植物生态学报, 2022, 46(10): 1167-1199 doi: 10.17521/cjpe.2022.0233

综述

日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用

吴霖升,, 张永光,*, 章钊颖, 张小康, 吴云飞

南京大学国际地球系统科学研究所, 南京大学地理与海洋科学学院, 自然资源部国土卫星遥感应用重点实验室, 江苏省地理信息技术重点实验室, 南京, 210023

Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring

WU Lin-Sheng,, ZHANG Yong-Guang,*, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei

International Institute for Earth System Sciences, School of Geography and Ocean Science, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China

通讯作者: *(yongguang_zhang@nju.edu.cn)

编委: 苏艳军

责任编辑: 李敏

收稿日期: 2022-06-6   接受日期: 2022-09-5  

基金资助: 国家自然科学基金(42125105)
国家自然科学基金(42071388)

Corresponding authors: *(yongguang_zhang@nju.edu.cn)

Received: 2022-06-6   Accepted: 2022-09-5  

Fund supported: National Natural Science Foundation of China(42125105)
National Natural Science Foundation of China(42071388)

摘要

日光诱导叶绿素荧光(SIF)是近十年来迅速发展的新型植被遥感技术, 可以弥补以“绿度”为基础的植被指数等传统光学遥感观测的不足, 为大尺度植被光合作用监测提供了新方法。随着塔基、无人机、机载和星载SIF观测技术的快速发展以及SIF机理研究的推进, SIF遥感为陆地生态系统生理生化参数和生产力反演、非生物胁迫早期探测、光合物候提取和植被蒸腾作用监测等研究提供了重要技术支撑。该文首先系统阐述了SIF遥感的基本原理、观测技术和反演算法, 进而回顾了SIF遥感在陆地生态系统监测中的应用现状, 最后对天空地一体化SIF观测、SIF机理研究、新兴生态学应用等领域进行展望。

关键词: 日光诱导叶绿素荧光; 陆地生态系统; 光合作用; 非生物胁迫; 物候; 蒸腾作用

Abstract

Recent advances in solar-induced chlorophyll fluorescence (SIF), which is a complement to optical remote sensing based on greenness observation, have made it possible to monitor the photosynthesis of plants in terrestrial ecosystems using state-of-the-art technologies. With the rapid development of tower-based, unmanned aerial vehicle (UAV), airborne and space-borne SIF observation technology and improving understanding of SIF mechanism, SIF is providing essential data support and mechanism understanding for the estimation of biological traits and gross primary production of terrestrial ecosystem, early detection of abiotic stress, extraction of photosynthetic phenology and monitoring of transpiration. In this review, we first introduce the fundamental theory, the observation systems and technologies and the retrieval method of SIF. Then, we review the applications of SIF in terrestrial ecosystem monitoring. Finally, we propose a roadmap of activities to facilitate future directions and discuss critical emerging applications of SIF in terrestrial ecosystem monitoring that can benefit from cross-disciplinary expertise.

Keywords: solar-induced chlorophyll fluorescence (SIF); terrestrial ecosystem; photosynthesis; abiotic stress; phenology; transpiration

PDF (5573KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

引用本文

吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用. 植物生态学报, 2022, 46(10): 1167-1199. DOI: 10.17521/cjpe.2022.0233

WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring. Chinese Journal of Plant Ecology, 2022, 46(10): 1167-1199. DOI: 10.17521/cjpe.2022.0233

陆地生态系统通过植物光合作用吸收大气中大量的CO2, 对陆地生态系统碳汇有重要的影响, 是目前较为经济可行和环境友好的减缓大气CO2浓度升高的重要途径(Wang et al., 2020)。因此, 准确监测植被光合作用对陆地生态系统碳水循环过程的研究至关重要。遥感观测能够提供大尺度且时空连续的植被变化信息, 是监测陆地生态系统不可或缺的技术手段(张扬建等, 2017; 刘良云等, 2022; Zeng et al., 2022b)。

近十年来, 日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence, SIF)遥感具有直接探测植被光合作用的优势, 成为植被遥感领域最具突破性的研究前沿之一, 为陆地生态系统监测提供了新思路和新手段(章钊颖等, 2019; 秦其明等, 2020)。叶绿素荧光是植物进行光合作用过程中由光系统反应中心激发出来的光谱信号(Baker, 2008)。按激发光源和探测方式的不同, 叶绿素荧光的观测可以分为主动和被动两种观测技术, 其中SIF是在太阳光下, 由超高光谱遥感传感器观测植被上行光谱并在荧光波段范围内反演出的光信号, 属于被动观测技术(Porcar-Castell et al., 2014)。SIF技术突破了传统主动荧光观测的空间尺度瓶颈, 实现了从叶片、冠层到全球尺度的植物光合作用观测(Porcar-Castell et al., 2021)。如图1所示, 在生态学、地理学、遥感科学和大气科学等多学科融合的基础上, 随着近地面、机载和卫星SIF遥感数据的丰富以及SIF机理研究的推进, SIF遥感技术目前已被广泛应用于精确估算生态系统过程中的关键生理生化参数、植被总初级生产力(GPP)和及时监测植物胁迫、物候和蒸腾作用等生态系统过程。

图1

图1   日光诱导叶绿素荧光(SIF)遥感及在陆地生态系统监测中的应用现状概念图。LNC, 叶片氮含量; LUE, 光能利用率; Vcmax, 最大羧化速率。

Fig. 1   Remote sensing of solar-induced chlorophyll fluorescence (SIF) and its applications in terrestrial ecosystem monitoring. GPP, gross primary production; LNC, leaf nitrogen content; LUE, light use efficiency; Vcmax, the maximum rate of Rubisco carboxylation; UAV, unmanned aerial vehicle.


自然保护地作为陆地生态系统重要的一部分, 是生态文明建设的核心载体之一(黄宝荣等, 2018)。然而, 随着工业化和城镇化的快速发展, 人类活动形成的生境斑块破碎化对生物多样性造成极大威胁, 影响了我国自然保护地的健康发展(侯鹏等, 2017; 彭杨靖等, 2018)。目前, 以SIF观测技术为主的中国生态系统光谱观测研究网络(ChinaSpec)已经遍布全国, 20多个站点覆盖了农田、草地、亚热带森林、温带落叶林、常绿针叶林、红树林湿地、长江口湿地、鄱阳湖湿地、温带稀树草原、高寒草甸等生态系统和自然保护地(Zhang et al., 2021a)。SIF遥感技术已经开始为自然保护地建设、美丽中国建设等重大国家需求提供新技术支撑。

为了更好地挖掘SIF遥感在陆地生态系统和自然保护地监测的潜力, 需要从多尺度SIF观测出发, 提取并解译SIF信号中的生理信息, 全面且定量地认识SIF与光合作用的关联机制及其在时空尺度上的变化特征(Mohammed et al., 2019; Porcar-Castell et al., 2021)。因此, 本文首先阐述了SIF遥感的基本原理、观测技术及反演方法, 然后回顾了SIF在陆地生态系统监测的几个主要应用方向, 最后对天空地一体化SIF观测、SIF机理研究、新兴生态学应用领域进行展望。

1 SIF遥感的基本原理、观测技术及反演算法

1.1 基本原理

叶绿素荧光是指叶绿素分子吸收光量子后, 激发态的叶绿素分子跃迁回基态的过程中发射的一种光谱信号(Meroni et al., 2009)。植物吸收的光能有3个去向: 光合作用、热耗散和叶绿素荧光, 三者在植物生理上密切关联。因此, 叶绿素荧光被誉为光合作用的“探针”, 在细胞和叶片尺度上已经被广泛应用于植物光合作用研究(Baker, 2008)。叶绿素荧光测量最初仅限于实验室内, 随着脉冲振幅调制(PAM)技术的发展, 逐渐走向野外测量, 促进了野外实地光合作用探测的研究, 并帮助阐明叶绿素荧光参数与CO2同化之间的关系(Schreiber et al., 1986; Porcar-Castell et al., 2014)。然而, 由于PAM技术仅局限于叶片尺度, 其在冠层和景观尺度观测难度较大。为了填补这一空白, 叶绿素荧光研究出现新的发展趋势——尝试利用遥感平台实现区域及全球尺度叶绿素荧光观测。

SIF是叶绿素荧光研究的突破性进展, 实现了从遥感平台大尺度测量叶绿素荧光, 从而监测生态系统的光合作用动态(Ryu et al., 2019)。在日照下, 植物发射的叶绿素荧光仅占植物反射太阳辐射的1%至5%, 是非常微弱的光学信号(Grace et al., 2007)。由于太阳表层物质元素和地球大气对太阳光谱的吸收, 导致到达地表的太阳光谱有许多波段宽度为0.1至10 nm的暗线, 即夫琅禾费光谱线。当太阳光照射到植被并被反射出来时, 植被反射光在夫琅禾费吸收谱线波段也很微弱, 而植被发射的SIF可以对荧光波段的暗线进行一定的填充, 从而产生明显的反射峰(Meroni et al., 2009)。因此, SIF遥感探测原理就是计算来自植物的荧光辐射将暗线填充的程度(详细可见1.3反演算法介绍)。

1.2 观测技术

1.2.1 叶片及冠层尺度SIF观测

在叶片尺度, 借助FluoWat叶片夹可以获取全波段(650-800 nm)的SIF (Alonso et al., 2007)。在叶片夹顶部和底部的位置可以接入光纤, 同时借助一个滤波片, 过滤掉到达叶片超过650 nm的入射太阳光。此时, 光谱仪接收的波长位于650-800 nm之间的辐射亮度, 即为叶片激发的全波段SIF (图2)。在使用FluoWat叶片夹时, 可以通过叶片夹上的垂直定位十字星保持太阳-叶片-传感器之间的观测几何形状, 当太阳光照射在叶夹两侧的十字星中心, 即叶片夹出现明亮的光斑时, 可以进行测量。由于叶片夹的进光口较小(直径1 cm), 与太阳倾斜的角度稍有偏差, 叶片就会被叶片夹遮住。因此, 建议在每组叶片测量前后均要测量入射光的辐射亮度, 以保证入射光的稳定性。

图2

图2   多尺度下的多平台日光诱导叶绿素荧光(SIF)观测概念图。

Fig. 2   Illustration of solar-induced chlorophyll fluorescence (SIF) observation on multiple platforms at multiple scales. PAR, photosynthetically active radiation.


与叶片尺度相比, 地基(以塔基为主) SIF自动观测系统具有高频且连续的优点, 可以有效解决SIF的时间分辨率问题, 并且可以获取冠层尺度的SIF (图2)。如表1所示, 目前常用的塔基植被冠层SIF观测系统主要有FluoSpec (Yang et al., 2015), FloX (Julitta et al., 2017), FluoSpec2 (Yang et al., 2018b), PhotoSpec (Grossmann et al., 2018), FAME (Gu et al., 2019), SIFprism (Zhang et al., 2019c), SIFspec (Du et al., 2019), SIFmotor (Zhang et al., 2022b)等。这些塔基冠层SIF观测系统主要由1-3个光谱仪组成, 其中光谱分辨率较高的QEpro光谱仪(Ocean Optics, Dunedin, USA)主要用于SIF的反演, 而光谱分辨率较低的HR2000+或FLAME光谱仪(Ocean Optics, Dunedin, USA)主要用于植被反射率及植被指数的计算。塔基SIF观测系统方法及系统的详细介绍可见李朝晖等(2021)的综述。值得注意的是, 塔基冠层SIF观测系统的空间位置相对固定。因此在选择观测位置时应充分考虑观测目标的空间异质性, 以获取更具代表性的观测数据。此外, 由于从观测目标到传感器的辐射传输路径较短, 接收到的光谱几乎不受各种大气扰动(如尘埃颗粒、气溶胶、水蒸气等)的影响。因此在塔基测量中通常不进行大气校正。但是, Liu等(2019b)认为当观测塔的高度大于10 m时, 塔基观测的数据需要进行大气校正。

表1   地基日光诱导叶绿素荧光(SIF)观测系统

Table 1  Ground-based solar-induced chlorophyll fluorescence (SIF) observation systems

观测系统
Observation system
光谱仪
Spectrometer
波段范围
Band range (nm)
光谱分辨率
Spectral resolution (nm)
SIF波段
SIF bands (nm)
参考文献
Reference
TriFLEXHR2000+630-8150.50687, 760Daumard et al., 2010
HR2000+630-8150.50
HR2000+300-9002.00
SpectroFLEXHR2000+630-8200.20687, 760Fournier et al., 2012
SFLUORHR4000700-8000.10760Cogliati et al., 2015a
HR4000400-1 0001.00
FluoSpecHR2000+680-7750.13760Yang et al., 2015
SIF-SysSTS-VIS337-8233.00760Burkart et al., 2015
FloXQEpro650-8000.30687, 760Julitta et al., 2017
FLAME-S400-1 0001.50
FluoSpec2QEpro730-7800.17760Yang et al., 2018b
HR2000+350-1 1001.10
AutoSIFQE65pro645-8050.30687, 760Hu et al., 2018
PhotoSpecQEpro 1670-7320.30680-686, 745-758Grossmann et al., 2018
QEpro 2729-7840.30
FLAME177-8741.20
FAMEQEpro730-7860.15760Gu et al., 2019
SIFspecQE65pro649-8050.30687, 760Du et al., 2019
SIFprismQEpro650-8000.30687, 760Zhang et al., 2019c
SIFmotorQEpro650-8000.30687, 760Zhang et al., 2022b

新窗口打开| 下载CSV


1.2.2 无人机及机载SIF观测

近年来, 搭载各种传感器的无人机和机载观测系统成为生态系统监测的有效工具(图2)。无人机观测系统的飞行参数(如高度、速度和观测角度等)可以根据观测需要进行灵活调整, 因此能够有效弥补地基观测的空间位置固定的问题, 也能够弥合地面和卫星观测之间的尺度差异(Atherton et al., 2018)。如表2所示, 无人机非成像SIF观测系统(Piccolo Doppio、HyUAS、AirSIF、FAME-UAV和FluorSpec)设计的基本思路与塔基SIF观测系统基本一致, 由一个亚纳米光谱分辨率的QEpro或者再加一个FLAME光谱仪组成。然而, 与塔基系统不同的是, 无人机SIF观测系统需要精确定位测量的地理位置, 除了使用无人机上的GPS, 还可以搭载一台RGB相机, 用于获取观测地物的位置。以搭载在六旋翼的经纬M600 Pro无人机上的SIF观测系统(Piccolo Doppio)为例, 已有观测结果表明该系统能提供准确的冠层SIF和反射率数据(Zhang et al., 2022a)。然而, 无人机SIF观测系统的研发与应用仍处于早期阶段, 主要围绕无人机系统与地面观测系统观测的一致性(Garzonio et al., 2017), 无人机系统足迹范围(Gautam et al., 2020), 农作物的SIF观测(Chang et al., 2020; Wang et al., 2021), 无人机系统影响因素(Bendig et al., 2020)和植被覆盖度对SIF信号的影响(Zhang et al., 2022a)等方面进行研究。基于无人机平台的SIF观测仍存在一些难点, 如传感器和观测目标之间存在一定距离, 大气散射和程辐射会影响基于无人机平台的冠层SIF反演。因此, 基于无人机平台的冠层SIF观测系统需要更精确的大气校正算法, 或者能够消除大气影响的SIF反演算法, 以进一步提高SIF反演精度。

表2   无人机(UAV)和机载日光诱导叶绿素荧光(SIF)观测系统

Table 2  Unmanned aerial vehicle (UAV) and airborne-based solar-induced chlorophyll fluorescence (SIF) observation systems

观测系统
Observation system
光谱仪
Spectrometer
波段范围
Band range (nm)
光谱分辨率
Spectral resolution (nm)
搭载平台
Platform
成像或非成像
Imaging or non-imaging
参考文献
Reference
Piccolo DoppioQEpro650-8000.31UAV非成像 Non-imagingMacArthur et al., 2014
FLAME400-9501.30
HyUASUSB4000350-1 0001.50UAV非成像 Non-imagingGarzonio et al., 2017
AirSIFQEpro498-8770.80UAV非成像 Non-imagingBendig et al., 2020
FAME-UAVQEpro730-7840.15UAV非成像 Non-imagingChang et al., 2020
FLAME350-1 0001.30
FluorSpecQEpro630-8000.30UAV非成像 Non-imagingWang et al., 2021
CASICASI408-9477.50机载 Airborne成像 ImagingZarco-Tajeda et al., 2003
ROSISROSIS430-860~7.00机载 Airborne成像 ImagingMaier et al., 2004
AISAAISA520-8841.60机载 Airborne成像 ImagingCorp et al., 2006
AIRFLEXAIRFLEX687.30.50机载 Airborne非成像 Non-imagingMoya et al., 2006
760.71.00
MCA-6MCA-6757.421.60UAV成像 ImagingZarco-Tejada et al., 2009
760.471.57
Micro-HyperspecVNIR400-8856.40UAV成像 ImagingZarco-Tejada et al., 2012
APEXAPEX400-2 5005.70机载 Airborne成像 ImagingDamm et al., 2015
HyPlantFLUO
DUAL
670-8000.25机载 Airborne成像 ImagingRascher et al., 2015
370-2 5003.00/10.00
AisaEAGLEAisaEAGLE400-9703.30飞艇 Airship成像 ImagingNi et al., 2016
CFISCSIF737-772<0.10机载 Airborne成像 ImagingFrankenberg et al., 2018
Nano-HyperspecVNIR400-1 0006.00UAV成像 ImagingWu et al., 2022a
FIREFLYFluorescence670-7800.10-0.20机载 Airborne成像 ImagingPaynter et al., 2020
VNIR E-SeriesVNIR400-1 0005.80机载 Airborne成像 ImagingBelwalkar et al., 2022

新窗口打开| 下载CSV


机载和无人机成像高光谱观测已被尝试用于SIF反演。例如CASI、ROSIS、Micro-Hyperspec、APEX、AisaEAGLE、Nano-Hyperspec和VNIR E-Series, 虽然这些传感器的光谱分辨率在3-7 nm, 但仍可以利用FLD或者3FLD等算法对O2-A吸收波段进行SIF的反演, 从而获取SIF的空间分布图(Wu et al., 2022a)。与传统成像高光谱传感器不同, HyPlant、CFIS和FIREFLY是专门为观测SIF而设计的光谱分辨率达到亚纳米级的成像超高光谱传感器。其中, HyPlant机载成像系统作为欧洲航天局FLEX卫星任务测试的核心演示器, 由两个模块组成: 用于测量可见光和近红外光谱区域的表观反射率的宽带双通道模块(DUAL)和用于SIF反演具有超高光谱分辨率的荧光模块(FLUO)。FLUO的光谱分辨率为0.25 nm, 是首个具备全波段SIF反演的机载传感器。HyPlant也是目前最成熟的机载成像SIF系统, 已被广泛应用于生产力监测、胁迫监测和生物多样性等研究(Rossini et al., 2015a; Wieneke et al., 2016; Colombo et al., 2018; Gerhards et al., 2018; von Hebel et al., 2018; Tagliabue et al., 2020; Damm et al., 2022; Zeng et al., 2022a)。此外, 美国研制了两套机载成像SIF观测系统, 其中CFIS是为验证OCO-2卫星的SIF反演而开发的成像系统, 其光谱分辨率小于0.1 nm, 光谱覆盖范围为737-772 nm, 可用于远红波段SIF (FRSIF)反演(Sun et al., 2017; Frankenberg et al., 2018)。另一个由Headwall公司研发的超高光谱分辨率叶绿素荧光传感器FIREFLY, 其光谱分辨率小于0.2 nm, 光谱覆盖范围为670-780 nm, 可以实现红波段SIF (RSIF)和FRSIF反演(Paynter et al., 2020; Belwalkar et al., 2022)。与无人机非成像SIF观测相似, 机载成像SIF观测同样面临大气干扰的问题, 需要进行大气校正。此外, 机载成像SIF的数据量庞大, 飞行成本昂贵, 研发与应用仍处于早期阶段, 有待进一步探索与研究。

1.2.3 卫星观测

近年来, SIF卫星遥感反演技术得到了长足的发展, 已经成功利用多个卫星平台的高光谱数据生成了全球SIF产品。如表3所示, 可用于SIF反演的卫星传感器主要有GOSAT (Frankenberg et al., 2011; Joiner et al., 2011), SCIAMACHY (Köhler et al., 2015b), GOME-1 (Joiner et al., 2013), GOME-2 (Joiner et al., 2013), OCO-2 (Sun et al., 2018), TanSat (Du et al., 2018), TROPOMI (Köhler et al., 2018)和OCO-3 (Taylor et al., 2020)。Guanter等(2007)基于MERIS卫星数据, 首次在景观尺度上实现了SIF反演, 并证明了卫星数据反演SIF的可行性。Frankenberg等(2011)和Joiner等(2011)基于GOSAT卫星数据绘制了全球首张SIF地图。此后, 基于不同的卫星平台产生了多种全球卫星SIF产品。由于原始卫星SIF反演产品存在空间不连续或者时空分辨率较低等问题, 已有多个研究基于原始SIF反演产品结合MODIS反射率等辅助数据采用机器学习、深度学习等方法获取空间连续且时空分辨率改善的SIF数据集, 结合MODIS等辅助数据采用机器学习、深度学习等方法获取空间连续且时空分辨率得到改善的SIF数据集。例如, Downscaled-GOME2-SIF (Duveiller et al., 2020), RSIF (Gentine & Alemohammad, 2018), GOSIF (Li & Xiao, 2019), CSIF (Zhang et al., 2018a), Harmonized SIF (Wen et al., 2020), DSIF (Ma et al., 2022), Continuous TanSat SIF (Ma et al., 2020)和SIFnet (Gensheimer et al., 2022)。然而, 这些重建SIF产品可能受到辅助数据集和机器学习方法等的不确定性影响, 并不一定能反映植物真实发射的SIF信号。

表3   日光诱导叶绿素荧光(SIF)的卫星数据产品

Table 3  Satellite-based data products for solar-induced chlorophyll fluorescence (SIF)

数据产品
Data product
传感器
Sensor
时间分辨率
Temporal resolution (d)
空间分辨率
Spatial resolution
时段
Time period
参考文献
Reference
GOSAT-CaltechGOSAT3直径10 km Diameter 10 km2009-2020Frankenberg et al., 2011
SCIAMACHY-GFZSCIAMACHY~31.5° × 1.5°2002-2012Köhler et al., 2015b
GOME-FGOME-1340 km × 40 km1995-2003Joiner et al., 2013
GOME-22007-2019
GOME-2-GFZGOME-210.5° × 0.5°2007-2012Köhler et al., 2015b
GOME-2-CaltechGOME-210.5° × 0.5°2007-2018Köhler et al., 2015b
Downscaled-GOME2-SIF*GOME-280.05° × 0.05°2007-2018Duveiller et al., 2020
RSIF*GOME-2140.5° × 0.5°2007-2017Gentine & Alemohammad, 2018
Harmonized SIF*SCIAMACHY~300.05° × 0.05°2002-2018Wen et al., 2020
GOME-2
DSIF*GOME-2160.05° × 0.05°2007-2019Ma et al., 2022
OCO-2_L2_Lite_SIFOCO-2162.25 km × 1.29 km2014-2022Sun et al., 2018
CSIF*OCO-240.05° × 0.05°2000-2020Zhang et al., 2018a
SIFoco2_005*OCO-2160.05° × 0.05°2014-2021Yu et al., 2019
GOSIF*OCO-280.05° × 0.05°2000-2020Li & Xiao, 2019
TanSat SIFTanSat162.0 km × 2.0 km2017-2019Du et al., 2018
Continuous TanSat SIF*TanSat40.05° × 0.05°2017-2019Ma et al., 2020
IAPCAS/SIFTanSat161.0° × 1.0°2017-2018Yao et al., 2021
TROPOMI-CaltechTROPOMI80.05° × 0.05°2018-2021Köhler et al., 2018
TROPOSIFTROPOMI~13.5 km × 5.5 km2018-2021Guanter et al., 2021
SIFnet*TROPOMI160.005° × 0.005°2018-2021Gensheimer et al., 2022
OCO3_L2_Lite_SIFOCO-3162.25 km × 1.29 km2019-2022Taylor et al., 2020

部分数据产品提供多种时间分辨率和空间分辨率产品, 表格所列时间分辨率和空间分辨率均是其所提供最高的时间分辨率和空间分辨率。数据产品名称后面带*表示该产品属于重构SIF产品。

Some data products provide a variety of time resolution and spatial resolution, and the time resolution and spatial resolution listed in the table are the highest. Data product name is followed by * indicating that the product belongs to the reconstructed SIF product.

