance between leaves and stems: Balancing safety and efficiency in different growth forms and habitats.

Plant, Cell & Environment, 38, 1628-1636.

[本文引用: 1]     

[11] Ewers FW, Zimmermann MH (1984).

The hydraulic architecture of balsam fir (Abies balsamea).

Physiologia Plantarum, 60, 453-458.

[本文引用: 1]     

[12] Fahn A (1964).

Some anatomical adaptations of desert plants.

Phytomorphology, 14, 93-102.

[本文引用: 1]     

[13] Fan DY, Xie ZQ (2004).

Several controversial viewpoints in studying the cavitation of xylem vessels.

Acta Phytoecologica Sinica,28, 126-132.(in Chinese with English abstract)
[樊大勇, 谢宗强 (2004).

木质部导管空穴化研究中的几个热点问题

, 植物生态学报, 28, 126-132.]

[本文引用: 1]     

[14] Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF (2012).

Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest.

Annals of Botany, 110, 189-199.

[本文引用: 1]     

[15] Halpern CB, Lutz JA (2013).

Canopy closure exerts weak controls on understory dynamics: A 30-year study of overstory-understory interactions.

Ecological Monographs, 83, 221-237.

[本文引用: 1]     

[16] Hao ZQ, Wang LH (1998).

Water conservation capacities of soils with major forest types in mountainous regions of east Liaoning Province.

Chinese Journal of Applied Ecology, 9, 237-241.(in Chinese with English abstract)
[郝占庆, 王力华 (1998).

辽东山区主要森林类型林地土壤涵蓄水性能的研究

. 应用生态学报,9, 237-241.]

[本文引用: 1]     

[17] He CX, Li JY, Guo M (2007).

Research progresses of the mechanism of the sap flow in trees.

Acta Ecologica Sinica, 27, 329-337(in Chinese with English abstract) .
[何春霞, 李吉跃, 郭明 (2007).

树木树液上升机理研究进展

. 生态学报, 27, 329-337.]

[本文引用: 1]     

[18] Hoeber S, Leuschner C, Köhler L, Arias-Aguilar D, Schuldt B (2014).

The importance of hydraulic conductivity and wood density to growth performance in eight tree species from a tropical semi-dry climate.

Forest Ecology and Management, 330, 126-136.

[本文引用: 1]     

[19] Jung EY, Otieno D, Kwon H, Lee B, Lim JH, Kim J, Tenhunen J (2013).

Water use by a warm-temperate deciduous forest under the influence of the Asian monsoon: Contributions of the overstory and understory to forest water use.

Journal of Plant Research, 126, 661-674.

[本文引用: 1]     

[20] Koch GW, Sillett SC, Jennings GM, Davis SD (2004).

The limits to tree height.

Nature, 428, 851-854.

[本文引用: 1]     

[21] Li JY, Zhai HB (2000).

Hydraulic architecture and drought resistance of woody plants.

Chinese Journal of Applied Ecology, 11, 301-305.(in Chinese with English abstract)
[李吉跃, 翟洪波 (2000).

木本植物水力结构与抗旱性

. 应用生态学报,11, 301-305.]

[本文引用: 1]     

[22] Ma WJ, Zhao YT, Zhang QQ, Arshad A, Shi QR, Yan ER (2014).

C:N:P stoichiometry in forest floor litter of evergreen broad-leaved forests at different successional stages in Tiantong, Zhejiang, eastern China.

Chinese Journal of Plant Ecology, 38, 833-842.(in Chinese with English abstract)
[马文济, 赵延涛, 张晴晴, Arshad A, 史青茹, 阎恩荣 (2014).

浙江天童常绿阔叶林不同演替阶段地表凋落物的C:N:P化学计量特征

. 植物生态学报,38, 833-842.]

[本文引用: 1]     

[23] McCulloh KA, Johnson DM, Petitmermet J, McNellis B, Meinzer FC, Lachenbruch B (2015).

A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height.

Tree Physiology, 35, 723-731.

[本文引用: 1]     

[24] McCulloh KA, Meinzer FC, Sperry JS, Lachenbruch B, Voelker SL, Woodruff DR, Domec JC (2011).

Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density.

Oecologia, 167, 27-37.

[本文引用: 1]     

[25] Mencuccini M (2003).

The ecological significance of long-distance water transport: Short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms.