新窗口打开| 下载CSV


目前已有的卫星均不是专门为SIF探测而设计, 只是这些亚纳米级分辨率的波段与荧光的发射波段重叠。未来, 欧洲航天局FLEX任务的FLORIS传感器是专门为获取SIF信号设计, 其空间分辨率将达到0.3 km, 这将为更精细地监测陆地植被光合动态提供新的可能(Drusch et al., 2017)。然而, 由于卫星自身物理性能的限制, 空间分辨率和时间分辨率相互制约, 在SIF与GPP机理关系、卫星SIF遥感数据同化、植被物候和胁迫监测等领域仍存在较多问题, 需要进一步研究。

1.3 反演算法

在遥感传感器接收到的地表反射的光谱信号中, 叶绿素荧光部分所占比重非常小, 因此从遥感光谱数据中分离出荧光信号较为困难(Meroni et al., 2009)。然而, 光谱信号中具有许多太阳和地球大气吸收特征波段, 在这些吸收特征波段内, 辐射亮度信号较弱, 荧光信号在这些吸收特征波段占据的比例达到最大, 即荧光会对吸收特征波段进行一定的填充, 从而改变探测到的植被反射率。在可见光与近红外波段, 具有两个氧气吸收特征波段, 分别为O2-B (687 nm)与O2-A (760 nm), 以及一些太阳大气吸收特征, 这些吸收特征表现为波段宽度0.1-10 nm的暗线。荧光反演是基于荧光对于吸收波段深度的填充来分离荧光与辐亮度, 通过比较有无荧光贡献的光谱吸收波段的深度来进行荧光的提取, 这一原理称之为夫琅禾费光谱线填充原理(Fraunhofer line discrimination, FLD)。如表4所示, 根据反演SIF所用的波段, 反演算法大致可以分为两大类: 基于地球大气吸收线(主要是O2-A和O2-B)和基于太阳夫琅禾费光谱线(Mohammed et al., 2019)。根据反演的SIF波段和范围, 也可以分为单波段反演算法和全波段反演算法, 其中全波段算法是基于单波段算法反演640-850 nm范围内的多个吸收暗线波段的SIF, 结合先验函数或主成分重构全波段SIF (Zhao et al., 2014, 2018; Cogliati et al., 2015b; Liu et al., 2015)。

表4   日光诱导叶绿素荧光(SIF)的主要反演算法

Table 4  Main retrieval methods of solar-induced chlorophyll fluorescence (SIF)

反演算法
Retrieval method
SIF波段/范围
SIF bands/spectral range (nm)
反演窗口内对SIF形状的假设
Assumed SIF spectral shape in the retrieval window
反演窗口内对反射率形状的假设
Assumed reflectance spectral shape in the retrieval window
适用平台
Suitable for platforms
参考文献
Reference
FLDO2-A, O2-B恒定 Constant恒定 Constant近地面 Near-surfacePlascyk, 1975
3FLDO2-A, O2-B线性 Linear线性 Linear近地面 Near-surfaceMaier et al., 2004
cFLDO2-A, O2-B校正系数调节
Adjusted with correction factor
校正系数调节
Adjusted with correction factor
近地面
Near-surface
GomezChova et al., 2006
iFLDO2-A, O2-B校正系数调节
Adjusted with correction factor
校正系数调节
Adjusted with correction factor
近地面
Near-surface
Alonso et al., 2008
pFLDO2-A, O2-B校正系数调节
Adjusted with correction factor
校正系数调节
Adjusted with correction factor
近地面
Near-surface
Liu & Liu, 2015
SFMO2-A, O2-B多项式或其他函数
Polynomial or other function
多项式或其他函数
Polynomial or other function
近地面、卫星
Near-surface, satellite
Meroni et al., 2010
SVDFar-red恒定
Constant
奇异向量
Singular vectors
近地面、卫星
Near-surface, satellite
Guanter et al., 2012
PCAFar-red高斯函数拟合 Gaussian多项式拟合 Polynomial卫星 SatelliteJoiner et al., 2014
DOASRed, Far-red参考光谱或高斯函数
Reference spectrum or Gaussian
多项式拟合 Polynomial近地面、卫星
Near-surface, satellite
Wolanin et al., 2015
FSR640-850 nm多项式拟合 Polynomial多项式拟合 Polynomial近地面 Near-surfaceZhao et al., 2014
F-SFM645-805 nm线性组合
Linear combination of basis spectra
线性组合
Linear combination of basis spectra
近地面
Near-surface
Liu et al., 2015
SpecFit670-780 nm伪福格特函数
Pseudo-voigt
分段三次样条函数
Piecewise cubic spline
近地面
Near-surface
Cogliati et al., 2015b

O2-A和O2-B分别指氧气在760和687 nm附近的吸收波段。Red和Far-red分别指红波段和近红外波段, 波段范围与所选的太阳和地球大气吸收特征波段有关。

O2-A and O2-B refer to the absorption bands of oxygen near 760 and 687 nm, respectively. Red and Far-red refer to the red band and near-infrared band respectively, and the band range is related to the selected solar fraunhofer and telluric absorption features.

新窗口打开| 下载CSV


基于大气吸收波段(O2-A和O2-B)的SIF反演算法发展以FLD为基础, 通过对荧光与反射率的假设从最初的具体化到泛化的发展, 产生一系列改进算法, 包括3FLD (Maier et al., 2004; Damm et al., 2014), cFLD (GomezChova et al., 2006), iFLD (Alonso et al., 2008; Wieneke et al., 2016), pFLD (Liu & Liu, 2015)以及SFM (Meroni & Colombo, 2006; Guanter et al., 2010; Meroni et al., 2010; Mazzoni et al., 2012)等。以上算法适用于近地面SIF反演, 然而, 这些算法应用到高度较高的塔基或者机载无人机观测则需要进行大气吸收的校正(Porcar-Castell et al., 2021)。

与基于地球大气吸收波段的反演算法相比, 基于太阳吸收特征的反演算法不需要复杂的大气模型。因此, 基于太阳夫琅禾费光谱线的反演算法被广泛应用于星载SIF反演(Mohammed et al., 2019)。这类算法可以分为两类: 基于物理模型的反演算法和基于数据驱动统计的反演算法(纪梦豪等, 2019; 王思恒等, 2019)。基于物理模型的反演算法, 可以通过简化辐射传输方程, 使用更窄的窗口, 获取信噪比更高, 噪声更小的SIF信号(Frankenberg et al., 2011; Joiner et al., 2011, 2012; Köhler et al., 2015a)。差分光学吸收光谱(DOAS)算法也是常用基于物理模型的反演算法, 其利用大气散射和大气分子吸收引起光学厚度变化随波长变化的差异来识别气体成分并反演气体浓度(Platt & Stutz, 2008)。基于数据驱动统计的反演算法从光谱数据本身的特性出发, 利用数学统计方法表征光谱的结构信息。这类算法基于简化的大气辐射传输方程, 将传感器接收到的辐亮度信号表征为光谱平滑项(荧光光谱和反射率光谱)和光谱非平滑项(夫琅禾费吸收线特征)的组合, 并利用最小二乘法就可以将SIF信号提取出来(Guanter et al., 2012)。通过PCA或者SVD等方法将非线性的大气层顶辐射使用方程转化为用少数主成分代表的线性方程, 进而求解出SIF (Guanter et al., 2012, 2013; Joiner et al., 2013, 2016; Köhler et al., 2015b; Du et al., 2018; Yao et al., 2022)。基于数据驱动统计的反演算法能有效地提高SIF反演的效率, 且在一定程度降低了对光谱分辨率和大气辐射传输的要求, 但其受选取的训练数据集、反演波段和各成分的拟合函数(包括多项式的阶数、选取主成分的个数和荧光函数的拟合)的限制, 仍有待进一步的研究。

2 SIF在陆地生态系统监测中的应用

2.1 生态系统功能

生态系统功能是指生态系统内部及其与外部环境之间的联系与相互作用, 主要表现为能量流动、物质循环和信息传递, 它决定了生态系统提供服务的质量与总量(Odum & Barrett, 1971)。新兴的SIF遥感技术为生态系统功能的研究带来了新机遇, 其与植物光合作用的密切联系, 可以为生态系统能量流动与物质循环过程中的关键要素(例如生理生化组分和生产力)反演提供新的手段(Ryu et al., 2019; 郭庆华等, 2020; Porcar-Castell et al., 2021)。

2.1.1 生理生化组分

生理生化组分是体现生态系统活力和衡量生态系统特征的重要指标, 是植物在表征生态系统功能方面的生态指示, 也是反映生产能力、环境适应性等属性的重要植物功能性状(孟婷婷等, 2007; 郭庆华等, 2020)。植被光能利用率(LUE)是生态系统或植物群落每吸收1 mol光量子而固定的大气中CO2的物质的量, 是表征生态系统水平植物群落对光能的利用效率(Grace et al., 2007)。理论上, LUE与非光化学淬灭系数(NPQ)、SIF量子产率(SIFyield)关系密切且通常是此消彼长的关系, 因此很多研究从模型模拟、叶片尺度、冠层尺度和全球区域尺度探讨了SIF或者SIFyield与LUE的关系(Freedman et al., 2002; Damm et al., 2010; Liu & Cheng, 2010; Liu et al., 2013a; Porcar-Castell et al., 2014; Yang et al., 2015, 2018a; Zhang et al., 2016, 2018b; Miao et al., 2018; Li et al., 2020c; Wu et al., 2022a), 结果表明, SIFyield与LUE的关系受植被类型、光照条件和冠层结构等因素影响, 在低光照条件下负相关, 高光照条件下呈正相关关系(Porcar-Castell et al., 2014); 此外, 由于冠层尺度的光合作用影响因素复杂, 叶片尺度的SIFyield与LUE关系优于冠层尺度的关系(Wu et al., 2022a)。

植物叶片最大羧化速率(Vcmax)是表征植物光合能力的关键参数, 精确模拟Vcmax有助于准确预测植物的光合作用和陆地生态系统生产力(张彦敏和周广胜, 2012; 闫霜等, 2014)。Zhang等(2014)首先将GOME-2卫星SIF数据与SCOPE模型相结合, 推算出Vcmax的季节变化模式。此后一系列研究基于实测和模型数据深入探讨了SIF-Vcmax的关系(Koffi et al., 2015; Verrelst et al., 2015; van der Tol et al., 2016; Zhang et al., 2018c; Camino et al., 2019; Fu et al., 2020; Li et al., 2020a), 大多数研究表明SIF具有估算Vcmax的潜力, 然而, 少数研究表明在高光照条件下SIF对Vcmax的敏感性很弱(Koffi et al., 2015)。近期, Han等(2022b)利用光反应与碳反应(暗反应)的平衡, 推导出叶绿素荧光激发与光合能力参数的理论方程, 并对光系统II (PSII)的理论叶绿素荧光激发总量(SIFPSII)与Vcmax和最大电子传递速率(Jmax)之间的动态关系提出可检验的假设。结果表明, PSII的氧化还原状态强烈影响SIFPSIIVcmaxJmax的关系, 而SIFPSII × qL (qL表示PSII反应中心开放程度)表明了PSII的氧化还原状态, 是VcmaxJmax的有效预测因子。

叶绿体是植物进行光合作用的场所, 叶绿素具有吸收转换光能的作用。因此, 植物叶片叶绿素含量(LCC)的变化是影响光合速率的重要因素(Gitelson et al., 2005; Croft et al., 2020)。由于LCC控制着SIF的激发量, 同时对不同波段的SIF的重吸收比例不同, 因此也是导致不同尺度和不同波段的SIF差异的重要因素(Verrelst et al., 2015; Liu et al., 2019c, 2020b; Zhang et al., 2021b)。大量研究表明, 在叶片尺度, RSIF与FRSIF的比值与LCC存在很好的幂函数关系(Gitelson et al., 1998; Tubuxin et al., 2015; Li et al., 2020a)。基于此, 利用叶片尺度的RSIF与FRSIF比值可以很好地估算LCC (Tubuxin et al., 2015)。

氮是合成叶绿素和与光合有关蛋白的重要成分, 植物体内75%的氮都集中于叶绿体中, 且大部分都用于光合器官的构建, 因此它是光合物质代谢和植物生长的关键因子(Evans, 1989; 郑淑霞和上官周平, 2007)。鉴于植物叶片氮含量(LNC)与叶片光合能力密切相关, 及主动荧光动力学参数可以反映植物LNC的动态变化, SIF理论上也具有探测LNC的潜力(Berger et al., 2020)。Jia等(2018)在叶片尺度基于SIF对LCC的响应, 评估了SIF定量估算LNC的可行性。Camino等(2018)研究发现, 与仅基于LCC、干物质或等效水厚度建立的模型相比, 引入SIF的LNC反演可以获得更高的精度。Jia等(2021)进一步在冠层尺度上基于SIF估算LNC, 并根据SIF、光合作用和LNC之间的关系, 评估了SIF指数定量估算光合作用氮利用效率的潜力。

2.1.2 植被生产力监测

总初级生产力(GPP)是初级生产者(一般是植物)通过光合作用将无机碳转化成有机物的量, 是表征生态系统物质生产和能量流动的关键因子(Field et al., 1995; Anav et al., 2015)。近十年来, SIF被广泛应用于陆地生态系统GPP估算, 其理论基础是光能利用率模型(Monteith, 1972):

$ \mathrm{GPP}=\mathrm{PAR} \times \mathrm{fPAR} \times \mathrm{LUE}$

式中, PAR为到达植被冠层的光合有效辐射; fPAR为植被吸收光合有效辐射比。PAR与fPAR的乘积表示植物吸收的光合有效辐射(APAR)。类比于GPP的定义, SIF可以表示为(Guanter et al., 2014):

$ \mathrm{SIF}=\mathrm{PAR} \times \mathrm{fPAR} \times \Phi_{\mathrm{F}} \times \mathrm{f}_{\mathrm{esc}}$

式中, ΦF为荧光量子效率, 即吸收的PAR转化为荧光的比例; fesc为叶片发射的荧光逃逸冠层的概率, 其主要受到冠层结构和叶绿素含量的影响。由公式(1)和(2)可知, SIF与GPP之间的关系主要由共同因子APAR驱动。由此, SIF与GPP之间的关系可以表示为:

$ \mathrm{GPP}=\mathrm{SIF} \times \frac{\mathrm{LUE}}{\Phi_{\mathrm{F}} \times \mathrm{f}_{\mathrm{esc}}}$

公式(3)描述的SIF与GPP的关系简化了一系列复杂的机制, 是一个描述SIF与GPP之间耦合关系的简单模型。由此, 建立了基于SIF估算陆地生态系统GPP的理论基础。

大量研究表明, 冠层尺度SIF与GPP关系在不同生态系统呈显著正相关关系(Frankenberg et al., 2011; Sun et al., 2017; Zhang et al., 2019b, 2020b; Li & Xiao, 2022)。然而, 由于SIF与GPP关系模型受环境因子、冠层结构、植物光合作用途径及时空尺度等多种因素的影响(Magney et al., 2020), 不同生态系统的SIF与GPP关系存在差异(Damm et al., 2015)。例如, 由于植物光合途径不同, C3和C4植物的SIF-GPP的线性关系的斜率存在差异(Liu et al., 2017; Zhang et al., 2020b)。在全球尺度, Frankenberg等(2011)发现SIF与GPP存在很好的线性关系; 在区域尺度上, Guanter等(2014)通过星载GOME-2的SIF数据与美国玉米(Zea mays)带农田生态系统和西欧草原的涡度通量站点GPP数据建立了简单的线性回归关系; 而在站点尺度, 0.5 h时间分辨率的SIF与GPP模型则不是简单的线性关系。例如, Goulas等(2017)通过对小麦(Triticum asetivum)站点数据分析发现, SIF-GPP的简单线性关系可能只存在于绿色生物量变化明显且光能利用率变化较小的情景; Li等(2020c)通过对玉米站点数据分析发现, 0.5 h尺度的SIF-GPP的非线性关系优于线性关系。不同环境因子影响下的SIF-GPP的关系也存在差异。例如, Li等(2020c)发现不同天空条件(阴天和晴天)会影响SIF-GPP的关系模型; Wieneke等(2018)发现胁迫条件会解耦SIF-GPP的线性关系。总的来说, 在不同生态系统间、不同时空尺度下和不同环境因子影响下的SIF-GPP的关系仍然需要更多的研究, 以更好地服务于陆地生态系统的GPP的精确估算。

陆面模式(LSM)是地球系统模型的关键组成部分, 可在区域和全球尺度模拟陆地表面与大气界面的碳、水通量和能量交换。Lee等(2015)将SIF和光合作用的耦合模块加入NCAR CLM4 (National Center for Atmospheric Research Community Land Model version 4)模型, 使得模拟全球尺度的SIF成为可能。Koffi等(2015)将SCOPE模型耦合到BETHY (Biosphere Energy Transfer Hydrology)模型, 使得SIF在碳同化系统中的应用成为可能, 并显著减小了模型中GPP估算的不确定性。Qiu等(2019)构建了适用于不同生态系统类型的荧光多次散射模拟方法, 发展了综合考虑发射、吸收和散射过程的冠层荧光计算方案, 并将该方案耦合到BEPS模型, 揭示了冠层结构对不同尺度SIF-GPP关系的影响, 有助于降低碳循环模拟的不确定性。Wang和Frankenberg (2022)评估了在CliMA Land模型使用5种不同的冠层复杂程度时冠层碳、水和SIF通量的差异, 表明在模型中添加复杂冠层的必要性。然而, 在陆面模式中耦合SIF仍需更多探索, 以更好地估算陆地生态系统生产力和精确地模拟全球尺度碳、水和能量循环。

2.2 生态系统过程

生态系统过程是生态系统中生物和非生物通过物质和能量驱动的复杂相互作用的结果(李奇等, 2019)。陆地生态系统包含一系列时空连续、尺度多元且互相联系的生态学过程(Chambers et al., 2007; 岳跃民等, 2008)。近年来, 人类活动和气候变化对生态系统结构和功能产生了大规模的影响, 因此, 监测陆地生态系统的关键过程如何响应与适应全球气候变暖是全球变化生态学的基本科学问题之一(夏建阳等, 2020; 于贵瑞等, 2021)。SIF遥感能够直接表征植物生理生态过程, 被广泛应用于监测植被对极端气候的响应与适应(Song et al., 2018)、植被光合物候的动态特征(Wang et al., 2019b)及蒸腾作用的变化(Shan et al., 2019)等。

2.2.1 胁迫

在植物非生物胁迫的早期探测上, 理论上SIF比传统的遥感植被指数更具有优势。其理论基础是植物在遭受非生物胁迫(干旱、热害、除草剂、氮等)的早期, 其表观的绿度(叶绿素含量)和结构(叶面积指数)不会立即发生变化, 但其生理过程(如光合作用)则会立即发生响应以应对胁迫造成的损害。SIF作为光合作用的探针, 被认为是植被非生物胁迫早期探测的有效工具。

近年来, 极端天气频发, 全球绝大部分地区农业和生态干旱事件的发生频率和强度都在增加, 及时精确地监测大范围干旱胁迫对确保粮食安全和了解植被对气候变化的响应具有重要意义(Breshears et al., 2005)。由于干旱胁迫会引起植物一系列的生理反应, 例如叶片气孔关闭导致光合速率下降, NPQ上升, 因此SIF可以直接反映出植被对干旱胁迫的快速响应(Perez-Priego et al., 2005)。绝大多数地面实验研究表明, 在干旱胁迫的影响下, 植物冠层SIF会下降(Daumard et al., 2010; Wieneke et al., 2018; Xu et al., 2018, 2021; Liu et al., 2020a; Chen et al., 2021)。Xu等(2018)以玉米为对象, 通过近地面遥感平台获取高时间分辨率的SIF数据, 研究发现, 在干旱胁迫下, 由于冠层结构和光合作用共同调节, RSIF和FRSIF都会发生下降。此外, 复水后, FRSIF会明显升高, RSIF也有一定升高, 但升高幅度没FRSIF明显。Chen等(2021)使用连续3年的塔基观测数据, 研究了玉米在日变化和季节变化的尺度上SIF和GPP之间的关系及其对干旱胁迫的响应, 研究发现, 随着干旱胁迫程度的增加, GPP与SIF的比值下降, 冠层气孔导度同步下降, 证明了SIF数据不仅包含冠层结构信息也包含了大量的生理信息, 可以作为监测干旱和估算GPP的潜在指标。

同样, 基于卫星SIF的全球和区域尺度的结果也表明, 干旱胁迫下, 植物的SIF值会明显下降(Lee et al., 2013; Sun et al., 2015; Zhang et al., 2019a, 2020a; Li et al., 2020b; Liu et al., 2021; Qiu et al., 2022)。Lee等(2013)对亚马孙热带雨林的水分胁迫进行了分析, 结果表明在2010年极度干旱的条件下, 亚马孙热带雨林对大气碳吸收量减少, 传统植被指数仅能捕捉到由于叶片损失或者叶绿素含量变化导致的反射率的变化, 而SIF可以直接反映出植被由于水分胁迫, 导致气孔关闭, 造成GPP减少这一事实。因此SIF为大尺度GPP动态变化监测提供了有效工具。2011年美国得克萨斯州和2012年中部大平原发生了两种不同类型的干旱, Sun等(2015)采用GOME-2 SIF分析了两次干旱事件对作物的影响。 结果表明, 在空间分布上, SIF距平的空间分布图与美国干旱程度空间分布图有很好的相关关系, 在年内季节变化上, 也可以很好地反映出干旱对作物光合作用的影响, 该研究很好地证明了SIF可以作为农作物光合作用的直接表征, 能够估算农作物的结构特征及生理状态变化。总的来说, SIF响应干旱胁迫机制主要归因于植物应对水分亏缺时, 关闭气孔并产生一系列的光保护机制, 最终导致NPQ升高和SIF降低(Jonard et al., 2020)。然而, 有些研究表明干旱胁迫或者人为诱导气孔关闭时, 相对于净光合速率和气孔导度, SIF并没有显著下降(Helm et al., 2020; Marrs et al., 2020)。这可能由于冠层观测SIF除了包含生理信号, 还耦合冠层结构、光照条件等非生理信号, 会干扰其表征植物响应胁迫的真实生理动态变化。

高温对植物的影响主要表现在以下3个方面: 第一, 高温增强了植物的蒸腾作用, 使其失水过多; 第二, 高温会影响植物体内的各种生理生化反应所需的酶的活性, 从而影响其生长代谢; 第三, 当高温发生时, 植物为了减少蒸腾, 气孔导度下降甚至气孔完全关闭, 进入植物体内的CO2减少, 抑制光合作用, 有机物的积累随之减少(Berry & Bjorkman, 1980)。高温和随之而来的高水汽压亏缺(VPD)往往会对植物造成胁迫, 因此, 高温胁迫往往伴随着干旱胁迫, 但不会立即引起植物冠层结构和相应光谱特征的显著变化(Dobrowski et al., 2005; 章钊颖等, 2019)。诸多研究表明, 植物的SIF值在高温和干旱胁迫条件下都会下降(Ač et al., 2015; Rossini et al., 2015b; Song et al., 2018, 2020; Wieneke et al., 2018; Wang et al., 2019c; Qiu et al., 2020)。在地面增温实验中, Kimm等(2021)发现受与高温胁迫相关的冠层结构和植物生理变化的影响, SIFyield会显著下降, 进一步消除冠层结构影响后的ΦF在响应生理胁迫方面胜过包含结构信息的SIFyield。Song等(2018)利用卫星SIF数据对印度恒河平原2010年小麦高温胁迫进行了综合的研究, 研究发现相比传统植被指数, SIF由于包含了小麦生理信息和冠层结构信息, 使得SIF对此次高温胁迫监测具有更快的响应时间以及更高的灵敏性。因此, 究竟是冠层SIF的生理信息, 还是非生理信息, 还是耦合着生理与非生理信息的冠层SIF本身, 更适合胁迫监测还有待进一步研究。

此外, SIF遥感也被应用于其他胁迫研究。除草剂胁迫通过阻断氨基酸、类胡萝卜素及脂类生物合成, 或者干扰细胞分裂、阻断光合作用光系统的电子传递等方式对植物造成胁迫甚至杀死植物(Culpepper & York, 1999; Taiz et al., 2015)。这种快速特殊的胁迫方式被广泛应用于光合作用和调制荧光的研究(Schreiber et al., 1986; Lichtenthaler & Rinderle, 1988; Wang et al., 2018), 同样也被应用于SIF与光合作用的机理研究和SIF传感器的测试(Liu et al., 2013b; Rossini et al., 2015a; Pinto et al., 2016, 2020; van der Tol et al., 2016; Celesti et al., 2018; Wu et al., 2022b)。Rossini等(2015a)在草皮上喷洒除草剂, 测试新研制的机载SIF传感器(HyPlant)观测草皮冠层SIF的动态, 研究发现, RSIF和FRSIF均能迅速捕获到草皮对除草剂的响应, 两者都先迅速上升, 在几天后下降, 这些现象也在小麦和玉米地被发现(Pinto et al., 2016)。氮是植物生长所需量最大的营养元素, 合理的氮肥使用对于农作物生长和提高作物产量至关重要。氮亏缺胁迫引起光合作用和荧光的变化更为复杂(Ač et al., 2015), 一方面, 由于氮胁迫会导致叶片叶绿素含量降低, 从而减少了荧光信号激发量; 另一方面, 叶绿素含量在氮亏缺状态下较低, 会导致RSIF再吸收减弱, 进而增加RSIF的发射(Ač et al., 2015)。通过对比不同氮处理条件下的月桂(Laurus nobilis)树的RSIF和FRSIF的比值(RSIF/FRSIF), 发现氮亏缺胁迫的月桂树的RSIF/FRSIF更高。Jia等(2021)通过田间实验测量不同氮处理的冬小麦叶片和冠层尺度的SIF, 发现SIF比率指数(SIFR)和归一化SIF指数(SIFN)具有监测叶片氮含量及反演光合作用氮利用率的潜力, 可以应用于作物氮胁迫监测研究(Jia et al., 2018, 2021)。此外, SIF也被应用于低温(Moya et al., 2019)和小麦条锈病(竞霞等, 2019)等胁迫监测中。

2.2.2 物候

植被物候是自然界植物受遗传因素与周围环境共同影响而产生周期性变化的生物学现象, 是表征生态系统动态及其对环境变化响应方式的重要生态系统参数, 也是气候变化最敏感的生物学指标之一(葛全胜等, 2010; 王敏钰等, 2022)。相较于传统光学遥感植被指数方法, 基于SIF的物候指标更能代表植物光合信息变化, 特别是对于北方常绿林、高生产力的热带雨林、植被稀疏的旱地生态系统和地物复杂的城市生态系统(Smith et al., 2018; Doughty et al., 2019; Magney et al., 2019; Zhou, 2022)。

在物候周期显著的中高纬地区的落叶阔叶林、混交林、草地和农作物的物候指标提取方面, Joiner等(2014)基于GOME-2卫星SIF数据和塔基通量GPP数据, 系统评估了多种植被类型SIF追踪GPP的季节变化能力, 结果表明SIF提取的植物物候周期短于基于MODIS fPAR产品的提取结果, 且与塔基通量GPP提取结果更为接近。Yang等(2015)使用地基SIF自动观测系统对落叶林进行长时序连续观测, 表明地基SIF具备观测植物物候的潜力。Walther等(2016)基于卫星数据对北美中高纬度落叶林进行物候研究, 研究结果表明基于植被指数的物候生长季结束日期晚于SIF, 这与对我国长白山温带红松(Pinus koraiensis)阔叶林的研究结果(刘啸添等, 2018)一致。这是由于落叶林进入秋季衰老期后, 植被光合作用虽然大幅度减弱并趋于停止, 但叶片绿度并不会迅速反映这种改变, 而是存在一个渐变过程, 因此基于SIF提取的物候生长季长度短于基于归一化植被指数(NDVI)的结果(Jeong et al., 2017)。农作物的物候期显著(Li et al., 2020a, 2020c; Zhao et al., 2022a), 然而不同波段SIF反映的物候动态不同。Daumard等(2012)的研究表明, 在高粱(Sorghum bicolor)生长初期, RSIF迅速上升, 随后趋于饱和, 而FRSIF则继续增加。这可能是由于叶绿素对RSIF重吸收所致, 因此在冠层尺度及全球尺度, FRSIF更适合作为光合物候监测指标(Meroni et al., 2011; Middleton et al., 2018)。

在北方常绿针叶林生态系统, 光合作用会发生季节性变化, 而冠层结构或者叶绿素含量没有显著变化, 基于NDVI等植被指数难以捕获常绿针叶林的物候动态。此时, 可以表征光合作用的SIF在监测其物候动态时具有独特优势(Walther et al., 2016)。基于GOME-2卫星SIF数据的北方常绿针叶林的物候研究表明, SIF揭示的生长季开始日期要比增强植被指数(EVI)的结果提前1个月, 主要是因为北方常绿森林在春季复苏阶段受积雪影响且植被绿度变化不明显, 因此植被光合作用不能被传统的绿度指标及时地监测出来(Walther et al., 2016)。基于地基冠层SIF观测芬兰南部的欧洲赤松(Pinus sylvestris)(Nichol et al., 2019), 美国科罗拉多州高山生态研究站Niwot Ridge的亚高山针叶林(Magney et al., 2019)和加拿大萨斯喀彻温省的云杉(Picea asperata)(Pierrat et al., 2022)的季节动态表明, SIF可以有效追踪到针叶林冬季光合速率的下降, 且与GPP的季节动态高度一致。然而, Yang等(2022)进一步分析Niwot Ridge站点数据, 发现亚高山针叶林的GPP和RSIF对光照和季节环境条件响应不一致, 这说明在针叶林中使用RSIF作为物候指标具有局限性。

在热带和亚热带常绿森林, 由于常绿冠层郁闭度和覆盖度高, NDVI监测其物候存在易饱和及敏感性低的问题, SIF可以提供不同于植被绿度信息的生理功能新视角, 在常绿林物候监测中具有较大优势(周蕾等, 2020)。相比于叶绿素变化, 表征光合效率变化的SIF与亚马孙热带森林的水分胁迫表现出更高的相关性(Lee et al., 2013)。因此, 卫星SIF被应用于揭示亚马孙热带雨林在旱季是否正在变绿这个争议话题(Doughty et al., 2019; Xie et al., 2022)。Bertani等(2017)基于9年GOME-2卫星SIF数据评估亚马孙雨林光合活性对太阳辐射和降水的季节响应, 结果表明, 亚马孙雨林的光合季节变化79%是由太阳辐射的季节变化驱动, 13%受降水量的限制。Doughty等(2019)基于最新的TROPOMI卫星SIF数据研究表明, 亚马孙雨林SIF在旱季早期没有下降, 在旱季的后期和湿季早期有大幅度上升, 有力地证明了亚马孙在旱季变绿, 即绿度、SIF和光合都在增加。Xie等(2022)基于多种卫星数据集, 包括叶面积指数(LAI)、卫星荧光重构产品CSIF、EVI和植被光学厚度(VOD), 全面评估了亚马孙热带雨林的季节变化, 4个卫星植被数据集都显示亚马孙大部分区域植被覆盖度都表现出增长的趋势; 但植被的变化不仅在空间上有差异, 而且不同数据集之间也有差异。部分原因可能是不同植被数据集捕捉了不同的植被物理特性。例如, LAI首先出现季节最大值, 随后CSIF、EVI和VOD依次出现最大值。Wu等(2021)基于卫星SIF数据和地面凋落物数据探究水和光的可利用性如何控制热带常绿森林的叶片物候, 发现泛亚洲热带常绿森林叶片凋落取决于降雨和入射太阳辐射季节性变化的同步性。

在干旱-半干旱生态系统, 由于植被覆盖度低, 基于植被指数的物候监测方法易受到土壤背景影响, 进而在物候参数提取结果中引入一些不确定性。然而, SIF信号几乎不受土壤背景影响。因此, 基于卫星的SIF具有改善遥感监测旱地生态系统的季节和年际GPP动态的能力(Smith et al., 2018, 2019)。Wang等(2019a)在澳大利亚北部地区评估了卫星SIF捕获旱地生态系统物候动态变化的能力, 发现相对于EVI, SIF提取的物候期参数不受土壤背景影响, 更为准确地表征了植被物候沿降水梯度的时空变化趋势。Dannenberg等(2020)的研究也发现, 在地上生物量较低的旱地生态系统, SIF捕获年内植被生长季动态的能力比NDVI强。此外, Wang等(2022)全面评估了基于卫星观测的长时间序列植被表征参数, 包括NDVI、NIRv等植被指数和TROPOMI卫星SIF, 捕获旱地GPP季节性变化的能力。其研究表明NIRv和SIF是最佳的GPP表征参数。两个参数在获取不同旱地生态系统类型的GPP季节性变化时具有互补作用, NIRv在生产力较低的、稀疏分布的非常绿植被站点中的表现优于其他参数, 而SIF在生产力较高的常绿植被站点中的表现优于其他参数。未来需要进一步探索融合NIRv和SIF的互补作用, 来提升我们在基于卫星的模型中对旱地生态系统GPP变化的理解和描述。

在地物复杂的城市生态系统, 城市化会导致温度和CO2浓度的上升, 从而对植物物候产生广泛影响, 包括春季物候提前和秋季物候延迟(Zhou, 2022)。基于传统的植被指数来研究城市地区植被物候, 会面临着较为严重的混合像元问题, 非植被亚像元会对植被物候的提取造成显著的影响(Wang et al., 2019b)。由于SIF仅在植被进行光合作用时被激发, 非植被像元不会对SIF遥感信号产生影响。因此采用高空间分辨率SIF数据, 可以较为精确地提取城市植被的光合物候信息。Wang等(2019b)基于OCO-2卫星提供的千米级别SIF遥感数据, 提取了城市地区植被的光合物候信息, 并提出一种基于城市-郊区梯度的植被物候研究方法, 将城市地区作为温度和CO2浓度提升情境下的控制实验组, 将郊区作为对照实验组, 研究植被在未来气候变化情景下的物候变化, 研究揭示了全球变化尤其是升温和CO2浓度升高对植被光合作用的促进作用, 也表明城市生态系统可以作为未来自然生态系统气候变化研究的天然实验室。

2.2.3 植被蒸腾

蒸散发(ET)在地表能量交换和水分平衡中扮演重要角色, 包括地表蒸发作用(E)和植物蒸腾作用(T), 是陆地生态系统水文循环的重要过程(Chapin et al., 2002; Stoy et al., 2019)。准确监测和估算植物蒸腾的时空变化对于理解地表与大气之间的能量与水分交换过程及对全球变化的响应, 环境变量模拟与预测以及水资源调控机制的研究具有重要意义(Fisher et al., 2017)。一些基于卫星SIF的研究表明, 在严重干旱事件期间, 由于缺水导致气孔关闭, 从而引起光合作用、SIF和蒸腾作用下降(Lee et al., 2013; Sun et al., 2015; Yoshida et al., 2015)。Damm等(2018)使用SCOPE模型模拟, 提供了基于SIF估算植物蒸腾作用的见解, 然而, SIF与蒸腾作用的机理联系仍需利用地面实测数据进行研究。Lu等(2018)基于哈佛森林的站点数据探索SIF与植物蒸腾的关系, 研究发现FRSIF比RSIF对蒸腾作用变化更敏感, 尽管胁迫等因素会使得SIF与蒸腾的相关性变差, 但不同波段SIF组合可以获得蒸腾作用的准确估计。

在植被覆盖度较高的地区, 冠层参数对蒸散的模拟结果具有较大影响, 其中冠层气孔导度是植被蒸腾准确估算的关键参数(Schlesinger & Jasechko, 2014)。冠层气孔导度通常采用经验或半经验半理论参数化方法, 但因气孔导度经验模型中缺少理论基础及环境因子对气孔导度的累积效应, 光合作用模拟过程的酶动力学模型和光能利用率模型均无法准确估算不同生态系统的光合能力, 限制了模型在不同环境条件下的预测能力(Berry et al., 2010)。针对这一问题, Shan等(2019)利用地基观测的冠层SIF对不同生态系统冠层气孔导度和蒸腾进行模拟。相比传统的植被指数, SIF的日变化和季节变化与冠层气孔导度的变化有更高的一致性, 且相关性随着时间尺度的增大而增强。进而利用SIF估算的气孔导度对冠层蒸腾进行模拟, 结果表明SIF能够模拟植被蒸腾的日变化和季节变化, 但其模拟能力受植被覆盖度和土壤水的影响。Shan等(2021)进一步提出了一种半机理模型, 通过推导SIF和气孔导度以及VPD之间的解析解, 结合光合途径和最佳气孔扩散理论, 来估算植物蒸腾作用, 并在森林和农田生态系统中, 通过每小时冠层SIF和协同的涡度协方差通量观测, 验证了该模型。为了确定影响SIF对生态系统蒸腾估算能力的相关生物和非生物环境驱动因素, Damm等(2021)利用温带混交林在展叶期的观测数据和基于Penman-Monteith (PM)的模型框架, 分析了SIF对蒸腾的日动态和季节动态的敏感性, 并使用SCOPE模型来研究SIF和蒸腾对非生物和生物环境驱动因素的依赖性, 包括净辐射、空气温度、相对湿度、风速和LAI。

基于GOME-2卫星SIF数据, Alemohammad等(2017)利用人工神经网络估算了包括潜热通量在内的地表湍流通量, 并表明SIF与蒸腾具有很好的关系。Rigden等(2018)使用美国1 614个气象站数据评估了区分植物蒸腾与地表蒸发的方法, 并发现GOME-2 SIF与蒸腾具有很高的相关性, 同样, Pagán等(2019)发现PAR归一化的GOME-2 SIF与蒸腾速率(即蒸腾与潜在蒸发比值)之间存在较强的相关性。然而, 蒸腾作用的全球时空动态具有高度不确定性。Maes等(2020)基于GOME-2及OCO-2 SIF对从全球分布的通量站点推导出来的蒸腾进行比较, 发现卫星SIF与蒸腾高度相关, 表明可以在全球尺度利用卫星SIF进行可靠的植物蒸腾估算。基于此, 卫星SIF也被认为具有估算ET的巨大潜力。

以上研究揭示了SIF从站点到区域和全球尺度模拟植被蒸腾方面的潜力和优势。SIF遥感技术为研究碳水耦合过程参数的反演提供了新的思路, 对降低生态系统碳水通量模拟的不确定性, 准确预测生态系统对全球变化响应具有重要的意义。

3 讨论和展望

SIF遥感技术突破了传统主动荧光测量的尺度瓶颈及传统光学反射率遥感的生理限制瓶颈, 从叶片、冠层、景观到全球尺度提供了研究陆地生态系统光合作用的新途径(Porcar-Castell et al., 2021)。目前, 从地基、无人机、机载到卫星获取SIF数据, 极大地强化了连续时空的陆地生态系统监测能力。然而, 为了更好地发挥多尺度SIF观测的潜力, 仍有很多挑战需要去克服。例如, 天空地一体化观测, 数据预处理后获取可靠的SIF数据产品, 准确提取隐含在SIF信号中的植物生理信息, 对SIF机理和时空动态的深入和全面认识。在此基础上, 探索基于SIF的新兴的生态学应用, 从而更好地服务于陆地生态系统监测(图3)。

图3

图3   日光诱导叶绿素荧光(SIF)遥感标准化数据处理与建模流程及其在生态学中的新兴与潜在应用。部分子图来源Zeng等(2022a)。ФD, 固有热耗散量子效率; ФF, 荧光量子效率; ФN, 非光化学淬灭量子效率; ФP, 光化学淬灭量子效率。

Fig. 3   A roadmap of the standardized processing and modeling of solar-induced chlorophyll fluorescence (SIF) and its emerging and potential applications in ecology. Some subplots are from Zeng et al. (2022a). ФD, constitutive heat dissipation quantum efficiency; ФF, fluorescence quantum efficiency; ФN, non-photochemical quantum efficiency; ФP, photochemical quantum efficiency; GPP, gross primary production; RTMs, radiative transfer models; PS, photosystem.


3.1 天空地一体化观测

随着SIF遥感观测平台的增加、传感器的多样化、地面观测网络的发展, 用于监测陆地生态系统的SIF时空数据越来越丰富。在时间尺度上, 地基SIF观测可以达到亚分钟尺度; 在空间尺度上, 无人机高光谱成像可以提供厘米(cm)尺度的SIF反演数据; 在空间范围上, 卫星可以提供全球尺度的SIF产品。因此, 跨平台进行天空地一体化SIF协同观测全球不同生态系统的植被光合作用尤为重要。

建立标准化的地面观测网络: 一方面可以定点、长时序、高频地获取各个生态系统的光谱和SIF数据, 协同涡度相关通量观测, 开展基于碳通量观测及地基/星载SIF与植被GPP之间耦合机制与模型研究。另一方面, 也可以为星载或机载数据提供校准和验证数据。目前, 全球主要有SpecNet、BioSpec、EuroSpec和ChinaSpec 4个光谱观测网络。其中ChinaSpec, 全称中国生态系统光谱观测研究网络, 是我国首个光谱观测网络, 于2017年开始建设, 截至2022年5月共建立了22个观测站点, 覆盖了农田、草地、森林、湿地、稀树草原、高寒草甸等生态系统(Li et al., 2020c; Liu et al., 2020b, 2022; Zhang et al., 2021a; Zhu et al., 2021; Huang et al., 2022; Shi et al., 2022)。ChinaSpec通过构建我国典型植被生态系统SIF和物候的自动监测平台, 将涡度相关通量塔、卫星、近地面植被遥感和模型综合集成起来, 有助于深入认识生态系统光合作用和植被物候对气候变化的响应和适应, 为国产碳卫星的应用提前开展相关技术研发, 也为我国主要植被生态系统碳循环机理研究、温室气体有效减排和国家宏观决策提供科技支撑。目前, 地面观测网络和近地面植被冠层SIF观测发展迅速, 然而, 不同SIF观测系统间的仪器配置、采集流程、观测方法和反演算法往往存在差异。因此需要进行标准化测量、统一校准协议、光谱质量控制、评估并考虑这些因素所造成的不确定性(Chang et al., 2021; 李朝晖等, 2021; Buman et al., 2022)。

推动机载和无人机SIF观测: 二者具有较多的优势。一是可以灵活调整高度和观测位置, 能够有效弥补地基观测的空间位置固定问题, 也能够弥合地面和卫星观测之间在尺度上的差距; 二是可以兼具高空间、高时间和高光谱分辨率, 有助于植物表型分析, 精准农业应用, 生物多样性调查, 空间异质性评估, 卫星研发的预演等(Mohammed et al., 2019; Zhang et al., 2022a)。然而, 目前机载和无人机SIF观测仍处于早期发展阶段, 一些技术难点需要去攻克。例如, 大气校正、系统载荷和集成、空间定位、飞行成本等。期待基于无人机的SIF系统更加方便、快捷、易用, 并研发出更轻便且高质量的超高光谱成像传感器。

卫星SIF技术的发展, 为在区域和全球尺度上监测植物光合作用提供了可靠的数据。然而, 卫星SIF遥感数据的空间分辨率低限制了其在精细尺度的应用。尽管结合MODIS等辅助数据采用机器学习、深度学习等方法获取空间连续且时空分辨率得到重构的SIF数据集, 但是这些重构SIF产品可能受到辅助数据集和机器学习方法等的不确定性影响, 并不一定能真正反映植物真实发射的SIF信号。未来, 专为SIF设计的卫星传感器FLEX的空间分辨率可达到300 m, 中国第二代碳卫星(TanSat-2)的空间分辨率也有望达到500 m, 将提供前所未有的空间分辨率的原始SIF数据(Coppo et al., 2017; 刘良云等, 2022)。此外, 因为SIF捕获植物受环境或者生物因素的影响往往是高度动态的, 而目前极轨对地观测的卫星SIF数据的时间分辨率低, 暂时不能提供类似地基观测的日变化数据(Xiao et al., 2021)。2019年5月搭载于国际空间站的OCO-3是目前在轨的可以提供SIF日变化的卫星传感器, 为大尺度监测生态系统的气孔导度、光合作用和蒸腾作用的日变化特征提供新的契机(Taylor et al., 2020; Xiao et al., 2021)。尽管OCO-3具备日变化的监测能力, 但它并不是对一个定点位置进行全天连续的观测。未来, 搭载在地球静止卫星上的地球静止碳循环观测站(GeoCarb)将在85° W的地球静止轨道上运行, 并将以5-10 km的空间分辨率在北美和南美上空观测SIF (Moore et al., 2018)。GeoCarb使用与OCO-2类似的O2和CO2通道, 基于OCO-2算法进行SIF反演。在使用密集扫描模式时GeoCarb的灵活扫描策略可以每天多次测量目标区域的SIF。地球静止卫星能够提供SIF的高频观测, 使得无云污染的SIF观测越来越多。但是不同传感器观测的SIF位于不同波段, 且有不同的数据质量。另外地球静止卫星有很大幅度的观测天顶角, 观测角度对SIF的影响不容忽视(Zhang et al., 2018d; Xiao et al., 2021)。

3.2 基于SIF的植物生理信息提取

植物生理学是植物学的一个分支学科, 研究植物的所有内部活动与植物中发生的生命相关的化学和物理过程, 包括植物光合作用、植物呼吸作用和植物水分生理等(Taiz et al., 2015)。植物生理信息, 例如PSII量子效率(ΦPSII)和ΦF等, 可以直接反映植物的物质代谢、能量转化和生长发育等的规律与机理。冠层SIF是一个特殊的光学遥感信号, 它既包含着植物的生理信息也包含着植物的结构信息(Guanter et al., 2014)。近年来, SIF的机理研究的一个热点方向是通过拆分冠层SIF的生理与非生理信息, 以提取准确的植物生理信息, 进而可以避免不恰当使用冠层SIF而对潜在生态过程产生偏颇的理解。