Plant, Cell & Environment, 26, 163-182.

[本文引用: 1]     

[26] Messier J, McGill BJ, Lechowicz MJ (2010).

How do traits vary across ecological scales? A case for trait-based ecology.

Ecology Letters, 13, 838-848.

[本文引用: 1]     

[27] Mu ZX, Zhang SQ, Yang XQ, Liang ZS (2003).

Effect of nitrogen and phosphorus-deficiency on maize root hydraulic conductivity.

Journal of Plant Physiology and Molecular Biology, 29, 45-51.(in Chinese with English abstract)
[慕自新, 张岁岐, 杨晓青, 梁宗锁 (2003).

氮磷亏缺对玉米根系水流导度的影响,

. 植物生理与分子生物学学报, 2945-51.]

[本文引用: 1]     

[28] Pang XY, Liu SQ, Liu Q, Wu Y, Lin B, He H, Zhang ZJ (2003).

Influence of plant community succession on soil physical properties during subalpine coniferous plantation rehabilitation in Western Sichuan.

Journal of Soil and Water Conservation,17(4), 42-45.(in Chinese with English abstract)
[庞学勇, 刘世全, 刘庆, 吴彦, 林波, 何海, 张宗锦 (2003).

川西亚高山针叶林植物群落演替对土壤性质的影响

. 水土保持学报,17(4), 42-45.]

[本文引用: 1]     

[29] Quintero JM, Fournier JM, Benlloch M (1999).

Water transport in sunflower root systems: Effects of ABA, Ca2+ status and HgCl2.

Journal of Experimental Botany, 50, 1607-1612.

[本文引用: 1]     

[30] Ryan MG, Yoder BJ (1997).

Hydraulic limits to tree height and tree growth.

Bioscience, 47, 235-242.

[本文引用: 1]     

[31] Shukla RP, Ramakrishnan PS (1986).

Architecture and growth strategies of tropical trees in relation to successional status.

Journal of Ecology, 74, 33-46.

[本文引用: 2]     

[32] Song YC, Wang XR (1995).Vegetation and Flora of Tiantong National Forest Park, Zhejiang Province, China. Shanghai Scientific and Technological Literature Publishing House, Shanghai.(in Chinese) [宋永昌, 王祥荣 (1995). 浙江天童国家森林公园的植被和区系. 上海科学技术文献出版社, 上海.]

[本文引用: 1]     

[33] Tan Y, Liang ZS, Wang WL, Duan QM (2007).

Effect of nitrogen, phosphorus and potassium stress on root vigor and hydraulic conductance of Astragalus membranaceus seedling.

Chinese Journal of Eco-Agriculture,15(6), 69-72.(in Chinese with English abstract)
[谭勇, 梁宗锁, 王渭玲, 段绮梅 (2007).

氮,磷,钾营养胁迫对黄芪幼苗根系活力及根系导水率的影响

. 中国生态农业学报, 15(6), 69-72.]

[本文引用: 1]     

[34] Thomas F (1997).

Simulation of water flow in the branched tree architecture.

Silva Fennica, 31, 275-284.

[本文引用: 1]     

[35] Tyree MT, Ewers FW (1991).

The hydraulic architecture of trees and other woody plants.

New Phytologist, 119, 345-360.

[本文引用: 2]     

[36] Tyree MT, Graham MED, Cooper KE, Bazos LJ (1983).

The hydraulic architecture of Thuja occidentalis.

Canadian Journal of Botany, 61, 2105-2111.

[本文引用: 1]     

[37] Tyree MT, Snyderman DA, Wilmot TR, Machado JL (1991).

Water relations and hydraulic architecture of a tropical tree (Schefflera morototoni): Data, models, and a comparison with two temperate species (Acer saccharum and Thuja occidentalis).

Plant Physiology, 96, 1105-1113.

[38] Tyree MT, Zimmermann MH (2002).

Xylem Structure and the Ascent of Sap. Springer-Verlag

, Berlin. 278.

[本文引用: 1]     

[39] Wan XC, Meng P (2007).

Physiological and ecological mechanisms of long-distance water transport in plants: A review of recent issues. Journal of Plant Ecology (

Chinese Version), 31, 804-813.(in Chinese with English abstract)
[万贤崇, 孟平 (2007).