如公式(2)所示, 冠层SIF可以拆分为生理信息(ΦF)和非生理信息(PAR、fPAR和fesc)。如何定量描述fesc对于SIF的生理信息与非生理信息的拆分至关重要。目前, FRSIF的逃逸概率的定量研究相对成熟。Yang和van der Tol (2018)通过研究入射光和发射的FRSIF的辐射传输过程, 推导出FRSIF的冠层散射(即FRSIF的逃逸概率)与冠层顶部反射率之间的关系。Zeng等(2019)基于光谱不变理论, 提出了基于反射率的FRSIF逃逸概率估算的简单方法。基于此, 地基和卫星SIF观测方向性及角度校正取得系列进展, 从而最小化SIF的方向性导致的影响, 进而提高了估算GPP的能力(Zhang et al., 2020c; Hao et al., 2021a, 2021b, 2022)。此外, Yang等(2020)提出了一个可以用于区分FRSIF的生理与非生理信息的反射率指数FCVI, 即近红外反射率与可见光反射率之间的差。Yang等(2021)基于FCVI获取生理信息探究SIF-GPP关系的物理和生理基础, 评估冠层尺度下, PAR、fPAR和APAR对SIF-GPP的贡献, 同时使用主动荧光观测研究叶片尺度的能量分配, 以揭示光化学水平下荧光和光合作用之间的关系。Zeng等(2022a)提出了结合FRSIF和植被近红外辐亮度(NIRvR)来提取ΦF的简单方法, 并将该方法应用于3个案例研究。其中光适应案例表明, ΦF可以很好地展示考茨基效应; 热胁迫实验案例表明, 欧洲油菜(Brassica napus)、大麦(Hordeum vulgare)和小麦的ΦF发生下降, 而处于生长期的玉米的ΦF则小幅上升; 对于水分胁迫案例, 甜菜(Beta vulgaris)的ΦF先升高, 下午略有下降。Wu等(2022b)基于NIRv × PAR (NIRvP)提取玉米和杂草的冠层ΦF, 发现ΦF先激增后缓慢下降, 且主导着FRSIF对除草剂的响应。ΦF在不同胁迫条件下的变化仍有待更多的研究。

除了以上两种基于植被反射率指数的方法, FRSIF的生理与非生理信息的拆分方法, 还可以通过结合SCOPE模型(van der Tol et al., 2009)模拟进行拆分。Liu等(2019c)通过随机森林训练SCOPE模拟数据集, 将冠层尺度的FRSIF降尺度到光系统尺度的FRSIFps, 表明随机森林方法对于估计SIF逃逸概率是有效的。Biriukova等(2021)通过结合SCOPE模型和奇异光谱分析(SSA)的方法, 解耦了冠层FRSIF的快速变化组分(生理信息)和缓慢变化组分(非生理信息), 表明基于SSA的方法是一种很有前景的方法, 可以从地基SIF传感器获取的数据中提取SIF的生理信息。

然而, 以上的大部分方法并不适用于RSIF的生理与非生理信息的推导, 主要是因为RSIF从光系统尺度激发后到逃逸出冠层前, 除了经历散射还会被叶绿素重吸收, 辐射传输过程比FRSIF更复杂。目前RSIF的生理与非生理信息拆分的进展较少。Liu等(2019c)通过随机森林训练SCOPE模拟数据集, 将冠层尺度的RSIF降尺度到光系统尺度的RSIF, 该方法可以避免光谱不变理论在RSIF的限制。然而, 该方法高度依赖于一维模型SCOPE的模拟数据, 对于冠层结构复杂的森林或许效果不好。此外, Liu等(2020b)基于光谱不变理论, 利用简单近似的方法, 提出基于反射率指数(Redv)将冠层尺度的RSIF降尺度到光系统尺度的RSIF, 该方法可以有效改善基于RSIF的GPP估算, 然而, 光谱不变理论不适用RSIF, 因为其缺乏物理机理的解释, 仅仅是经验性方法。因此, RSIF的生理信息提取依然是有待解决的难题。

光系统反应中心包括光系统I (PSI)和PSII, 两个光系统反应中心都可以激发荧光, 但PSII的荧光通常在总激发SIF中占主导地位, 尤其是在红波段范围, 在响应光化学和非光化学过程时, RSIF的量子产量表现出较大的变化, 包含更多植物光合作用信息(Porcar-Castell et al., 2014, 2021)。然而, PSI和PSII的能量分配很少被测量, 通常假设为对半分配。目前研究表明, PSI对荧光贡献相对稳定(Peterson et al., 2014)。因此, 定量PSII的SIF, 特别是PSII的RSIF更具科学价值。利用ΦF来估算ΦPSII在PAM测量可以实现。然而, 通过SIF测量得到ΦPSⅡ还处于研究阶段。最近, Han等(2022a)通过光响应机理模型(MLR)结合理论模型利用荧光产率推算出PSII的SIF, 并证明了在不同环境条件和不同植物功能类型下, MLR-SIF均能够准确表征光合作用, 且相比传统的FvCB模型, MLR-SIF模型通过充分利用观测SIF所携带的生理信息, 可降低估算的光合作用对参数不确定性的敏感性, 进一步证实了MLR-SIF模型的可靠性。未来研究可以利用多尺度观测冠层SIF推算出PSII的SIF, 从而更准确地提取植物生理信息。

3.3 SIF遥感的生态学应用展望

SIF遥感已经提供了全球尺度监测陆地生态系统碳、水循环相关的生态系统功能和过程的新视角。随着天空地一体化观测技术的完善以及SIF机理研究的推进, SIF遥感在生态学领域也出现了一些有前景的应用(图3)。

3.3.1 陆地生态系统碳水循环的日变化监测

现有卫星SIF数据受限于时间分辨率和过境时间, 只能监测一天中的某个瞬时。例如GOME-2的9:30, TROPOMI的13:30等。然而, 气温、光照、大气水分、土壤湿度和叶水势都会在一天内发生变化, 进而导致气孔导度、光合作用和蒸腾作用在一天内都发生变化。最近搭载在国际空间站的OCO-3以及未来计划发射的GeoCarb将有望提供基于SIF的植物光合作用和蒸腾作用的昼夜节律(Xiao et al., 2021)。此外, 这些地球静止卫星、极轨卫星和地面观测网络协同使用, 将极大地促进我们对陆地生态系统碳水循环的认识。

3.3.2 生物多样性监测

生物多样性是生物(动物、植物、微生物)与环境形成的生态复合体以及与此相关的各种生态过程的总和, 包括生态系统、物种和基因3个层次(马克平, 1993)。生物多样性是生态系统维持稳定的一项重要指标。植物功能多样性是生物多样性概念的基本组成单位, 表征群落内植物个体间功能性状的变异性, 通常群落的功能多样性越高, 则物种多样性也越高(Dı́az & Cabido, 2001)。准确量化植被功能多样性的空间分布是遥感反演植物物种多样性的重要途径(Cavender-Bares et al., 2022)。近年来, 多源遥感数据(多光谱、高光谱、激光雷达和热红外等)为植物物种多样性的研究与保护工作提供了数据支撑(郭庆华等, 2020)。

SIF与叶片叶绿素含量、叶片氮含量等植物功能性状联系密切(详见2.1部分)。因此SIF有望成为跨生态系统和景观尺度表征植物功能多样性的重要的新变量。可以利用SIF反演群落内功能多样性的时空变化, 进而实现植物多样性的动态监测。目前, 已有研究证明将机载高空间分辨率SIF数据与信息论方法相结合可以准确反演植物物种和功能多样性的空间分布(Pacheco-Labrador et al., 2019; Tagliabue et al., 2020)。未来FLEX高空间分辨率的卫星和机载SIF数据的出现, 结合激光雷达、热红外和微波植被光学厚度等数据, 将会进一步促进我们在跨生态系统和景观尺度准确反演物种多样性和功能多样性的空间格局和时间动态。与此同时, 针对热带雨林、高寒山地等野外观测较为困难的生态系统, SIF遥感可以为物种多样性保护策略提供准确可靠的数据和技术支撑。

3.3.3 空间生态学

空间生态学是研究空间在种群和种间动态中的作用的科学(Legendre & Fortin, 1989)。最近几十年, 受益于地理信息系统和遥感图像技术的发展, 空间趋势分析逐渐被应用于景观尺度上的干扰(例如火灾、虫害和极端天气)和入侵物种等研究(Rietkerk & van de Koppel, 2008)。苛养木杆菌(Xylella fastidiosa)是可以感染超过550种植物的病原体, 入侵到一些欧洲国家后, 对橄榄(Canarium album)和欧洲李(Prunus domestica)造成毁灭性伤害, 带来严重经济和环境后果。Zarco-Tejada等(2021)使用机载成像高光谱获取超过100万株受感染和健康的树木, 研究表明通过SIF等遥感参数可以监测到病害对橄榄林胁迫状况的空间分布及早期预警。Tang等(2022)使用GOSIF产品分析了2001-2016年全球喀斯特生态系统植被生产力的空间模式和变化趋势, 发现全球大部分喀斯特地区在变绿, 中国变绿空间区域占比78%, 对全球喀斯特生态系统植被生产力恢复起到主导作用。2019到2020年初, 澳大利亚东南地区遭遇了多年干旱和创纪录的高温, 并且发生了特大森林火灾, Qin等(2022)使用星载SIF和植被指数数据、热红外和微波遥感影像评估该森林地区的植被结构和生物量从损失到恢复的变化幅度和速度。未来, 结合植物功能多样性监测, SIF遥感有望更好地服务于空间生态学研究。

3.3.4 光合作用立体监测

植物光合作用监测可以通过红外气体分析仪(例如LI-6400或者LI-6800等)测量叶片或者整个植株的光合作用, 也可以使用涡度协方差(EC)方法测量生态系统尺度的光合作用(Baldocchi, 2003)。然而, 这些方法缺乏空间信息。随着成像SIF遥感的出现, 可结合EC通量测量和LI-6800测量, 揭示生态系统EC测量足迹范围内光合作用的变异性, 进而促进研究微环境、林下和垂直冠层结构的影响, 及生态系统内生物多样性与功能多样性之间的相互作用(Porcar-Castell et al., 2021)。此外, 结合LiDAR点云数据, 模拟植被冠层PAR的三维分布, 耦合叶片和冠层辐射传输模型, 可以建立植被冠层SIF三维分布, 从而获取植物的三维光合作用速率(Liu et al., 2019a)。随着三维植被荧光辐射传输模型, 例如DART (Gastellu-Etchegorry et al., 2017), FluorFLIGHT (Hernández-Clemente et al., 2017), FluorWPS (Zhao et al., 2022b), FluorRTER (Zeng et al., 2020)等模型的不断发展, 未来通过SIF成像、三维SIF辐射传输模型与LiDAR、EC通量等技术相结合, 植被光合作用监测有望实现从平面到立体的转变。

3.3.5 植物生理表型

植物形态性状(株高、叶面积、冠幅、胸径等)的时空变化已被广泛研究, 并用于表征植物受胁迫后的响应(Su et al., 2019; Jin et al., 2021)。然而, 这些性状不足以捕获植物生理的快速变化。目前, 基于SIF的植物生理表型监测处于早期阶段, 且尚未实现与形态性状表型的同步观测。新兴的SIF成像系统逐渐被应用到精准农业和果树的病虫害监测(Pinto et al., 2016; Zarco-Tejada et al., 2021)。随着SIF的植物生理信息提取方法和技术的推进, 植物生理表型将更好地服务于精准农林业管理、胁迫早期可视化预警等。

4 总结

本文综述了SIF遥感的基本原理、观测技术及反演算法, 调研了SIF遥感在陆地生态系统功能和过程监测中的应用现状, 并对天空地一体化SIF观测、基于SIF的生理信息提取及SIF遥感的生态学应用3个方面进行了深入讨论和展望。基于上述综述和展望内容, 我们总结了目前SIF遥感面临的问题与挑战:

(1)如何更好地观测SIF? 需要建立覆盖更多植被类型的标准化地面SIF观测网络。然而, 目前不同SIF观测系统间的仪器配置、采集流程、观测方法和反演算法往往存在差异。因此需要进行标准化测量、统一校准协议、光谱质量数据控制, 评估这些因素所造成的不确定性。同时, 机载和无人机SIF观测仍处于早期发展阶段, 一些技术难点需要去攻克。例如, 大气校正、载荷集成、空间定位、飞行成本等。因此需要研发更加方便、快捷、易用的无人机SIF系统, 及更轻便且高质量的成像超高光谱传感器。目前, 低时空分辨率限制了卫星SIF数据在精细尺度的应用, 未来, FLEX、TanSat-2和GeoCarb等新卫星将提高卫星SIF数据的时空分辨率。然而不同传感器观测的SIF波段和数据质量有一定差异。另外地球静止卫星观测角度和太阳高度角对SIF的影响不容忽视。因此, 需要更多的近地SIF观测和模型模拟工作来校准、验证和预演星载SIF数据。

(2)如何准确地解译SIF数据? 遥感获取的冠层SIF数据包含着生理与非生理信息, 如何拆分冠层SIF数据的生理与非生理信息, 以提取准确的植物生理信息, 进而避免不恰当使用冠层SIF而对潜在生态过程产生偏颇的理解, 尚需更深入的研究。目前, FRSIF的生理与非生理信息的解译已经较为成熟, 然而, RSIF的生理信息提取依然是有待解决的难题。此外, PSI和PSII的能量分配及激发的SIF比例也是有待深入探讨的问题。

(3)如何更广泛地应用SIF? SIF遥感已经提供了全球尺度监测陆地生态系统碳、水循环相关的生态系统功能和过程的新视角。然而, 伴随着天空地一体化观测的发展, 以及SIF机理和模型研究的进展, SIF遥感在生态学领域的应用将更广泛, 有更多的应用领域等待研究者去探索。例如, 目前SIF遥感多着重于陆地生态系统的研究, 未来可关注在海洋藻类、海陆交界的潮间带植被等领域的应用。在胁迫监测上, 目前SIF着重于非生物胁迫的研究, 未来可以拓展在生物胁迫的研究应用(入侵植物胁迫等)。

致谢

感谢南京大学国际地球系统科学研究所曹若臣和赖耕科在文稿撰写工作中给予的帮助。

参考文献

A, Malenovský Z, Olejníčková J, Gallé A, Rascher U, Mohammed G. (2015).

Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress

Remote Sensing of Environment, 168, 420-436.

DOI:10.1016/j.rse.2015.07.022      URL     [本文引用: 3]

Alemohammad SH, Fang B, Konings AG, Aires F, Green JK, Kolassa J, Miralles D, Prigent C, Gentine P. (2017).

Water, energy, and carbon with Artificial Neural Networks (WECANN): a statistically-based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence

Biogeosciences, 14, 4101-4124.

DOI:10.5194/bg-14-4101-2017      PMID:29290755      [本文引用: 1]

A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed Solar-Induced Fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H and GPP from 2007 to 2015 at 1° × 1° spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analysing WECANN retrievals across three extreme drought and heatwave events demonstrates the capability of the retrievals in capturing the extent of these events. Uncertainty estimates of the retrievals are analysed and the inter-annual variability in average global and regional fluxes show the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.

Alonso L, Gomez-Chova L, Vila-Frances J, Amoros-Lopez J, Guanter L, Calpe J, Moreno J. (2008).

Improved Fraunhofer line discrimination method for vegetation fluorescence quantification

IEEE Geoscience and Remote Sensing Letters, 5, 620-624.

DOI:10.1109/LGRS.2008.2001180      URL     [本文引用: 2]

Alonso L, Gómez-Chova L, Vila-Francés J, Amorós-López J, Guanter L, Calpe J, Moreno J. (2007).

Sensitivity analysis of the Fraunhofer line discrimination method for the measurement of chlorophyll fluorescence using a field spectroradiometer

//IEEE. 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Barcelona, Spain.

[本文引用: 1]

Anav A, Friedlingstein P, Beer C, Ciais P, Harper A, Jones C, Murray-Tortarolo G, Papale D, Parazoo NC, Peylin P, Piao S, Sitch S, Viovy N, Wiltshire A, Zhao M. (2015).

Spatiotemporal patterns of terrestrial gross primary production: a review

Reviews of Geophysics, 53, 785-818.

DOI:10.1002/2015RG000483      URL     [本文引用: 1]

Atherton J, MacArthur A, Hakala T, Maseyk K, Robinson I, Liu W, Honkavaara E, Porcar-Castell A, IEEE. (2018).

Drone measurements of solar-induced chlorophyll fluorescence acquired with a low-weight DFOV spectrometer system

//IEEE. 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Valencia, Spain.

[本文引用: 1]

Baker NR. (2008).

Chlorophyll fluorescence: a probe of photosynthesis in vivo

Annual Review of Plant Biology, 5, 89-113.

[本文引用: 2]

Baldocchi DD. (2003).

Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future

Global Change Biology, 9, 479-492.

DOI:10.1046/j.1365-2486.2003.00629.x      URL     [本文引用: 1]

Belwalkar A, Poblete T, Longmire A, Hornero A, Hernandez-Clemente R, Zarco-Tejada PJ. (2022).

Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral imagers flown in tandem: modelling and validation in the context of plant phenotyping

Remote Sensing of Environment, 273, 112986. DOI: 10.1016/j.rse.2022.112986.

DOI:10.1016/j.rse.2022.112986      [本文引用: 2]

Bendig J, Malenovský Z, Gautam D, Lucieer A. (2020).

Solar-induced chlorophyll fluorescence measured from an unmanned aircraft system: sensor etaloning and platform motion correction

IEEE Transactions on Geoscience and Remote Sensing, 58, 3437-3444.

DOI:10.1109/TGRS.2019.2956194      URL     [本文引用: 2]

Berger K, Verrelst J, Féret JB, Wang ZH, Wocher M, Strathmann M, Danner M, Mauser W, Hank T. (2020).

Crop nitrogen monitoring: recent progress and principal developments in the context of imaging spectroscopy missions

Remote Sensing of Environment, 242, 111758. DOI: 10.1016/j.rse.2020.111758.

DOI:10.1016/j.rse.2020.111758      [本文引用: 1]

Berry J, Bjorkman O. (1980).

Photosynthetic response and adaptation to temperature in higher plants

Annual Review of Plant Physiology, 31, 491-543.

DOI:10.1146/annurev.pp.31.060180.002423      URL     [本文引用: 1]

Berry JA, Beerling DJ, Franks PJ. (2010).

Stomata: key players in the earth system, past and present

Current Opinion in Plant Biology, 13, 233-240.

PMID:20552724      [本文引用: 1]

Stomata have played a key role in the Earth System for at least 400 million years. By enabling plants to control the rate of evaporation from their photosynthetic organs, stomata helped to set in motion non-linear processes that led to an acceleration of the hydrologic cycle over the continents and an expansion of climate zones favorable for plant life. Global scale modeling of land-atmosphere interactions provides a way to explore parallels between the influence of vegetation on climate over time, and the influence of spatial and temporal variation in the activities of vegetation in the current Earth System on climate and weather. We use the logic in models that simulate land-atmosphere interactions to illustrate the central role played by stomatal conductance in the Earth System. In the modeling context, most of the activities of plants and their manifold interactions with their genomes and with the environment are communicated to the atmosphere through a single property: the aperture or conductance of their stomata. We tend to think of the controls on vegetation responses in the real world as being distributed among factors such as seasonal patterns of growth, the changing availability of soil water, or changes in light intensity and leaf water potential over a day. However, the impact of these controls on crucial exchanges of energy and water vapor with the atmosphere are also largely mediated by stomata. The decisions 'made by' stomata emerge as an important and inadequately understood component of these models. At the present time we lack effective ways to link advances in the biology of stomata to this decision making process. While not unusual, this failure to connect between disciplines, introduces uncertainty in modeling studies being used to predict weather and climate change and ultimately to inform policy decisions. This problem is also an opportunity.

Bertani G, Wagner F, Anderson L, Aragão L. (2017).

Chlorophyll fluorescence data reveals climate-related photosynthesis seasonality in Amazonian forests

Remote Sensing, 9, 1275. DOI: 10.3390/rs9121275.

DOI:10.3390/rs9121275      [本文引用: 1]

Biriukova K, Pacheco-Labrador J, Migliavacca M, Mahecha MD, Gonzalez-Cascon R, Martín MP, Rossini M. (2021).

Performance of singular spectrum analysis in separating seasonal and fast physiological dynamics of solar-induced chlorophyll fluorescence and PRI optical signals

Journal of Geophysical Research: Biogeosciences, 126, e2020JG006158. DOI: 10.1029/2020JG006158.

DOI:10.1029/2020JG006158      [本文引用: 1]

Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW. (2005).

Regional vegetation die-off in response to global-change-type drought

Proceedings of the National Academy of Sciences of the United States of America, 102, 15144-15148.

PMID:16217022      [本文引用: 1]

Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions.

Buman B, Hueni A, Colombo R, Cogliati S, Celesti M, Julitta T, Burkart A, Siegmann B, Rascher U, Drusch M, Damm A. (2022).

Towards consistent assessments of in situ radiometric measurements for the validation of fluorescence satellite missions

Remote Sensing of Environment, 274, 112984. DOI: 10.1016/j.rse.2022.112984.

DOI:10.1016/j.rse.2022.112984      [本文引用: 1]

Burkart A, Schickling A, Mateo MPC, Wrobel TJ, Rossini M, Cogliati S, Julitta T, Rascher U. (2015).

A method for uncertainty assessment of passive sun-induced chlorophyll fluorescence retrieval using an infrared reference light

IEEE Sensors Journal, 15, 4603-4611.

DOI:10.1109/JSEN.2015.2422894      URL     [本文引用: 1]

Camino C, González-Dugo V, Hernández P, Sillero JC, Zarco-Tejada PJ. (2018).

Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture

International Journal of Applied Earth Observation and Geoinformation, 70, 105-117.

DOI:10.1016/j.jag.2018.04.013      URL     [本文引用: 1]

Camino C, Gonzalez-Dugo V, Hernandez P, Zarco-Tejada PJ. (2019).

Radiative transfer Vcmax estimation from hyperspectral imagery and SIF retrievals to assess photosynthetic performance in rainfed and irrigated plant phenotyping trials

Remote Sensing of Environment, 231, 111186. DOI: 10.1016/j.rse.2019.05.005.

DOI:10.1016/j.rse.2019.05.005      [本文引用: 1]

Cavender-Bares J, Schneider FD, Santos MJ, Armstrong A, Carnaval A, Dahlin KM, Fatoyinbo L, Hurtt GC, Schimel D, Townsend PA, Ustin SL, Wang ZH, Wilson AM. (2022).

Integrating remote sensing with ecology and evolution to advance biodiversity conservation

Nature Ecology & Evolution, 6, 506-519.

[本文引用: 1]

Celesti M, van der Tol C, Cogliati S, Panigada C, Yang PQ, Pinto F, Rascher U, Miglietta F, Colombo R, Rossini M. (2018).

Exploring the physiological information of Sun-induced chlorophyll fluorescence through radiative transfer model inversion

Remote Sensing of Environment, 215, 97-108.

DOI:10.1016/j.rse.2018.05.013      URL     [本文引用: 1]

Chambers JQ, Asner GP, Morton DC, Anderson LO, Saatchi SS, Espírito-Santo FD, Palace M, Souza Jr C. (2007).

Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests

Trends in Ecology & Evolution, 22, 414-423.

DOI:10.1016/j.tree.2007.05.001      URL     [本文引用: 1]

Chang CY, Wen JM, Han JM, Kira O, LeVonne J, Melkonian J, Riha SJ, Skovira J, Ng S, Gu LH, Wood JD, Näthe P, Sun Y. (2021).

Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF): canopy structure, plant physiology, instrument configuration and retrieval methods

Remote Sensing of Environment, 265, 112672. DOI: 10.1016/j.rse.2021.112672.

DOI:10.1016/j.rse.2021.112672      [本文引用: 1]

Chang CY, Zhou RQ, Kira O, Marri S, Skovira J, Gu LH, Sun Y. (2020).

An Unmanned Aerial System (UAS) for concurrent measurements of solar-induced chlorophyll fluorescence and hyperspectral reflectance toward improving crop monitoring

Agricultural and Forest Meteorology, 294, 108145. DOI: 10.1016/j.agrformet.2020.108145.

DOI:10.1016/j.agrformet.2020.108145      [本文引用: 2]

Chapin F, Matson P, Mooney H. (2002). Principles of Terrestrial Ecosystem Ecology. 2nd ed. Springer, New York.

[本文引用: 1]

Chen JD, Liu XJ, Du SS, Ma Y, Liu LY. (2021).

Effects of drought on the relationship between photosynthesis and chlorophyll fluorescence for maize

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 11148-11161.

DOI:10.1109/JSTARS.2021.3123111      URL     [本文引用: 2]

Cogliati S, Rossini M, Julitta T, Meroni M, Schickling A, Burkart A, Pinto F, Rascher U, Colombo R. (2015a).

Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems

Remote Sensing of Environment, 164, 270-281.

DOI:10.1016/j.rse.2015.03.027      URL     [本文引用: 1]

Cogliati S, Verhoef W, Kraft S, Sabater N, Alonso L, Vicent J, Moreno J, Drusch M, Colombo R. (2015b).

Retrieval of sun-induced fluorescence using advanced spectral fitting methods

Remote Sensing of Environment, 169, 344-357.

DOI:10.1016/j.rse.2015.08.022      URL     [本文引用: 2]

Colombo R, Celesti M, Bianchi RM, Campbell PKE, Cogliati S, Cook BD, Corp LA, Damm A, Domec JC, Guanter L, Julitta T, Middleton EM, Noormets A, Panigada C, Pinto F, et al. (2018).

Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest

Global Change Biology, 24, 2980-2996.

DOI:10.1111/gcb.14097      PMID:29460467      [本文引用: 1]

Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic conditions from remote sensing of SIF.© 2018 John Wiley & Sons Ltd.

Coppo P, Taiti A, Pettinato L, Francois M, Taccola M, Drusch M. (2017).

Fluorescence imaging spectrometer (FLORIS) for ESA FLEX mission

Remote Sensing, 9, 649. DOI: 10.3390/rs9070649.

DOI:10.3390/rs9070649      [本文引用: 1]

Corp L, Middleton E, Daughtry C, Campbell P. (2006).

Solar induced fluorescence and reflectance sensing techniques for monitoring nitrogen utilization in corn

//IEEE. 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, Denver, USA.2267-2270.

[本文引用: 1]

Croft H, Chen JM, Wang R, Mo G, Luo S, Luo X, He L, Gonsamo A, Arabian J, Zhang Y, Simic-Milas A, Noland TL, He Y, Homolová L, Malenovský Z, et al. (2020).

The global distribution of leaf chlorophyll content

Remote Sensing of Environment, 236, 111479. DOI: 10.1016/j.rse.2019.111479.

DOI:10.1016/j.rse.2019.111479      [本文引用: 1]

Culpepper AS, York AC. (1999).

Weed management in glufosinate-resistant corn (Zea mays)

Weed Technology, 13, 324-333.

DOI:10.1017/S0890037X00041816      URL     [本文引用: 1]

Damm A, Cogliati S, Colombo R, Fritsche L, Genangeli A, Genesio L, Hanus J, Peressotti A, Rademske P, Rascher U, Schuettemeyer D, Siegmann B, Sturm J, Miglietta F. (2022).

Response times of remote sensing measured sun-induced chlorophyll fluorescence, surface temperature and vegetation indices to evolving soil water limitation in a crop canopy

Remote Sensing of Environment, 273, 112957. DOI: 10.1016/j.rse.2022.112957.

DOI:10.1016/j.rse.2022.112957      [本文引用: 1]

Damm A, Elber J, Erler A, Gioli B, Hamdi K, Hutjes R, Kosvancova M, Meroni M, Miglietta F, Moersch A, Moreno J, Schickling A, Sonnenschein R, Udelhoven T, van der Linden S, et al. (2010).

Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP)

Global Change Biology, 16, 171-186.

DOI:10.1111/j.1365-2486.2009.01908.x      URL     [本文引用: 1]

Damm A, Guanter L, Laurent VCE, Schaepman ME, Schickling A, Rascher U. (2014).

FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data

Remote Sensing of Environment, 147, 256-266.

DOI:10.1016/j.rse.2014.03.009      URL     [本文引用: 1]

Damm A, Guanter L, Paul-Limoges E, van der Tol C, Hueni A, Buchmann N, Eugster W, Ammann C, Schaepman ME. (2015).

Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: an assessment based on observational and modeling approaches

Remote Sensing of Environment, 166, 91-105.

DOI:10.1016/j.rse.2015.06.004      URL     [本文引用: 2]

Damm A, Haghighi E, Paul-Limoges E, van der Tol C. (2021).

On the seasonal relation of sun-induced chlorophyll fluorescence and transpiration in a temperate mixed forest

Agricultural and Forest Meteorology, 304-305, 108386. DOI: 10.1016/j.agrformet.2021.108386.

DOI:10.1016/j.agrformet.2021.108386      [本文引用: 1]

Damm A, Roethlin S, Fritsche L. (2018).

Towards advanced retrievals of plant transpiration using sun-induced chlorophyll fluorescence: first considerations

//IEEE. 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Valencia, Spain. 5983-5986.

[本文引用: 1]

Dannenberg M, Wang X, Yan D, Smith W. (2020).

Phenological characteristics of global ecosystems based on optical, fluorescence, and microwave remote sensing

Remote Sensing, 12, 671. DOI: 10.3390/rs12040671.

DOI:10.3390/rs12040671      [本文引用: 1]

Daumard F, Champagne S, Fournier A, Goulas Y, Ounis A, Hanocq JF, Moya I. (2010).

A field platform for continuous measurement of canopy fluorescence

IEEE Transactions on Geoscience and Remote Sensing, 48, 3358-3368.

DOI:10.1109/TGRS.2010.2046420      URL     [本文引用: 2]

Daumard F, Goulas Y, Champagne S, Fournier A, Ounis A, Olioso A, Moya I. (2012).

Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth of a sorghum field

IEEE Transactions on Geoscience and Remote Sensing, 50, 4292-4300.

DOI:10.1109/TGRS.2012.2193131      URL     [本文引用: 1]

Dı́az S, Cabido M. (2001).

Vive la différence: plant functional diversity matters to ecosystem processes

Trends in Ecology & Evolution, 16, 646-655.

DOI:10.1016/S0169-5347(01)02283-2      URL     [本文引用: 1]

Dobrowski SZ, Pushnik JC, Zarco-Tejada PJ, Ustin SL. (2005).

Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale

Remote Sensing of Environment, 97, 403-414.

DOI:10.1016/j.rse.2005.05.006      URL     [本文引用: 1]

Doughty R, Köhler P, Frankenberg C, Magney TS, Xiao XM, Qin YW, Wu XC, Moore III B. (2019).

TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest

Proceedings of the National Academy of Sciences of the United States of America, 116, 22393-22398.

DOI:10.1073/pnas.1908157116      PMID:31611384      [本文引用: 3]

Photosynthesis of the Amazon rainforest plays an important role in the regional and global carbon cycles, but, despite considerable in situ and space-based observations, it has been intensely debated whether there is a dry-season increase in greenness and photosynthesis of the moist tropical Amazonian forests. Solar-induced chlorophyll fluorescence (SIF), which is emitted by chlorophyll, has a strong positive linear relationship with photosynthesis at the canopy scale. Recent advancements have allowed us to observe SIF globally with Earth observation satellites. Here we show that forest SIF did not decrease in the early dry season and increased substantially in the late dry season and early part of wet season, using SIF data from the Tropospheric Monitoring Instrument (TROPOMI), which has unprecedented spatial resolution and near-daily global coverage. Using in situ CO eddy flux data, we also show that cloud cover rarely affects photosynthesis at TROPOMI's midday overpass, a time when the forest canopy is most often light-saturated. The observed dry-season increases of forest SIF are not strongly affected by sun-sensor geometry, which was attributed as creating a pseudo dry-season green-up in the surface reflectance data. Our results provide strong evidence that greenness, SIF, and photosynthesis of the tropical Amazonian forest increase during the dry season.

Drusch M, Moreno J, del Bello U, Franco R, Goulas Y, Huth A, Kraft S, Middleton EM, Miglietta F, Mohammed G, Nedbal L, Rascher U, Schüttemeyer D, Verhoef W. (2017).

The FLuorescence EXplorer mission concept—ESA’s earth explorer 8

IEEE Transactions on Geoscience and Remote Sensing, 55, 1273-1284.

DOI:10.1109/TGRS.2016.2621820      URL     [本文引用: 1]

Du SS, Liu LY, Liu XJ, Guo J, Hu JC, Wang SQ, Zhang YG. (2019).

SIFSpec: measuring solar-induced chlorophyll fluorescence observations for remote sensing of photosynthesis

Sensors, 19, 3009. DOI: 10.3390/s19133009.

DOI:10.3390/s19133009      [本文引用: 2]

Du SS, Liu LY, Liu XJ, Zhang X, Zhang XY, Bi YM, Zhang LC. (2018).

Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite

Science Bulletin, 63, 1502-1512.

DOI:10.1016/j.scib.2018.10.003      URL     [本文引用: 3]

Duveiller G, Filipponi F, Walther S, Köhler P, Frankenberg C, Guanter L, Cescatti A. (2020).

A spatially downscaled Sun-induced fluorescence global product for enhanced monitoring of vegetation productivity

Earth System Science Data, 12, 1101-1116.

DOI:10.5194/essd-12-1101-2020      URL     [本文引用: 2]

Evans JR. (1989).

Photosynthesis and nitrogen relationships in leaves of C3 plants

Oecologia, 78, 9-19.

DOI:10.1007/BF00377192      PMID:28311896      [本文引用: 1]

The photosynthetic capacity of leaves is related to the nitrogen content primarily bacause the proteins of the Calvin cycle and thylakoids represent the majority of leaf nitrogen. To a first approximation, thylakoid nitrogen is proportional to the chlorophyll content (50 mol thylakoid N mol Chl). Within species there are strong linear relationships between nitrogen and both RuBP carboxylase and chlorophyll. With increasing nitrogen per unit leaf area, the proportion of total leaf nitrogen in the thylakoids remains the same while the proportion in soluble protein increases. In many species, growth under lower irradiance greatly increases the partitioning of nitrogen into chlorophyll and the thylakoids, while the electron transport capacity per unit of chlorophyll declines. If growth irradiance influences the relationship between photosynthetic capacity and nitrogen content, predicting nitrogen distribution between leaves in a canopy becomes more complicated. When both photosynthetic capacity and leaf nitrogen content are expressed on the basis of leaf area, considerable variation in the photosynthetic capacity for a given leaf nitrogen content is found between species. The variation reflects different strategies of nitrogen partitioning, the electron transport capacity per unit of chlorophyll and the specific activity of RuBP carboxylase. Survival in certain environments clearly does not require maximising photosynthetic capacity for a given leaf nitrogen content. Species that flourish in the shade partition relatively more nitrogen into the thylakoids, although this is associated with lower photosynthetic capacity per unit of nitrogen.

Field CB, Randerson JT, Malmström CM. (1995).

Global net primary production: combining ecology and remote sensing

Remote Sensing of Environment, 51, 74-88.

DOI:10.1016/0034-4257(94)00066-V      URL     [本文引用: 1]

Fisher JB, Melton F, Middleton E, Hain C, Anderson MC, Allen R, McCabe M, Hook S, Baldocchi D, Townsend P, Kilic A, Tu K, Miralles DD, Perret J, Lagouarde J, et al. (2017).

The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources

Water Resources Research, 53, 2618-2626.

DOI:10.1002/2016WR020175      URL     [本文引用: 1]

Fournier A, Daumard F, Champagne S, Ounis A, Goulas Y, Moya I. (2012).

Effect of canopy structure on sun-induced chlorophyll fluorescence

ISPRS Journal of Photogrammetry and Remote Sensing, 68, 112-120.

DOI:10.1016/j.isprsjprs.2012.01.003      URL     [本文引用: 1]

Frankenberg C, Fisher J, Worden J, Badgley G, Saatchi S, Lee J, Toon G, Butz A, Jung M, Kuze A, Yokota T. (2011).

New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity

Geophysical Research Letters, 38. L17706. DOI: 10.1029/2011GL048738.

DOI:10.1029/2011GL048738      [本文引用: 6]

Frankenberg C, Köhler P, Magney TS, Geier S, Lawson P, Schwochert M, McDuffie J, Drewry DT, Pavlick R, Kuhnert A. (2018).

The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red fluorescence from aircraft

Remote Sensing of Environment, 217, 523-536.

DOI:10.1016/j.rse.2018.08.032      URL     [本文引用: 2]

Freedman A, Cavender-Bares J, Kebabian P, Bhaskar R, Scott H, Bazzaz F. (2002).

Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate

Photosynthetica, 40, 127-132.

DOI:10.1023/A:1020131332107      URL     [本文引用: 1]

Fu P, Meacham-Hensold K, Siebers MH, Bernacchi CJ. (2020).

The inverse relationship between solar-induced fluorescence yield and photosynthetic capacity: benefits for field phenotyping

Journal of Experimental Botany, 72, 1295-1306.

DOI:10.1093/jxb/eraa537      URL     [本文引用: 1]

Garzonio R, Colombo R, Cogliati S, Mauro BD. (2017).

Surface reflectance and Sun-induced fluorescence spectroscopy measurements using a small hyperspectral UAS.

Remote Sensing, 9, 472. DOI: 10.3390/rs9050472.

DOI:10.3390/rs9050472      [本文引用: 2]

Gastellu-Etchegorry JP, Lauret N, Yin TG, Landier L, Kallel A, Malenovský Z, Bitar AA, Aval J, Benhmida S, Qi JB, Medjdoub G, Guilleux J, Chavanon E, Cook B, Morton D, et al. (2017).

DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2640-2649.

DOI:10.1109/JSTARS.2017.2685528      URL     [本文引用: 1]

Gautam D, Lucieer A, Bendig J, Malenovský Z. (2020).

Footprint determination of a spectroradiometer mounted on an unmanned aircraft system

IEEE Transactions on Geoscience and Remote Sensing, 58, 3085-3096.

DOI:10.1109/TGRS.2019.2947703      URL     [本文引用: 1]

Ge QS, Dai JH, Zheng JY. (2010).

The progress of phenology studies and challenges to modern phenology research in China

Bulletin of Chinese Academy of Sciences, 25, 310-316.

[本文引用: 1]

[葛全胜, 戴君虎, 郑景云 (2010).

物候学研究进展及中国现代物候学面临的挑战

中国科学院院刊, 25, 310-316.]

[本文引用: 1]

Gentine P, Alemohammad SH. (2018).

Reconstructed solar-induced fluorescence: a machine learning vegetation product based on MODIS surface reflectance to reproduce GOME-2 solar-induced fluorescence

Geophysical Research Letters, 45, 3136-3146.

DOI:10.1002/2017GL076294      PMID:30034047      [本文引用: 2]

Solar-induced fluorescence (SIF) observations from space have resulted in major advancements in estimating gross primary productivity (GPP). However, current SIF observations remain spatially coarse, infrequent, and noisy. Here we develop a machine learning approach using surface reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) channels to reproduce SIF normalized by clear sky surface irradiance from the Global Ozone Monitoring Experiment-2 (GOME-2). The resulting product is a proxy for ecosystem photosynthetically active radiation absorbed by chlorophyll (fAPAR). Multiplying this new product with a MODIS estimate of photosynthetically active radiation provides a new MODIS-only reconstruction of SIF called Reconstructed SIF (RSIF). RSIF exhibits much higher seasonal and interannual correlation than the original SIF when compared with eddy covariance estimates of GPP and two reference global GPP products, especially in dry and cold regions. RSIF also reproduces intense productivity regions such as the U.S. Corn Belt contrary to typical vegetation indices and similarly to SIF.

Gensheimer J, Turner AJ, Köhler P, Frankenberg C, Chen J. (2022).

A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)

Biogeosciences, 19, 1777-1793.

DOI:10.5194/bg-19-1777-2022      URL     [本文引用: 2]

Gerhards M, Schlerf M, Rascher U, Udelhoven T, Juszczak R, Alberti G, Miglietta F, Inoue Y. (2018).

Analysis of airborne optical and thermal imagery for detection of water stress symptoms

Remote Sensing, 10, 1139. DOI: 10.3390/rs10071139.

DOI:10.3390/rs10071139      [本文引用: 1]

Gitelson AA, Buschmann C, Lichtenthaler HK. (1998).

Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements

Journal of Plant Physiology, 152, 283-296.

DOI:10.1016/S0176-1617(98)80143-0      URL     [本文引用: 1]

Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ. (2005).

Remote estimation of canopy chlorophyll content in crops

Geophysical Research Letters, 32, 1-4.

[本文引用: 1]

GomezChova L, AlonsoChorda L, Lopez JA, Frances JV, del ValleTascon S, Calpe J, Moreno J. (2006).

Solar induced fluorescence measurements using a field spectroradiometer

// AIP. AIP Conference Proceedings. AIP, Cairo, Egypt. 274-281.

[本文引用: 2]

Goulas Y, Fournier A, Daumard F, Champagne S, Ounis A, Marloie O, Moya I. (2017).

Gross primary production of a wheat canopy relates stronger to far red than to red solar-induced chlorophyll fluorescence

Remote Sensing, 9, 97. DOI: 10.3390/rs9010097.

DOI:10.3390/rs9010097      [本文引用: 1]

Grace J, Nichol C, Disney M, Lewis P, Quaife T, Bowyer P. (2007).

Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence?

Global Change Biology, 13, 1484-1497.

DOI:10.1111/j.1365-2486.2007.01352.x      URL     [本文引用: 2]

Grossmann K, Frankenberg C, Magney TS, Hurlock SC, Seibt U, Stutz J. (2018).

PhotoSpec: a new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence

Remote Sensing of Environment, 216, 311-327.

DOI:10.1016/j.rse.2018.07.002      URL     [本文引用: 2]

Gu L, Wood J, Chang CY, Sun Y, Riggs J. (2019).

Advancing terrestrial ecosystem science with a novel automated measurement system for sun-induced chlorophyll fluorescence for integration with eddy covariance flux networks

Journal of Geophysical Research: Biogeosciences, 124, 127-146.

DOI:10.1029/2018JG004742      URL     [本文引用: 2]

Guanter L, Alonso L, Gómez-Chova L, Amorós-López J, Vila J, Moreno J. (2007).

Estimation of solar-induced vegetation fluorescence from space measurements

Geophysical Research Letters, 34, L08401. DOI: 10.1029/2007GL029289.

DOI:10.1029/2007GL029289      [本文引用: 1]

Guanter L, Alonso L, Gómez-Chova L, Meroni M, Preusker R, Fischer J, Moreno J. (2010).

Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands

Journal of Geophysical Research, Atmospheres, 115, D19303. DOI: 10.1029/2009JD013716.

DOI:10.1029/2009JD013716      [本文引用: 1]

Guanter L, Bacour C, Schneider A, Aben I, van Kempen T, Maignan F, Retscher C, Köhler P, Frankenberg C, Joiner J, Zhang Y. (2021).

The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission

Earth System Science Data, 13, 5423-5440.

DOI:10.5194/essd-13-5423-2021      URL     [本文引用: 1]

Guanter L, Frankenberg C, Dudhia A, Lewis PE, Gómez-Dans J, Kuze A, Suto H, Grainger RG. (2012).

Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements

Remote Sensing of Environment, 121, 236-251.

DOI:10.1016/j.rse.2012.02.006      URL     [本文引用: 3]

Guanter L, Rossini M, Colombo R, Meroni M, Frankenberg C, Lee JE, Joiner J. (2013).

Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space

Remote Sensing of Environment, 133, 52-61.

DOI:10.1016/j.rse.2013.01.017      URL     [本文引用: 1]

Guanter L, Zhang YG, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, et al. (2014).

Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

Proceedings of the National Academy of Sciences of the United States of America, 111, E1327-E1333.

[本文引用: 3]

Guo QH, Hu TY, Ma Q, Xu KX, Yang QL, Sun QH, Li YM, Su YJ. (2020).

Advances for the new remote sensing technology in ecosystem ecology research

Chinese Journal of Plant Ecology, 44, 418-435.

DOI:10.17521/cjpe.2019.0206      URL     [本文引用: 3]

[郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军 (2020).

新一代遥感技术助力生态系统生态学研究

植物生态学报, 44, 418-435.]

DOI:10.17521/cjpe.2019.0206      [本文引用: 3]

随着气候变化和人类活动的加剧, 生态系统正处于剧烈变化中, 生态学家需要从更大的时空尺度去理解生态系统过程和变化规律, 应对全球变化带来的威胁和挑战。传统地面调查方法主要获取的是样方尺度、离散的数据, 难以满足大尺度生态系统研究对数据时空连续性的要求。相比于传统地面调查方法, 遥感技术具有实时获取、重复监测以及多时空尺度的特点, 弥补了传统地面调查方法空间观测尺度有限的缺点。遥感通过分析电磁波信息从而识别地物属性和特征, 反演生态系统组成、能量流动和物质循环过程中的关键要素, 已逐渐成为生态学研究中必不可少的数据来源。近年来, 随着激光雷达、日光诱导叶绿素荧光等新型遥感技术以及无人机、背包等近地面遥感平台的发展, 个人化、定制化的近地面遥感观测逐渐成熟, 新一代遥感技术正在推动遥感信息“二维向三维”的转变, 为传统样地观测与卫星遥感之间搭建了尺度推绎桥梁, 这也给生态系统生态学带来了新的机遇, 推动生态系统生态学向多尺度、多过程、多学科、多途径发展。因此, 该文从生态系统生态学角度出发, 重点关注陆地生态系统中生物组分, 并分别从生态系统类型、结构、功能和生物多样性等方面, 结合作者在实际研究工作中的主要成果和该领域国际前沿动态, 阐述遥感技术在生态系统生态学中的研究现状并指出我国生态系统遥感监测领域发展方向及亟待解决的问题。

Han JM, Chang CYY, Gu LH, Zhang YJ, Meeker EW, Magney TS, Walker AP, Wen JM, Kira O, McNaull S, Sun Y. (2022a).

The physiological basis for estimating photosynthesis from Chla fluorescence

New Phytologist, 234, 1206-1219.

DOI:10.1111/nph.18045      URL     [本文引用: 1]

Han JM, Gu LH, Wen JM, Sun Y. (2022b).

Inference of photosynthetic capacity parameters from chlorophyll a fluorescence is affected by redox state of PSII reaction centers

Plant, Cell & Environment, 45, 1298-1314.

[本文引用: 1]

Hao D, Asrar G, Zeng YL, Yang X, Li X, Xiao JF, Guan K, Wen JG, Xiao Q, Berry J, Chen M. (2021a).

Potential of hotspot solar-induced chlorophyll fluorescence for better tracking terrestrial photosynthesis

Global Change Biology, 27, 2144-2158.