植物体内水分长距离运输的生理生态学机制

. 植物生态学报,31, 804-813.]

[本文引用: 2]     

[40] West GB, Brown JH, Enquist BJ (1999).

A general model for the structure and allometry of plant vascular systems.

Nature, 400, 664-667.

[本文引用: 1]     

[41] Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010).

C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China.

Chinese Journal of Plant Ecology, 34, 48-57.(in Chinese with English abstract)
[阎恩荣, 王希华, 郭明, 仲强, 周武 (2010).

浙江天童常绿阔叶林,常绿针叶林与落叶阔叶林的C:N:P化学计量特征

. 植物生态学报, 34, 48-57.]

[本文引用: 1]     

[42] Yan ER, Wang XH, Zhou W (2008).

N:P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (

Chinese Version), 32, 13-22.(in Chinese with English abstract)
[阎恩荣, 王希华, 周武 (2008).

天童常绿阔叶林演替系列植物群落的N:P化学计量特征

. 植物生态学报, 32, 13-22.]

[本文引用: 1]     

[43] Yang XD, Yan ER, Zhang ZH, Sun BW, Huang HX, Arshad A, Ma WJ, Shi QR (2013).

Tree architecture of overlapping species among successional stages in evergreen broad-leaved forests in Tiantong region, Zhejiang Province, China

.Chinese Journal of Plant Ecology, 37, 611-619. (in Chinese with English abstract)
[杨晓东, 阎恩荣, 张志浩, 孙宝伟, 黄海侠, Arshad A, 马文济, 史青茹 (2013).

浙江天童常绿阔叶林演替阶段共有种的树木构型

. 植物生态学报, 37, 611-619.]

[本文引用: 3]     

[44] Yepez EA, Williams DG, Scott RL, Lin GH (2003).

Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor.

Agricultural and Forest Meteorology, 119, 53-68.

[本文引用: 1]     

[45] Zhang JH, Shi QR, Xu MS, Zhao YT, Zhong Q, Zhang FJ, Yan ER (2014).

Testing of Corner's rules across woody plants in Tiantong region, Zhejiang Province: Effects of individual density.

Chinese Journal of Plant Ecology, 38, 655-664.(in Chinese with English abstract)
[章建红, 史青茹, 许洺山, 赵延涛, 仲强, 张富杰, 阎恩荣 (2014).

浙江天童木本植物Corner法则的检验: 个体密度的影响

. 植物生态学报, 38, 655-664.]

[本文引用: 1]     

[46] Zhang QF, You WH, Song YC (1999).

Effect of plant community succession on soil chemical properties in Tiantong, Zhejiang Province.

Chinese Journal of Applied Ecology,10, 19-22.(in Chinese with English abstract)
[张庆费, 由文辉, 宋永昌 (1999).

浙江天童植物群落演替对土壤化学性质的影响

. 应用生态学报,10, 19-22.]

[本文引用: 1]     

[47] Zhu SD, Cao KF (2009).

Hydraulic properties and photosyn thetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China

.Plant Ecology, 204, 295-304.

[本文引用: 1]     

[48] Zhu SD, Chen YJ, Cao KF, Ye Q (2015).

Interspecific variation in branch and leaf traits among three Syzygium tree species from different successional tropical forests.

Functional Plant Biology, 42, 423-432.

[本文引用: 1]     

[49] Zhu SD, Song JJ, Li RH, Ye Q (2013).

Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests.

Plant, Cell & Environment, 36, 879-891.

[本文引用: 1]     

[50] Zimmermann MH (1978).

Hydraulic architecture of some diffuse-porous trees.

Canadian Journal of Botany, 56, 2286-2295.

[本文引用: 2]     

[51] Zimmermann MH, Sperry JS (1983).

Anatomy of the palm Rhapis excelsa. IX. Xylem structure of the leaf insertion.

Journal of the Arnold Arboretum, 64, 599-609.

[本文引用: 1]     

[52] Zimmermann U, Schneider H, Thürmer F, Wegner LH (2002).

Pressure probe measurements of the driving forces for water transport in intact higher plants: Effects of transpiration and salinity. In: Läuchli A, Lüttge U eds. Salinity: Environment, Plants, Molecules

. Kluwer Academic Publishers, Dordrecht, the Netherlands. 249-270.

[本文引用: 1]     

/