DOI:10.1111/gcb.15554      URL     [本文引用: 1]

Hao DL, Zeng YL, Zhang ZY, Zhang YG, Qiu H, Biriukova K, Celesti M, Rossini M, Zhu P, Asrar GR, Chen M. (2022).

Adjusting solar-induced fluorescence to nadir-viewing provides a better proxy for GPP.

ISPRS Journal of Photogrammetry and Remote Sensing, 186, 157-169.

DOI:10.1016/j.isprsjprs.2022.01.016      URL     [本文引用: 1]

Hao DL, Zeng, YL, Qiu H, Biriukova K, Celesti M, Migliavacca M, Rossini M, Asrar GR, Chen M. (2021b).

Practical approaches for normalizing directional solar-induced fluorescence to a standard viewing geometry

Remote Sensing of Environment, 255, 112171. DOI: 10.1016/j.rse.2020.112171.

DOI:10.1016/j.rse.2020.112171      [本文引用: 1]

Helm LT, Shi HY, Lerdau MT, Yang X. (2020).

Solar-induced chlorophyll fluorescence and short-term photosynthetic response to drought

Ecological Applications, 30, e02101. DOI: 10.1002/eap.2101.

DOI:10.1002/eap.2101      [本文引用: 1]

Hernández-Clemente R, North PRJ, Hornero A, Zarco-Tejada PJ. (2017).

Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure

Remote Sensing of Environment, 193, 165-179.

DOI:10.1016/j.rse.2017.02.012      URL     [本文引用: 1]

Hou P, Yang M, Zhai J, Liu XM, Wan HW, Li J, Cai MY, Liu HM. (2017).

Discussion about natural reserve and construction of national ecological security pattern

Geographical Research, 36, 420-428.

[本文引用: 1]

[侯鹏, 杨旻, 翟俊, 刘晓曼, 万华伟, 李静, 蔡明勇, 刘慧明 (2017).

论自然保护地与国家生态安全格局构建

地理研究, 36, 420-428.]

DOI:10.11821/dlyj201703002      [本文引用: 1]

科学评估自然保护地与国家生态安全格局的关系是合理开展自然保护地建设和国家生态安全格局构建的重要基础。以中国国家重点生态功能区、生物多样性保护优先区和国家级自然保护区等自然保护地为研究对象,定量分析自然保护地的时空分布特征及其对保障国家生态安全的重要作用,基于生态系统服务重要性评估辨识国家生态安全格局构建的空间缺失,面向国家生态安全构建和保障需求提出生态保护管控对策建议。结果表明:① 自然保护地总面积为488.42万km<sup>2</sup>,占陆地国土面积的51.38%。生态系统类型以草地、森林、荒漠等自然生态系统为主,三种生态系统的总面积为371.24万km<sup>2</sup>,占自然保护地总面积的76.0%。2000-2010年,自然保护地的生态系统构成整体稳定,对保护生态空间稳定性和生态安全格局稳定发挥了重要作用。不同类型生态系统之间有少量转化,不同自然保护地内生态系统转换特征略有差异。② 综合水源涵养、土壤保持、生物多样性保护等生态系统服务重要性评估,自然保护地的生态系统服务极重要区和重要区总面积为321.4万km<sup>2</sup>,占区域国土总面积的66.02%。森林、草地和灌丛生态系统是水源涵养、土壤保持、维护生物多样性等生态系统服务主体。2000-2010年,水源涵养、土壤保持功能有所改善,但生物多样性维护功能无明显变化。③ 生态系统服务极重要区的31.7%没有在自然保护地内,是今后国家生态安全格局构建和自然保护地建设需要重点关注的区域。面向国家生态安全构建和保障需求,迫切需要基于国家治理模式、建立最严格保护制度,提高自然规律认知水平、强化生态系统综合管理,完善分类分区管理、强化自然保护地管控,完善生态补偿机制、建立协同保护制度,加强生态保护综合监管、严格生态损害责任追究。

Hu JC, Liu LY, Guo J, Du SS, Liu XJ. (2018).

Upscaling solar-induced chlorophyll fluorescence from an instantaneous to daily scale gives an improved estimation of the gross primary productivity

Remote Sensing, 10, 1663. DOI: 10.3390/rs10101663.

DOI:10.3390/rs10101663      [本文引用: 1]

Huang BR, Ma YH, Huang K, Su LY, Zhang CL, Cheng DW, Wang Y. (2018).

Strategic approach on promoting reform of China’s natural protected areas system with National Parks as backbone

Bulletin of Chinese Academy of Sciences, 33, 1342-1351.

[本文引用: 1]

[黄宝荣, 马永欢, 黄凯, 苏利阳, 张丛林, 程多威, 王毅 (2018).

推动以国家公园为主体的自然保护地体系改革的思考

中国科学院院刊, 33, 1342-1351.]

[本文引用: 1]

Huang Y, Zhou C, Du MH, Wu PF, Yuan L, Tang JW. (2022).

Tidal influence on the relationship between solar-induced chlorophyll fluorescence and canopy photosynthesis in a coastal salt marsh

Remote Sensing of Environment, 270, 112865. DOI: 10.1016/j.rse.2021.112865.

DOI:10.1016/j.rse.2021.112865      [本文引用: 1]

Jeong SJ, Schimel D, Frankenberg C, Drewry DT, Fisher JB, Verma M, Berry JA, Lee JE, Joiner J. (2017).

Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests

Remote Sensing of Environment, 190, 178-187.

DOI:10.1016/j.rse.2016.11.021      URL     [本文引用: 1]

Ji MH, Tang BH, Li ZL. (2019).

Review of solar-induced chlorophyll fluorescence retrieval methods from satellite data

Remote Sensing Technology and Application, 34, 455-466.

[本文引用: 1]

[纪梦豪, 唐伯惠, 李召良 (2019).

太阳诱导叶绿素荧光的卫星遥感反演方法研究进展

遥感技术与应用, 34, 455-466.]

[本文引用: 1]

Jia M, Colombo R, Rossini M, Celesti M, Zhu J, Cogliati S, Cheng T, Tian YC, Zhu Y, Cao WX, Yao X. (2021).

Estimation of leaf nitrogen content and photosynthetic nitrogen use efficiency in wheat using sun-induced chlorophyll fluorescence at the leaf and canopy scales

European Journal of Agronomy, 122, 126192. DOI: 10.1016/j.eja.2020.126192.

DOI:10.1016/j.eja.2020.126192      [本文引用: 3]

Jia M, Zhu J, Ma CC, Alonso L, Li D, Cheng T, Tian YC, Zhu Y, Yao X, Cao WX. (2018).

Difference and potential of the upward and downward sun-induced chlorophyll fluorescence on detecting leaf nitrogen concentration in wheat

Remote Sensing, 10, 1315. DOI: 10.3390/rs10081315.

DOI:10.3390/rs10081315      [本文引用: 2]

Jin SC, Sun XL, Wu FF, Su YJ, Li YM, Song SL, Xu KX, Ma Q, Baret F, Jiang D, Ding YF, Guo QH. (2021).

Lidar sheds new light on plant phenomics for plant breeding and management: recent advances and future prospects

ISPRS Journal of Photogrammetry and Remote Sensing, 171, 202-223.

DOI:10.1016/j.isprsjprs.2020.11.006      URL     [本文引用: 1]

Jing X, Bai ZF, Gao Y, Liu LY. (2019).

Wheat stripe rust monitoring by random forest algorithm combined with SIF and reflectance spectrum

Transactions of the Chinese Society of Agricultural Engineering, 35(13), 154-161.

[本文引用: 1]

[竞霞, 白宗璠, 高媛, 刘良云 (2019).

利用随机森林法协同SIF和反射率光谱监测小麦条锈病

农业工程学报, 35(13), 154-161.]

[本文引用: 1]

Joiner J, Guanter L, Lindstrot R, Voigt M, Vasilkov AP, Middleton EM, Huemmrich KF, Yoshida Y, Frankenberg C. (2013).

Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2

Atmospheric Measurement Techniques Discussions, 6, 3883-3930. DOI: 10.5194/amt-6-2803-2013.

DOI:10.5194/amt-6-2803-2013      [本文引用: 4]

Joiner J, Yoshida Y, Guanter L, Middleton EM. (2016).

New methods for retrieval of chlorophyll red fluorescence from hyper-spectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY

Atmospheric Measurement Techniques Discussions, 2016, 1-41.

[本文引用: 1]

Joiner J, Yoshida Y, Vasilkov AP, Corp LA, Middleton EM. (2011).

First observations of global and seasonal terrestrial chlorophyll fluorescence from space

Biogeosciences, 8, 637-651.

DOI:10.5194/bg-8-637-2011      URL     [本文引用: 3]

Joiner J, Yoshida Y, Vasilkov AP, Middleton EM, Kuze A, Corp LA. (2012).

Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT

Atmospheric Measurement Techniques, 5, 809-829.

DOI:10.5194/amt-5-809-2012      URL     [本文引用: 1]

Joiner J, Yoshida Y, Vasilkov AP, Schaefer K, Jung M, Guanter L, Zhang Y, Garrity S, Middleton EM, Huemmrich KF, Gu L, Belelli Marchesini L (2014).

The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange

Remote Sensing of Environment, 152, 375-391.

DOI:10.1016/j.rse.2014.06.022      URL     [本文引用: 2]

Jonard F, Brüggemann N, Gentine P, Short Gianotti DJ, Lobet G, Miralles DG, Montzka C, Pagán BR, Rascher U, Vereecken H. (2020).

Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: current status and challenges

Agricultural and Forest Meteorology, 291, 108088. DOI: 10.1016/j.agrformet.2020.108088.

DOI:10.1016/j.agrformet.2020.108088      [本文引用: 1]

Julitta T, Burkart A, Colombo R, Rossini M, Schickling A, Migliavacca M, Cogliati S, Wutzler T, Rascher U. (2017). Accurate measurements of fluorescence in the O2A and O2B band using the FloX spectroscopy system—Results and prospects. 2022-06-06. http://refhub.elsevier.com/S0168-1923(22)00251-9/sbref0034.

URL     [本文引用: 2]

Kimm H, Guan KY, Burroughs CH, Peng B, Ainsworth EA, Bernacchi CJ, Moore CE, Kumagai E, Yang X, Berry JA, Wu GH. (2021).

Quantifying high-temperature stress on soybean canopy photosynthesis: the unique role of sun-induced chlorophyll fluorescence

Global Change Biology, 27, 2403-2415.

DOI:10.1111/gcb.15603      PMID:33844873      [本文引用: 1]

High temperature and accompanying high vapor pressure deficit often stress plants without causing distinctive changes in plant canopy structure and consequential spectral signatures. Sun-induced chlorophyll fluorescence (SIF), because of its mechanistic link with photosynthesis, may better detect such stress than remote sensing techniques relying on spectral reflectance signatures of canopy structural changes. However, our understanding about physiological mechanisms of SIF and its unique potential for physiological stress detection remains less clear. In this study, we measured SIF at a high-temperature experiment, Temperature Free-Air Controlled Enhancement, to explore the potential of SIF for physiological investigations. The experiment provided a gradient of soybean canopy temperature with 1.5, 3.0, 4.5, and 6.0°C above the ambient canopy temperature in the open field environments. SIF yield, which is normalized by incident radiation and the fraction of absorbed photosynthetically active radiation, showed a high correlation with photosynthetic light use efficiency (r = 0.89) and captured dynamic plant responses to high-temperature conditions. SIF yield was affected by canopy structural and plant physiological changes associated with high-temperature stress (partial correlation r = 0.60 and -0.23). Near-infrared reflectance of vegetation, only affected by canopy structural changes, was used to minimize the canopy structural impact on SIF yield and to retrieve physiological SIF yield (Φ ) signals. Φ further excludes the canopy structural impact than SIF yield and indicates plant physiological variability, and we found that Φ outperformed SIF yield in responding to physiological stress (r = -0.37). Our findings highlight that Φ sensitively responded to the physiological downregulation of soybean gross primary productivity under high temperature. Φ, if reliably derived from satellite SIF, can support monitoring regional crop growth and different ecosystems' vegetation productivity under environmental stress and climate change.© 2021 John Wiley & Sons Ltd.

Koffi EN, Rayner PJ, Norton AJ, Frankenberg C, Scholze M. (2015).

Investigating the usefulness of satellite-derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system

Biogeosciences, 12, 4067-4084.

DOI:10.5194/bg-12-4067-2015      URL     [本文引用: 3]

Köhler P, Frankenberg C, Magney TS, Guanter L, Joiner J, Landgraf J. (2018).

Global retrievals of solar induced chlorophyll fluorescence with TROPOMI: first results and inter-sensor comparison to OCO-2

Geophysical Research Letters, 45, 10456-10463.

[本文引用: 2]

Köhler P, Guanter L, Frankenberg C. (2015a).

Simplified physically based retrieval of sun-induced chlorophyll fluorescence from GOSAT data

IEEE Geoscience and Remote Sensing Letters, 12, 1446-1450.

DOI:10.1109/LGRS.2015.2407051      URL     [本文引用: 1]

Köhler P, Guanter L, Joiner J. (2015b).

A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

Atmospheric Measurement Techniques, 8, 2589-2608.

DOI:10.5194/amt-8-2589-2015      URL     [本文引用: 5]

Lee JE, Berry JA, van der Tol C, Yang X, Guanter L, Damm A, Baker I, Frankenberg C. (2015).

Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4

Global Change Biology, 21, 3469-3477.

DOI:10.1111/gcb.12948      URL     [本文引用: 1]

Lee JE, Frankenberg C, van der Tol C, Berry JA, Guanter L, Boyce CK, Fisher JB, Morrow E, Worden JR, Asefi S, Badgley G, Saatchi S. (2013).

Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence

Proceedings of the Royal Society B: Biological Sciences, 280, 20130171. DOI: 10.1098/rspb.2013.0171.

DOI:10.1098/rspb.2013.0171      [本文引用: 4]

Legendre P, Fortin MJ. (1989).

Spatial pattern and ecological analysis

Vegetatio, 80, 107-138.

DOI:10.1007/BF00048036      URL     [本文引用: 1]

Li J, Zhang YG, Gu LH, Li ZH, Li J, Zhang Q, Zhang ZY, Song L. (2020a).

Seasonal variations in the relationship between sun-induced chlorophyll fluorescence and photosynthetic capacity from the leaf to canopy level in a rice crop

Journal of Experimental Botany, 71, 7179-7197.

DOI:10.1093/jxb/eraa408      URL     [本文引用: 3]

Li Q, Zhu JH, Xiao WF. (2019).

Relationships and trade-offs between, and management of biodiversity and ecosystem services

Acta Ecologica Sinica, 39, 2655-2666.

[本文引用: 1]

[李奇, 朱建华, 肖文发 (2019).

生物多样性与生态系统服务——关系、权衡与管理

生态学报, 39, 2655-2666.]

[本文引用: 1]

Li X, Xiao JF. (2019).

A global 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data

Remote Sensing, 11, 517. DOI: 10.3390/rs11050517.

DOI:10.3390/rs11050517      [本文引用: 2]

Li X, Xiao JF. (2022).

TROPOMI observations allow for robust exploration of the relationship between solar-induced chlorophyll fluorescence and terrestrial gross primary production

Remote Sensing of Environment, 268, 112748. DOI: 10.1016/j.rse.2021.112748.

DOI:10.1016/j.rse.2021.112748      [本文引用: 1]

Li X, Xiao JF, Kimball JS, Reichle RH, Scott RL, Litvak ME, Bohrer G, Frankenberg C. (2020b).

Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 US drought

Remote Sensing of Environment, 251, 112062. DOI: 10.1016/j.rse.2020.112062.

DOI:10.1016/j.rse.2020.112062      [本文引用: 1]

Li ZH, Zhang Q, Li J, Yang X, Wu YF, Zhang ZY, Wang SH, Wang HZ, Zhang YG. (2020c).

Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements

Remote Sensing of Environment, 236, 111420. DOI: 10.1016/j.rse.2019.111420.

DOI:10.1016/j.rse.2019.111420      [本文引用: 5]

Li ZH, Zhang YG, Zhang Q, Wu YF, Zhang XK, Zhang ZY. (2021).

Tower-based automatic observation methods and systems of solar-induced chlorophyll fluorescence in vegetation canopy

National Remote Sensing Bulletin, 25, 1152-1168.

[本文引用: 2]

[李朝晖, 张永光, 张乾, 吴云飞, 张小康, 章钊颖 (2021).

植被冠层日光诱导叶绿素荧光塔基自动观测方法及系统介绍

遥感学报, 25, 1152-1168.]

[本文引用: 2]

Lichtenthaler HK, Rinderle U. (1988).

The role of chlorophyll fluorescence in the detection of stress conditions in plants

CRC Critical Reviews in Analytical Chemistry, 19, S29-S85.

[本文引用: 1]

Liu GH, Wang YS, Chen YN, Tong XQ, Wang YD, Xie J, Tang XG. (2022).

Remotely monitoring vegetation productivity in two contrasting subtropical forest ecosystems using solar-induced chlorophyll fluorescence

Remote Sensing, 14, 1328. DOI: 10.3390/rs14061328.

DOI:10.3390/rs14061328     

Liu LY, Chen LF, Liu Y, Yang DX, Zhang XY, Lu NM, Ju WM, Jiang F, Yin ZS, Liu GH, Tian LF, Hu DH, Mao HQ, Liu SH, Zhang JH, et al. (2022).

Satellite remote sensing for global stocktaking: methods, progress and perspectives

National Remote Sensing Bulletin, 26, 243-267.

[本文引用: 3]

[刘良云, 陈良富, 刘毅, 杨东旭, 张兴嬴, 卢乃锰, 居为民, 江飞, 尹增山, 刘国华, 田龙飞, 胡登辉, 毛慧琴, 刘思含, 张建辉, (2022).

全球碳盘点卫星遥感监测方法、进展与挑战

遥感学报, 26, 243-267.]

[本文引用: 3]

Liu LY, Cheng ZH. (2010).

Detection of vegetation light-use efficiency based on solar-induced chlorophyll fluorescence separated from canopy radiance spectrum

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3, 306-312.

DOI:10.1109/JSTARS.2010.2048200      URL     [本文引用: 1]

Liu LY, Guan LL, Liu XJ. (2017).

Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence

Agricultural and Forest Meteorology, 232, 1-9.

DOI:10.1016/j.agrformet.2016.06.014      URL     [本文引用: 1]

Liu LY, Zhang YJ, Jiao QJ, Peng DL. (2013a).

Assessing photosynthetic light-use efficiency using a solar-induced chlorophyll fluorescence and photochemical reflectance index

International Journal of Remote Sensing, 34, 4264-4280.

DOI:10.1080/01431161.2013.775533      URL     [本文引用: 2]

Liu LY, Zhao JJ, Guan LL. (2013b).

Tracking photosynthetic injury of paraquat-treated crop using chlorophyll fluorescence from hyperspectral data

European Journal of Remote Sensing, 46, 459-473.

DOI:10.5721/EuJRS20134627      URL     [本文引用: 1]

Liu LZ, Teng YG, Wu JJ, Zhao WH, Liu SS, Shen Q. (2020a).

Soil water deficit promotes the effect of atmospheric water deficit on solar-induced chlorophyll fluorescence

Science of the Total Environment, 720, 137408. DOI: 10.1016/j.scitotenv.2020.137408.

DOI:10.1016/j.scitotenv.2020.137408     

Liu WW, Atherton J, Mõttus M, Gastellu-Etchegorry JP, Malenovský Z, Raumonen P, Åkerblom M, Mäkipää R, Porcar-Castell A. (2019a).

Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements

Remote Sensing of Environment, 232, 111274. DOI: 10.1016/j.rse.2019.111274.

DOI:10.1016/j.rse.2019.111274      [本文引用: 1]

Liu X, Guo J, Hu J, Liu L. (2019b).

Atmospheric correction for tower-based solar-induced chlorophyll fluorescence observations at O2-A band

Remote Sensing, 11, 355. DOI: 10.3390/rs11030355.

DOI:10.3390/rs11030355      [本文引用: 1]

Liu XJ, Guanter L, Liu LY, Damm A, Malenovský Z, Rascher U, Peng DL, Du SS, Gastellu-Etchegorry JP. (2019c).

Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model

Remote Sensing of Environment, 231, 110772. DOI: 10.1016/j.rse.2018.05.035.

DOI:10.1016/j.rse.2018.05.035      [本文引用: 1]

Liu XJ, Liu LY. (2015).

Improving chlorophyll fluorescence retrieval using reflectance reconstruction based on principal components analysis

IEEE Geoscience and Remote Sensing Letters, 12, 1645-1649.

DOI:10.1109/LGRS.2015.2417857      URL     [本文引用: 2]

Liu XJ, Liu LY, Hu JC, Guo J, Du SS. (2020b).

Improving the potential of red SIF for estimating GPP by downscaling from the canopy level to the photosystem level

Agricultural and Forest Meteorology, 281, 107846. DOI: 10.1016/j.agrformet.2019.107846.

DOI:10.1016/j.agrformet.2019.107846      [本文引用: 3]

Liu XJ, Liu LY, Zhang S, Zhou XF. (2015).

New spectral fitting method for full-spectrum solar-induced chlorophyll fluorescence retrieval based on principal components analysis

Remote Sensing, 7, 10626-10645.

DOI:10.3390/rs70810626      URL     [本文引用: 2]

Liu XT, Zhou L, Shi H, Wang SQ, Chi YG. (2018).

Phenological characteristics of temperate coniferous and broad-leaved mixed forests based on multiple remote sensing vegetation indices, chlorophyll fluorescence and CO2 flux data

Acta Ecologica Sinica, 38, 3482-3494.

[本文引用: 1]

[刘啸添, 周蕾, 石浩, 王绍强, 迟永刚 (2018).

基于多种遥感植被指数、叶绿素荧光与CO2通量数据的温带针阔混交林物候特征对比分析

生态学报, 38, 3482-3494.]

[本文引用: 1]

Liu YJ, You CH, Zhang YG, Chen SP, Zhang ZY, Li J, Wu YF. (2021).

Resistance and resilience of grasslands to drought detected by SIF in Inner Mongolia, China

Agricultural and Forest Meteorology, 308-309, 108567. DOI: 10.1016/j.agrformet.2021.108567.

DOI:10.1016/j.agrformet.2021.108567      [本文引用: 1]

Lu XL, Liu ZQ, An SQ, Miralles DG, Maes W, Liu YL, Tang JW. (2018).

Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest

Agricultural and Forest Meteorology, 252, 75-87.

DOI:10.1016/j.agrformet.2018.01.017      URL     [本文引用: 1]

Ma KP. (1993).

On the concept of biodiversity

Chinese Biodiversity, 1, 20-22.

[本文引用: 1]

[马克平 (1993).

试论生物多样性的概念

生物多样性, 1, 20-22.]

[本文引用: 1]

Ma Y, Liu LY, Chen RN, Du SS, Liu XJ. (2020).

Generation of a global spatially continuous TanSat solar-induced chlorophyll fluorescence product by considering the impact of the solar radiation intensity

Remote Sensing, 12, 2167. DOI: 10.3390/rs12132167.

DOI:10.3390/rs12132167      [本文引用: 2]

Ma Y, Liu LY, Liu XJ, Chen JD. (2022).

An improved downscaled sun-induced chlorophyll fluorescence (DSIF) product of GOME-2 dataset

European Journal of Remote Sensing, 55, 168-180.

DOI:10.1080/22797254.2022.2028579      URL     [本文引用: 2]

MacArthur A, Robinson I, Rossini M, Davis N, MacDonald K. (2014).

A dual-field-of-view spectrometer system for reflectance and fluorescence measurements (Piccolo Doppio) and correction of etaloning

//ESA. Fifth International Workshop on Remote Sensing of Vegetation Fluorescence. European Space Agenccy, Paris, France.

[本文引用: 1]

Maes WH, Pagán BR, Martens B, Gentine P, Guanter L, Steppe K, Verhoest NEC, Dorigo W, Li X, Xiao JF, Miralles DG. (2020).

Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models

Remote Sensing of Environment, 249, 112030. DOI: 10.1016/j.rse.2020.112030.

DOI:10.1016/j.rse.2020.112030      [本文引用: 1]

Magney TS, Barnes ML, Xi Y. (2020).

On the covariation of chlorophyll fluorescence and photosynthesis across scales

Geophysical Research Letters, 47, e2020GL091098. DOI: 10.1029/2020GL091098.

DOI:10.1029/2020GL091098      [本文引用: 1]

Magney TS, Bowling DR, Logan BA, Grossmann K, Stutz J, Blanken PD, Burns SP, Cheng R, Garcia MA, Kӧhler P, Lopez S, Parazoo NC, Raczka B, Schimel D, Frankenberg C. (2019).

Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence

Proceedings of the National Academy of Sciences of the United States of America, 116, 11640-11645.

DOI:10.1073/pnas.1900278116      PMID:31138693      [本文引用: 2]

Northern hemisphere evergreen forests assimilate a significant fraction of global atmospheric CO but monitoring large-scale changes in gross primary production (GPP) in these systems is challenging. Recent advances in remote sensing allow the detection of solar-induced chlorophyll fluorescence (SIF) emission from vegetation, which has been empirically linked to GPP at large spatial scales. This is particularly important in evergreen forests, where traditional remote-sensing techniques and terrestrial biosphere models fail to reproduce the seasonality of GPP. Here, we examined the mechanistic relationship between SIF retrieved from a canopy spectrometer system and GPP at a winter-dormant conifer forest, which has little seasonal variation in canopy structure, needle chlorophyll content, and absorbed light. Both SIF and GPP track each other in a consistent, dynamic fashion in response to environmental conditions. SIF and GPP are well correlated ( = 0.62-0.92) with an invariant slope over hourly to weekly timescales. Large seasonal variations in SIF yield capture changes in photoprotective pigments and photosystem II operating efficiency associated with winter acclimation, highlighting its unique ability to precisely track the seasonality of photosynthesis. Our results underscore the potential of new satellite-based SIF products (TROPOMI, OCO-2) as proxies for the timing and magnitude of GPP in evergreen forests at an unprecedented spatiotemporal resolution.

Maier SW, Günther KP, Stellmes M. (2004).

Sun-induced fluorescence: a new tool for precision farming

Digital Imaging and Spectral Techniques: Applications to Precision Agriculture, 66, 209-222.

[本文引用: 3]

Marrs JK, Reblin JS, Logan BA, Allen DW, Reinmann AB, Bombard DM, Tabachnik D, Hutyra LR. (2020).

Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure

Geophysical Research Letters, 47, e2020GL087956. DOI: 10.1029/2020gl087956.

DOI:10.1029/2020gl087956      [本文引用: 1]

Mazzoni M, Meroni M, Fortunato C, Colombo R, Verhoef W. (2012).

Retrieval of maize canopy fluorescence and reflectance by spectral fitting in the O2-A absorption band

Remote Sensing of Environment, 124, 72-82.

DOI:10.1016/j.rse.2012.04.025      URL     [本文引用: 1]

Meng TT, Ni J, Wang GH. (2007).

Plant functional traits, environments and ecosystem functioning

Journal of Plant Ecology (Chinese Version), 31, 150-165.

[本文引用: 1]

[孟婷婷, 倪健, 王国宏 (2007).

植物功能性状与环境和生态系统功能

植物生态学报, 31, 150-165.]

DOI:10.17521/cjpe.2007.0019      [本文引用: 1]

植物性状反映了植物对生长环境的响应和适应,将环境、植物个体和生态系统结构、 过程与功能联系起来(所谓的&ldquo;植物功能性状&rdquo;)。该文介绍了植物功能性状的分类体系,综述了国内外植物功能性状与气候(包括气温、降水、光照)、地理空间变异(包括地形地 貌、生态梯度、海拔)、营养、干扰(包括火灾、放牧、生物入侵、土地利用)等环境因素,以及与生态系统功能之间关系的研究进展,探讨了全球变化(气候变化和CO<sub>2</sub>浓度升高 ) 对个体和群落植物功能性状的影响。植物功能性状的研究已经取得很多成果,并应用于全球变化、古植被恢复和古气候定量重建、环境监测与评价、生态保护和恢复等研究中,但大尺度、多生境因子下的植物功能性状研究仍有待于加强,同时需要改进性状的测量手段;我国 的植物功能性状研究还需要更加明朗化和系统化。

Meroni M, Barducci A, Cogliati S, Castagnoli F, Rossini M, Busetto L, Migliavacca M, Cremonese E, Galvagno M, Colombo R, di Cella UM (2011).

The hyperspectral irradiometer, a new instrument for long-term and unattended field spectroscopy measurements

Review of Scientific Instruments, 82, 043106. DOI: 10.1063/1.3574360.

DOI:10.1063/1.3574360      [本文引用: 1]

Meroni M, Busetto L, Colombo R, Guanter L, Moreno J, Verhoef W. (2010).

Performance of spectral fitting methods for vegetation fluorescence quantification

Remote Sensing of Environment, 114, 363-374.

DOI:10.1016/j.rse.2009.09.010      URL     [本文引用: 2]

Meroni M, Colombo R. (2006).

Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer

Remote Sensing of Environment, 103, 438-448.

DOI:10.1016/j.rse.2006.03.016      URL     [本文引用: 1]

Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R, Moreno J. (2009).

Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications

Remote Sensing of Environment, 113, 2037-2051.

DOI:10.1016/j.rse.2009.05.003      URL     [本文引用: 3]

Miao G, Guan K, Yang X, Bernacchi C, Berry J, DeLucia E, Wu J, Moore C, Meacham K, Cai YP, Peng B, Kimm H, Masters M. (2018).

Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements

Journal of Geophysical Research: Biogeosciences, 123, 610-623.

DOI:10.1002/2017JG004180      URL     [本文引用: 1]

Middleton EM, Huemmrich KF, Zhang Q, Campbell PK, Landis DR. (2018).

Photosynthetic efficiency and vegetation stress

//Thenkabail PS, Lyon JG, Huete A. Biophysical and Biochemical Characterization and Plant Species Studies. CRC Press, Boca Raton, USA. 133-179.

[本文引用: 1]

Mohammed GH, Colombo R, Middleton EM, Rascher U, van der Tol C, Nedbal L, Goulas Y, Pérez-Priego O, Damm A, Meroni M, Joiner J, Cogliati S, Verhoef W, Malenovský Z, Gastellu-Etchegorry JP, et al. (2019).

Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50  years of progress

Remote Sensing of Environment, 231, 111177. DOI: 10.1016/j.rse.2019.04.030.

DOI:10.1016/j.rse.2019.04.030      [本文引用: 4]

Monteith JL. (1972).

Solar radiation and productivity in tropical ecosystems

Journal of Applied Ecology, 9, 747-766.

DOI:10.2307/2401901      URL     [本文引用: 1]

Moore B, Crowell SMR, Rayner PJ, Kumer J, O’dell CW, O’Brien D, Utembe S, Polonsky I, Schimel D, Lemen J. (2018).

The potential of the geostationary carbon cycle observatory (GeoCarb) to provide multi-scale constraints on the carbon cycle in the americas

Frontiers in Environmental Science, 6, 109. DOI: 10.3389/fenvs.2018.00109.

DOI:10.3389/fenvs.2018.00109      [本文引用: 1]

Moya I, Daumard F, Moise N, Ounis A, Goulas Y. (2006).

First airborne multiwavelength passive chlorophyll fluorescence measurements over La Mancha (Spain) fields

//Sobrino JA. Second Recent Advances in Quantitative Remote Sensing. Publicacions de la Universitat de València, Torrent, Spain. 820-825.

[本文引用: 1]

Moya I, Loayza H, López ML, Quiroz R, Ounis A, Goulas Y. (2019).

Canopy chlorophyll fluorescence applied to stress detection using an easy-to-build micro-lidar

Photosynthesis Research, 142, 1-15.

DOI:10.1007/s11120-019-00642-9      PMID:31129867      [本文引用: 1]

LEDFLEX is a micro-lidar dedicated to the measurement of vegetation fluorescence. The light source consists of 4 blue Light-Emitting Diodes (LED) to illuminate part of the canopy in order to average the spatial variability of small crops. The fluorescence emitted in response to a 5-μs width pulse is separated from the ambient light through a synchronized detection. Both the reflectance and the fluorescence of the target are acquired simultaneously in exactly the same field of view, as well as the photosynthetic active radiation and air temperature. The footprint is about 1 m at a distance of 8 m. By increasing the number of LEDs longer ranges can be reached. The micro-lidar has been successfully applied under full sunlight conditions to establish the signature of water stress on pea (Pisum Sativum) canopy. Under well-watered conditions the diurnal cycle presents an M shape with a minimum (Fmin) at noon which is Fmin > Fo. After several days withholding watering, Fs decreases and Fmin < Fo. The same patterns were observed on mint (Menta Spicata) and sweet potatoes (Ipomoea batatas) canopies. Active fluorescence measurements with LEDFLEX produced robust fluorescence yield data as a result of the constancy of the excitation intensity and its geometry fixity. Passive methods based on Sun-Induced chlorophyll Fluorescence (SIF) that uses high-resolution spectrometers generate only flux data and are dependent on both the 3D structure of vegetation and variable irradiance conditions along the day. Parallel measurements with LEDFLEX should greatly improve the interpretation of SIF changes.

Ni ZY, Liu ZG, Li ZL, Nerry F, Huo HY, Sun R, Yang PQ, Zhang WW. (2016).

Investigation of atmospheric effects on retrieval of sun-induced fluorescence using hyperspectral imagery

Sensors, 16, 480. DOI: 10.3390/s16040480.

DOI:10.3390/s16040480      [本文引用: 1]

Nichol C, Drolet G, Porcar-Castell A, Wade T, Sabater N, Middleton E, MacLellan C, Levula J, Mammarella I, Vesala T, Atherton J. (2019).

Diurnal and seasonal solar induced chlorophyll fluorescence and photosynthesis in a boreal Scots pine canopy

Remote Sensing, 11, 273. DOI: 10.3390/rs11030273.

DOI:10.3390/rs11030273      [本文引用: 1]

Odum EP, Barrett GW. (1971). Fundamentals of Ecology. Saunders, Philadelphia, USA.

[本文引用: 1]

Pacheco-Labrador J, Hueni A, Mihai L, Sakowska K, Julitta T, Kuusk J, Sporea D, Alonso L, Burkart A, Mateo MC, Aasen H, Goulas Y, Arthur A. (2019).

Sun-induced chlorophyll fluorescence I: instrumental considerations for proximal spectroradiometers

Remote Sensing, 11, 960. DOI: 10.3390/rs11080960.

DOI:10.3390/rs11080960      [本文引用: 1]

Pagán B, Maes W, Gentine P, Martens B, Miralles D. (2019).

Exploring the potential of satellite solar-induced fluorescence to constrain global transpiration estimates

Remote Sensing, 11, 413. DOI: 10.3390/rs11040413.

DOI:10.3390/rs11040413      [本文引用: 1]

Paynter I, Cook B, Corp L, Nagol J, McCorkel J. (2020).

Characterization of FIREFLY, an imaging spectrometer designed for remote sensing of solar induced fluorescence

Sensors, 20, 4682. DOI: 10.3390/s20174682.

DOI:10.3390/s20174682      [本文引用: 2]

Peng YJ, Fan J, Xing SH, Cui GF. (2018).

Overview and classification outlook of natural protected areas in China’s mainland

Biodiversity Science, 26, 315-325.

DOI:10.17520/biods.2017235      URL     [本文引用: 1]

[彭杨靖, 樊简, 邢韶华, 崔国发 (2018).

中国大陆自然保护地概况及分类体系构想

生物多样性, 26, 315-325.]

DOI:10.17520/biods.2017235      [本文引用: 1]

自1956年我国建立第一个自然保护区以来, 截至2016年底, 我国已建立了约10种类型且数量庞大的自然保护地。随着我国生态文明建设的不断发展,建立以国家公园为主体的自然保护地体系不仅是国家提出的重要任务,也是我国自然保护地未来发展的必然趋势。然而, 由于我国目前各类自然保护地尚无统一的分类体系, 已有的自然保护地之间存在着概念界定不清、分类体系混乱、主导功能模糊、地理空间重叠等诸多问题。这不仅严重阻碍了我国现有自然保护地的优化整合和国家公园体制建设,而且不便于开展国际交流。因此迫切需要明确自然保护地的定义, 建立一套适用于我国且有利于国际交流的自然保护地分类体系。本文在介绍自然保护地的概念与内涵,以及我国10类自然保护地建设和分类体系现状的基础上,重点梳理了我国自然保护地的发展历程, 比较了各类自然保护地的定义、内涵以及主要分类依据,并提出了3种能够涵盖目前各类自然保护地的分类体系构想,它们分别基于IUCN保护区分类系统、保护对象自然属性和管理目标社会属性。希望这些构想能在未来自然保护地分类体系的研究中起到抛砖引玉的作用。

Perez-Priego O, Zarco-Tejada PJ, Miller JR, Sepulcre-Canto G, Fereres E. (2005).

Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence in-filling of the O2-A band

IEEE Transactions on Geoscience and Remote Sensing, 43, 2860-2869.

DOI:10.1109/TGRS.2005.857906      URL     [本文引用: 1]

Peterson RB, Oja V, Eichelmann H, Bichele I, Dall’Osto L, Laisk A. (2014).

Fluorescence F0 of photosystems II and I in developing C3 and C4 leaves, and implications on regulation of excitation balance

Photosynthesis Research, 122, 41-56.

DOI:10.1007/s11120-014-0009-5      PMID:24817180      [本文引用: 1]

This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25-0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20-50 mg m(-2)) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m(-2). The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.

Pierrat Z, Magney T, Parazoo NC, Grossmann K, Bowling DR, Seibt U, Johnson B, Helgason W, Barr A, Bortnik J, Norton A, Maguire A, Frankenberg C, Stutz J. (2022).

Diurnal and seasonal dynamics of solar-induced chlorophyll fluorescence, vegetation indices, and gross primary productivity in the boreal forest

Journal of Geophysical Research: Biogeosciences, 127, e2021JG006588. DOI: 10.1029/2021jg006588.

DOI:10.1029/2021jg006588      [本文引用: 1]

Pinto F, Celesti M, Acebron K, Alberti G, Cogliati S, Colombo R, Juszczak R, Matsubara S, Miglietta F, Palombo A, Panigada C, Pignatti S, Rossini M, Sakowska K, Schickling A, et al. (2020).

Dynamics of Sun-induced chlorophyll fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis

Plant, Cell & Environment, 43, 1637-1654.

[本文引用: 1]

Pinto F, Damm A, Schickling A, Panigada C, Cogliati S, Müller-Linow M, Balvora A, Rascher U. (2016).

Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies

Plant, Cell & Environment, 39, 1500-1512.

[本文引用: 3]

Plascyk JA. (1975).

The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence

Optical Engineering, 14, 339-346.

[本文引用: 1]

Platt U, Stutz J. (2008).

Differential absorption spectroscopy

// Physics Editorial Department. Physics of Earth and Space Environments. Springer, Berlin. 135-174.

[本文引用: 1]

Porcar-Castell A, Malenovský Z, Magney T, van Wittenberghe S, Fernández-Marín B, Maignan F, Zhang YG, Maseyk K, Atherton J, Albert LP, Robson TM, Zhao F, Garcia-Plazaola JI, Ensminger I, Rajewicz PA, et al. (2021).

Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science

Nature Plants, 7, 998-1009.

DOI:10.1038/s41477-021-00980-4      PMID:34373605      [本文引用: 7]

For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.© 2021. Springer Nature Limited.

Porcar-Castell A, Tyystjärvi E, Atherton J, van der Tol C, Flexas J, Pfündel EE, Moreno J, Frankenberg C, Berry JA. (2014).

Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges

Journal of Experimental Botany, 65, 4065-4095.

DOI:10.1093/jxb/eru191      PMID:24868038      [本文引用: 5]

Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Qin QM, Chen J, Zhang YG, Ren HZ, Wu ZH, Zhang CS, Wu LS, Liu JL. (2020).

A discussion on some frontier directions of quantitative remote sensing

Remote Sensing for Land & Resources, 32, 8-15.

[本文引用: 1]

[秦其明, 陈晋, 张永光, 任华忠, 吴自华, 张赤山, 吴霖升, 刘见礼 (2020).

定量遥感若干前沿方向探讨

国土资源遥感, 32, 8-15.]

[本文引用: 1]

Qin YW, Xiao XM, Wigneron JP, Ciais P, Canadell JG, Brandt M, Li XJ, Fan L, Wu XC, Tang H, Dubayah R, Doughty R, Crowell S, Zheng B, Moore B III. (2022).

Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019-2020

Remote Sensing of Environment, 278, 113087. DOI: 10.1016/j.rse.2022.113087.

DOI:10.1016/j.rse.2022.113087      [本文引用: 1]

Qiu B, Chen JM, Ju WM, Zhang Q, Zhang YG. (2019).

Simulating emission and scattering of solar-induced chlorophyll fluorescence at far-red band in global vegetation with different canopy structures

Remote Sensing of Environment, 233, 111373. DOI: 10.1016/j.rse.2019.111373.

DOI:10.1016/j.rse.2019.111373      [本文引用: 1]

Qiu B, Ge J, Guo WD, Pitman AJ, Mu MY. (2020).

Responses of Australian dryland vegetation to the 2019 heat wave at a subdaily scale

Geophysical Research Letters, 47, e2019GL086569. DOI: 10.1029/2019gl086569.

DOI:10.1029/2019gl086569      [本文引用: 1]

Qiu RN, Li X, Han G, Xiao JF, Ma X, Gong W. (2022).

Monitoring drought impacts on crop productivity of the US Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv

Agricultural and Forest Meteorology, 323, 109038. DOI: 10.1016/j.agrformet.2022.109038.

DOI:10.1016/j.agrformet.2022.109038      [本文引用: 1]

Rascher U, Alonso L, Burkart A, Cilia C, Cogliati S, Colombo R, Damm A, Drusch M, Guanter L, Hanus J, Hyvärinen T, Julitta T, Jussila J, Kataja K, Kokkalis P, et al. (2015).

Sun-induced fluorescence—A new probe of photosynthesis: first maps from the imaging spectrometer HyPlant

Global Change Biology, 21, 4673-4684.

DOI:10.1111/gcb.13017      PMID:26146813      [本文引用: 1]

Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress. © 2015 John Wiley & Sons Ltd.

Rietkerk M, van de Koppel J (2008).

Regular pattern formation in real ecosystems

Trends in Ecology & Evolution, 23, 169-175.

DOI:10.1016/j.tree.2007.10.013      URL    

Rigden AJ, Salvucci GD, Entekhabi D, Short Gianotti DJ (2018).

Partitioning evapotranspiration over the continental United States using weather station data

Geophysical Research Letters, 45, 9605-9613.

DOI:10.1029/2018GL079121      URL     [本文引用: 1]

Rossini M, Nedbal L, Guanter L, A, Alonso L, Burkart A, Cogliati S, Colombo R, Damm A, Drusch M, Hanus J, Janoutova R, Julitta T, Kokkalis P, Moreno J, et al. (2015a).

Red and far red sun-induced chlorophyll fluorescence as a measure of plant photosynthesis

Geophysical Research Letters, 42, 1632-1639.

DOI:10.1002/2014GL062943      URL     [本文引用: 3]

Rossini M, Panigada C, Cilia C, Meroni M, Busetto L, Cogliati S, Amaducci S, Colombo R. (2015b).

Discriminating irrigated and rainfed maize with diurnal fluorescence and canopy temperature airborne maps

ISPRS International Journal of Geo-Information, 4, 626-646.

DOI:10.3390/ijgi4020626      URL     [本文引用: 1]

Ryu Y, Berry JA, Baldocchi DD. (2019).

What is global photosynthesis? History, uncertainties and opportunities

Remote Sensing of Environment, 223, 95-114.

DOI:10.1016/j.rse.2019.01.016      [本文引用: 2]

Quantifying global terrestrial photosynthesis is essential to understanding the global carbon cycle and the climate system. Remote sensing has played a pivotal role in advancing our understanding of photosynthesis from leaf to global scale; however, substantial uncertainties still exist. In this review, we provide a historical overview of theory, modeling, and observations of photosynthesis across space and time for decadal intervals beginning in the 1950s. Then we identify the key uncertainties in global photosynthesis estimates, including evaluating light intercepted by canopies, biophysical forcings, the structure of light use efficiency models and their parameters, like photosynthetic capacity, and relationships between sun-induced chlorophyll fluorescence and canopy photosynthesis. Finally, we review new opportunities with big data and recently launched or planned satellite missions.

Schlesinger WH, Jasechko S. (2014).

Transpiration in the global water cycle

Agricultural and Forest Meteorology, 189-190, 115-117.

[本文引用: 1]

Schreiber U, Schliwa U, Bilger W. (1986).

Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer

Photosynthesis Research, 10, 51-62.

DOI:10.1007/BF00024185      PMID:24435276      [本文引用: 2]

A newly developed fluorescence measuring system is employed for the recording of chlorophyll fluorescence induction kinetics (Kautsky-effect) and for the continuous determination of the photochemical and non-photochemical components of fluorescence quenching. The measuring system, which is based on a pulse modulation principle, selectively monitors the fluorescence yield of a weak measuring beam and is not affected even by extremely high intensities of actinic light. By repetitive application of short light pulses of saturating intensity, the fluorescence yield at complete suppression of photochemical quenching is repetitively recorded, allowing the determination of continuous plots of photochemical quenching and non-photochemical quenching. Such plots are compared with the time courses of variable fluorescence at different intensities of actinic illumination. The differences between the observed kinetics are discussed. It is shown that the modulation fluorometer, in combination with the application of saturating light pulses, provides essential information beyond that obtained with conventional chlorophyll fluorometers.

Shan N, Ju WM, Migliavacca M, Martini D, Guanter L, Chen JM, Goulas Y, Zhang YG. (2019).

Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence

Agricultural and Forest Meteorology, 268, 189-201.

DOI:10.1016/j.agrformet.2019.01.031      [本文引用: 2]

Vegetation transpiration (T) is the process of plant water loss through the stomata on the leaf surface and plays a key role in the energy and water balance of the land surface, especially with dense vegetation cover. To date, however, estimation of ecosystem-scale T is still rather uncertain mainly due to errors in modeling canopy resistance or conductance. Considering the intrinsic link between photosynthesis and chlorophyll fluorescence, the recent available remote sensing of solar-induced chlorophyll fluorescence (SIF) provides a valuable opportunity to estimate plants T at large scales. In this study, we demonstrate how remote sensing of SIF relates to canopy stomatal conductance and transpiration at diurnal and seasonal scales with continuous ground measurements of SIF at three flux sites in forest, cropland and grassland ecosystems. The results show that both ground and spaceborne SIF observations are good indicators of canopy conductance at both diurnal and seasonal scales (R-2 = 0.57 and 0.74 for forest, R-2 = 0.62 and 0.80 for cropland, R-2 = 0.52 and 0.63 for grassland, respectively). Then, empirical SIF-based canopy conductance models are employed to estimate hourly and daily transpiration. We evaluate our ecosystem T estimations against latent heat fluxes measured by eddy covariance systems with more satisfactory results for forest (R-2 = 0.57 and 0.71), and cropland (R-2 = 0.77 and 0.83) than for grassland (R-2 = 0.13 and 0.22) at hourly and daily time scales. Our results suggest the potential of remotely-sensed SIF for estimating canopy conductance and plant transpiration, but a more mechanistic understanding is needed for their link.

Shan N, Zhang YG, Chen JM, Ju WM, Migliavacca M, Peñuelas J, Yang X, Zhang ZY, Nelson JA, Goulas Y. (2021).

A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence

Remote Sensing of Environment, 252, 112134. DOI: 10.1016/j.rse.2020.112134.

DOI:10.1016/j.rse.2020.112134      [本文引用: 1]

Shi GY, Huang H, Sang YQ, Cai LL, Zhang JS, Cheng XF, Meng P, Sun SJ, Li JX, Qiao YS. (2022).

Solar-induced chlorophyll fluorescence intensity has a significant correlation with negative air ion release in forest canopy

Atmospheric Environment, 269, 118873. DOI: 10.1016/j.atmosenv.2021.118873.

DOI:10.1016/j.atmosenv.2021.118873      [本文引用: 1]

Smith WK, Biederman JA, Scott RL, Moore DJP, He M, Kimball JS, Yan D, Hudson A, Barnes ML, MacBean N, Fox AM, Litvak ME. (2018).

Chlorophyll fluorescence better captures seasonal and interannual gross primary productivity dynamics across dryland ecosystems of southwestern north America

Geophysical Research Letters, 45, 748-757.

DOI:10.1002/2017GL075922      URL     [本文引用: 2]

Smith WK, Dannenberg MP, Yan D, Herrmann S, Barnes ML, Barron-Gafford GA, Biederman JA, Ferrenberg S, Fox AM, Hudson A, Knowles JF, MacBean N, Moore DJP, Nagler PL, Reed SC, et al. (2019).

Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities

Remote Sensing of Environment, 233, 111401. DOI: 10.1016/j.rse.2019. 111401.

DOI:10.1016/j.rse.2019. 111401      [本文引用: 1]

Song L, Guanter L, Guan KY, You LZ, Huete A, Ju WM, Zhang YG. (2018).

Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains

Global Change Biology, 24, 4023-4037.

DOI:10.1111/gcb.14302      PMID:29749021      [本文引用: 3]

Extremely high temperatures represent one of the most severe abiotic stresses limiting crop productivity. However, understanding crop responses to heat stress is still limited considering the increases in both the frequency and severity of heat wave events under climate change. This limited understanding is partly due to the lack of studies or tools for the timely and accurate monitoring of crop responses to extreme heat over broad spatial scales. In this work, we use novel spaceborne data of sun-induced chlorophyll fluorescence (SIF), which is a new proxy for photosynthetic activity, along with traditional vegetation indices (Normalized Difference Vegetation Index NDVI and Enhanced Vegetation Index EVI) to investigate the impacts of heat stress on winter wheat in northwestern India, one of the world's major wheat production areas. In 2010, an abrupt rise in temperature that began in March adversely affected the productivity of wheat and caused yield losses of 6% compared to previous year. The yield predicted by satellite observations of SIF decreased by approximately 13.9%, compared to the 1.2% and 0.4% changes in NDVI and EVI, respectively. During early stage of this heat wave event in early March 2010, the SIF observations showed a significant reduction and earlier response, while NDVI and EVI showed no changes and could not capture the heat stress until late March. The spatial patterns of SIF anomalies closely tracked the temporal evolution of the heat stress over the study area. Furthermore, our results show that SIF can provide large-scale, physiology-related wheat stress response as indicated by the larger reduction in fluorescence yield (SIF ) than fraction of photosynthetically active radiation during the grain-filling phase, which may have eventually led to the reduction in wheat yield in 2010. This study implies that satellite observations of SIF have great potential to detect heat stress conditions in wheat in a timely manner and assess their impacts on wheat yields at large scales.© 2018 John Wiley & Sons Ltd.

Song Y, Wang J, Wang LX. (2020). Satellite solar-induced chlorophyll fluorescence reveals heat stress impacts on wheat yield in India. Remote Sensing, 12, 3277. DOI: 10.3390/rs12203277.

DOI:10.3390/rs12203277      [本文引用: 1]

Stoy P, El-Madany T, Fisher J, Gentine P, Gerken T, Good S, Klosterhalfen A, Liu SG, Miralles D, Pérez-Priego Ó, Rigden A, Skaggs T, Wohlfahrt G, Anderson R, Coenders-Gerrits A, et al. (2019).

Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities

Biogeosciences, 16, 3747-3775.

DOI:10.5194/bg-16-3747-2019      URL     [本文引用: 1]

Su YJ, Wu FF, Ao ZR, Jin SC, Qin F, Liu BX, Pang SX, Liu LL, Guo QH. (2019).

Evaluating maize phenotype dynamics under drought stress using terrestrial lidar

Plant Methods, 15, 1-16.

DOI:10.1186/s13007-018-0385-5      URL     [本文引用: 1]

Sun Y, Frankenberg C, Jung M, Joiner J, Guanter L, Köhler P, Magney T. (2018).

Overview of solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP

Remote Sensing of Environment, 209, 808-823.

DOI:10.1016/j.rse.2018.02.016      URL     [本文引用: 2]

Sun Y, Frankenberg C, Wood JD, Schimel DS, Jung M, Guanter L, Drewry DT, Verma M, Porcar-Castell A, Griffis TJ, Gu L, Magney TS, Köhler P, Evans B, Yuen K. (2017).

OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence

Science, 358, eaam5747. DOI: 10.1126/science.aam5747.

DOI:10.1126/science.aam5747      [本文引用: 2]

Sun Y, Fu R, Dickinson R, Joiner J, Frankenberg C, Gu LH, Xia YL, Fernando N. (2015).

Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: insights from two contrasting extreme events

Journal of Geophysical Research: Biogeosciences, 120, 2427-2440.

DOI:10.1002/2015JG003150      URL     [本文引用: 3]

Tagliabue G, Panigada C, Celesti M, Cogliati S, Colombo R, Migliavacca M, Rascher U, Rocchini D, Schüttemeyer D, Rossini M. (2020).

Sun-induced fluorescence heterogeneity as a measure of functional diversity

Remote Sensing of Environment, 247, 111934. DOI: 10.1016/j.rse.2020.111934.

DOI:10.1016/j.rse.2020.111934      [本文引用: 2]

Taiz L, Zeiger E, Møller IM, Murphy A. (2015). Plant Physiology and Development. Sinauer Associates Incorporated, Sunderland, USA.

[本文引用: 2]

Tang XG, Xiao JF, Ma MG, Yang H, Li X, Ding Z, Yu PJ, Zhang YG, Wu CY, Huang J, Thompson JR. (2022).

Satellite evidence for China’s leading role in restoring vegetation productivity over global karst ecosystems

Forest Ecology and Management, 507, 120000. DOI: 10.1016/j.foreco.2021.120000.

DOI:10.1016/j.foreco.2021.120000      [本文引用: 1]

Taylor TE, Eldering A, Merrelli A, Kiel M, Somkuti P, Cheng C, Rosenberg R, Fisher B, Crisp D, Basilio R, Bennett M, Cervantes D, Chang A, Dang L, Frankenberg C, et al. (2020).

OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals

Remote Sensing of Environment, 251, 112032. DOI: 10.1016/j.rse.2020.112032.

DOI:10.1016/j.rse.2020.112032      [本文引用: 3]

Tubuxin B, Rahimzadeh-Bajgiran P, Ginnan Y, Hosoi F, Omasa K. (2015).

Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves

Journal of Experimental Botany, 66, 5595-5603.

DOI:10.1093/jxb/erv272      PMID:26071530      [本文引用: 2]

This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. 'Sven' (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R(2) = 0.73; artificial light: R(2) = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R(2) = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R(2) = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

van der Tol C, Rossini M, Cogliati S, Verhoef W, Colombo R, Rascher U, Mohammed G. (2016).

A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops

Remote Sensing of Environment, 186, 663-677.

DOI:10.1016/j.rse.2016.09.021      URL     [本文引用: 2]

van der Tol C, Verhoef W, Timmermans J, Verhoef A, Su Z. (2009).

An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance

Biogeosciences, 6, 3109-3129.

DOI:10.5194/bg-6-3109-2009      URL     [本文引用: 1]

Verrelst J, Rivera JP, van der Tol C, Magnani F, Mohammed G, Moreno J. (2015).

Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence?

Remote Sensing of Environment, 166, 8-21.

DOI:10.1016/j.rse.2015.06.002      URL     [本文引用: 2]

von Hebel C, Matveeva M, Verweij E, Rademske P, Kaufmann M, Brogi C, Vereecken H, Rascher U, van der Kruk J. (2018).

Understanding soil and plant interaction by combining ground-based quantitative electromagnetic induction and airborne hyperspectral data

Geophysical Research Letters, 45, 7571-7579.

DOI:10.1029/2018GL078658      URL     [本文引用: 1]

Walther S, Voigt M, Thum T, Gonsamo A, Zhang YG, Köhler P, Jung M, Varlagin A, Guanter L. (2016).

Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests

Global Change Biology, 22, 2979-2996.

DOI:10.1111/gcb.13200      PMID:26683113      [本文引用: 3]

Mid-to-high latitude forests play an important role in the terrestrial carbon cycle, but the representation of photosynthesis in boreal forests by current modelling and observational methods is still challenging. In particular, the applicability of existing satellite-based proxies of greenness to indicate photosynthetic activity is hindered by small annual changes in green biomass of the often evergreen tree population and by the confounding effects of background materials such as snow. As an alternative, satellite measurements of sun-induced chlorophyll fluorescence (SIF) can be used as a direct proxy of photosynthetic activity. In this study, the start and end of the photosynthetically active season of the main boreal forests are analysed using spaceborne SIF measurements retrieved from the GOME-2 instrument and compared to that of green biomass, proxied by vegetation indices including the Enhanced Vegetation Index (EVI) derived from MODIS data. We find that photosynthesis and greenness show a similar seasonality in deciduous forests. In high-latitude evergreen needleleaf forests, however, the length of the photosynthetically active period indicated by SIF is up to 6 weeks longer than the green biomass changing period proxied by EVI, with SIF showing a start-of-season of approximately 1 month earlier than EVI. On average, the photosynthetic spring recovery as signalled by SIF occurs as soon as air temperatures exceed the freezing point (2-3 °C) and when the snow on the ground has not yet completely melted. These findings are supported by model data of gross primary production and a number of other studies which evaluated in situ observations of CO2 fluxes, meteorology and the physiological state of the needles. Our results demonstrate the sensitivity of space-based SIF measurements to light-use efficiency of boreal forests and their potential for an unbiased detection of photosynthetic activity even under the challenging conditions interposed by evergreen boreal ecosystems.© 2015 John Wiley & Sons Ltd.

Wang C, Beringer J, Hutley L, Cleverly J, Li J, Liu QH, Sun Y. (2019a).

Phenology dynamics of dryland ecosystems along the north Australian tropical transect revealed by satellite solar-induced chlorophyll fluorescence

Geophysical Research Letters, 46, 5294-5302.

DOI:10.1029/2019GL082716      URL     [本文引用: 1]

Wang J, Zhong XM, Lv XL, Shi ZS, Li FH. (2018).

Photosynthesis and physiology responses of paired near-isogenic lines in waxy maize (Zea mays L.) to nicosulfuron

Photosynthetica, 56, 1059-1068.

DOI:10.1007/s11099-018-0816-6      URL     [本文引用: 1]

Wang MY, Luo Y, Zhang ZY, Xie QY, Wu XD, Ma XL. (2022).

Recent advances in remote sensing of vegetation phenology: retrieval algorithm and validation strategy

National Remote Sensing Bulletin, 26, 431-455.

[本文引用: 1]

[王敏钰, 罗毅, 张正阳, 谢巧云, 吴小丹, 马轩龙 (2022).

植被物候参数遥感提取与验证方法研究进展

遥感学报, 26, 431-455.]

[本文引用: 1]

Wang N, Suomalainen J, Bartholomeus H, Kooistra L, Masiliūnas D, Clevers JGPW. (2021).

Diurnal variation of Sun-induced chlorophyll fluorescence of agricultural crops observed from a point-based spectrometer on a UAV.

International Journal of Applied Earth Observation and Geoinformation, 96, 102276. DOI: 10.1016/j.jag.2020.102276.

DOI:10.1016/j.jag.2020.102276      [本文引用: 2]

Wang SH, Huang CP, Zhang LF, Gao XL, Fu AM. (2019).

Designment and assessment of far-red solar-induced chlorophyll fluorescence retrieval method for the terrestrial ecosystem carbon inventory satellite

Remote Sensing Technology and Application, 34, 476-487.

[本文引用: 1]

[王思恒, 黄长平, 张立福, 高显连, 付安民 (2019).

陆地生态系统碳监测卫星远红波段叶绿素荧光反演算法设计

遥感技术与应用, 34, 476-487.]

[本文引用: 1]

Wang SH, Ju WM, Peñuelas J, Cescatti A, Zhou YY, Fu YS, Huete A, Liu M, Zhang YG. (2019b).

Urban-rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons

Nature Ecology & Evolution, 3, 1076-1085.

[本文引用: 3]

Wang SH, Zhang YG, Ju W, Chen J, Ciais P, Cescatti A, Sardans J, Janssens I, Wu MS, Berry J, Campbell E, Fernández-Martínez M, Alkama R, Sitch S, Friedlingstein P, et al. (2020).

Recent global decline of CO2 fertilization effects on vegetation photosynthesis

Science, 370, 1295-1300.

DOI:10.1126/science.abb7772      URL     [本文引用: 1]

Wang X, Biederman JA, Knowles JF, Scott RL, Turner AJ, Dannenberg MP, Köhler P, Frankenberg C, Litvak ME, Flerchinger GN, Law BE, Kwon H, Reed SC, Parton WJ, Barron-Gafford GA, Smith WK. (2022).

Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics

Remote Sensing of Environment, 270, 112858. DOI: 10.1016/j.rse.2021.112858.

DOI:10.1016/j.rse.2021.112858     

Wang XR, Qiu B, Li WK, Zhang Q. (2019c).

Impacts of drought and heatwave on the terrestrial ecosystem in China as revealed by satellite solar-induced chlorophyll fluorescence

Science of the Total Environment, 693, 133627. DOI: 10.1016/j.scitotenv.2019.133627.

DOI:10.1016/j.scitotenv.2019.133627      [本文引用: 1]

Wang YJ, Frankenberg C. (2022).

On the impact of canopy model complexity on simulated carbon, water, and solar-induced chlorophyll fluorescence fluxes

Biogeosciences, 19, 29-45.

DOI:10.5194/bg-19-29-2022      URL     [本文引用: 2]

Wen J, Köhler P, Duveiller G, Parazoo NC, Magney TS, Hooker G, Yu L, Chang CY, Sun Y. (2020).

A framework for harmonizing multiple satellite instruments to generate a long-term global high spatial-resolution solar-induced chlorophyll fluorescence (SIF)

Remote Sensing of Environment, 239, 111644. DOI: 10.1016/j.rse.2020.111644.

DOI:10.1016/j.rse.2020.111644      [本文引用: 2]

Wieneke S, Ahrends H, Damm A, Pinto F, Stadler A, Rossini M, Rascher U. (2016).

Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: implications for improved estimates of gross primary productivity

Remote Sensing of Environment, 184, 654-667.

DOI:10.1016/j.rse.2016.07.025      URL     [本文引用: 2]

Wieneke S, Burkart A, Cendrero-Mateo MP, Julitta T, Rossini M, Schickling A, Schmidt M, Rascher U. (2018).

Linking photosynthesis and sun-induced fluorescence at sub-daily to seasonal scales

Remote Sensing of Environment, 219, 247-258.

DOI:10.1016/j.rse.2018.10.019      URL     [本文引用: 3]

Wolanin A, Rozanov VV, Dinter T, Noël S, Vountas M, Burrows JP, Bracher A. (2015).

Global retrieval of marine and terrestrial chlorophyll fluorescence at its red peak using hyperspectral top of atmosphere radiance measurements: feasibility study and first results

Remote Sensing of Environment, 166, 243-261.

DOI:10.1016/j.rse.2015.05.018      URL     [本文引用: 1]

Wu JP, Su YX, Chen XZ, Liu LY, Yang XQ, Gong FX, Zhang HO, Xiong X, Zhang DQ. (2021).

Leaf shedding of Pan-Asian tropical evergreen forests depends on the synchrony of seasonal variations of rainfall and incoming solar radiation

Agricultural and Forest Meteorology, 311, 108691. DOI: 10.1016/j.agrformet.2021.108691.

DOI:10.1016/j.agrformet.2021.108691      [本文引用: 1]

Wu LS, Wang L, Shi C, Yin DM. (2022a).

Detecting mangrove photosynthesis with solar-induced chlorophyll fluorescence

International Journal of Remote Sensing, 43, 1037-1053.

DOI:10.1080/01431161.2022.2032457      URL     [本文引用: 4]

Wu LS, Zhang XK, Rossini M, Wu YF, Zhang ZY, Zhang YG. (2022b).

Physiological dynamics dominate the response of canopy far-red solar-induced fluorescence to herbicide treatment

Agricultural and Forest Meteorology, 323, 109063. DOI: 10.1016/j.agrformet.2022.109063.

DOI:10.1016/j.agrformet.2022.109063      [本文引用: 2]

Xia JY, Lu RL, Zhu C, Cui EQ, Du Y, Huang K, Sun BY. (2020).

Response and adaptation of terrestrial ecosystem processes to climate warming

Chinese Journal of Plant Ecology, 44, 494-514.

DOI:10.17521/cjpe.2019.0323      URL     [本文引用: 1]

[夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉 (2020).

陆地生态系统过程对气候变暖的响应与适应

植物生态学报, 44, 494-514.]

DOI:10.17521/cjpe.2019.0323      [本文引用: 1]

陆地生态系统包含一系列时空连续、尺度多元且互相联系的生态学过程。由于大部分生态学过程都受到温度调控,因此气候变暖会对全球陆地生态系统产生深远的影响。近年来,全球变化生态学的基本科学问题之一是陆地生态系统的关键过程如何响应与适应全球气候变暖。围绕该问题,本文梳理了近年来的研究进展,重点关注植物生理生态过程、物候期、群落动态、生产力及其分配、凋落物与土壤有机质分解、养分循环等过程对温度升高的响应与适应机理。通过定量分析近二十年来发表于主流期刊的相关论文,展望了该领域的前沿方向,包括物种性状对生态系统过程的预测能力、生物地球化学循环的耦合过程、极端高温与低温事件的响应与适应机理、不对称气候变暖的影响机理和基于过程的生态系统模拟预测等。基于这些研究进展,本文建议进一步研究陆地生态系统如何适应气候变暖,更多关注我国的特色生态系统类型,并整合实验、观测或模型等研究手段开展跨尺度的合作研究。

Xiao JF, Fisher JB, Hashimoto H, Ichii K, Parazoo NC. (2021).

Emerging satellite observations for diurnal cycling of ecosystem processes

Nature Plants, 7, 877-887.

DOI:10.1038/s41477-021-00952-8      PMID:34211130      [本文引用: 4]

Diurnal cycling of plant carbon uptake and water use, and their responses to water and heat stresses, provide direct insight into assessing ecosystem productivity, agricultural production and management practices, carbon and water cycles, and feedbacks to the climate. Temperature, light, atmospheric water demand, soil moisture and leaf water potential vary over the course of the day, leading to diurnal variations in stomatal conductance, photosynthesis and transpiration. Earth observations from polar-orbiting satellites are incapable of studying these diurnal variations. Here, we review the emerging satellite observations that have the potential for studying how plant functioning and ecosystem processes vary over the course of the diurnal cycle. The recently launched ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and Orbiting Carbon Observatory-3 (OCO-3) provide land surface temperature, evapotranspiration (ET), gross primary production (GPP) and solar-induced chlorophyll fluorescence data at different times of day. New generation operational geostationary satellites such as Himawari-8 and the GOES-R series can provide continuous, high-frequency data of land surface temperature, solar radiation, GPP and ET. Future satellite missions such as GeoCarb, TEMPO and Sentinel-4 are also planned to have diurnal sampling capability of solar-induced chlorophyll fluorescence. We explore the unprecedented opportunities for characterizing and understanding how GPP, ET and water use efficiency vary over the course of the day in response to temperature and water stresses, and management practices. We also envision that these emerging observations will revolutionize studies of plant functioning and ecosystem processes in the context of climate change and that these observations and findings can inform agricultural and forest management and lead to improvements in Earth system models and climate projections.

Xie XM, He B, Guo LL, Huang L, Hao XM, Zhang YF, Liu XB, Tang R, Wang SF. (2022).

Revisiting dry season vegetation dynamics in the Amazon rainforest using different satellite vegetation datasets

Agricultural and Forest Meteorology, 312, 108704. DOI: 10.1016/j.agrformet.2021.108704.

DOI:10.1016/j.agrformet.2021.108704      [本文引用: 2]

Xu S, Atherton J, Riikonen A, Zhang C, Oivukkamäki J, MacArthur A, Honkavaara E, Hakala T, Koivumäki N, Liu ZG, Porcar-Castell A. (2021).

Structural and photosynthetic dynamics mediate the response of SIF to water stress in a potato crop

Remote Sensing of Environment, 263, 112555. DOI: 10.1016/j.rse.2021.112555.

DOI:10.1016/j.rse.2021.112555      [本文引用: 1]

Xu S, Liu ZG, Zhao L, Zhao HR, Ren SX. (2018).

Diurnal response of sun-induced fluorescence and PRI to water stress in maize using a near-surface remote sensing platform

Remote Sensing, 10, 1510. DOI: 10.3390/rs10101510.

DOI:10.3390/rs10101510      [本文引用: 2]

Yan S, Zhang L, Jing YS, He HL, Yu GR. (2014).

Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration

Chinese Journal of Plant Ecology, 38, 640-652.

DOI:10.3724/SP.J.1258.2014.00060      [本文引用: 1]

Aims Maximum leaf carboxylation rate is one of the key parameters determining the photosynthetic capacity of plants. It is affected by irradiance, temperature, moisture, atmospheric CO2 concentration, leaf nitrogen content, and some other factors. Accurate simulation of the responses of the maximum leaf carboxylation rate to varying environmental conditions is the premise for predicting the changes in vegetation productivity and carbon cycle in future environments. Most of the process-based terrestrial carbon cycle models use the Farqhuar photosynthesis model to simulate plant photosynthesis. However, the methods in simulating the relationship between maximum leaf carboxylation rate and leaf nitrogen content differ from each other. Methods We collected data on maximum leaf carboxylation rate and leaf nitrogen content from literature published during 1990-2013, and analyzed the variations in the relationship between maximum leaf carboxylation rate at 25 ℃ (Vcmax,25) and area-based leaf nitrogen concentration (Na) across different plant functional types and seasons, and in responses to rising atmospheric CO2 and nitrogen supply. Moreover, we reviewed possible causes of those variations and the influencing factors. Important findings The results showed that: 1) the relationship between Vcmax,25 and Na varied with plant functional types, and the average values of the slope ranged from 16.29 to 50.25 μmol CO2·g N-1·s-1. Deciduous trees generally showed a steeper slope and greater photosynthetic nitrogen use efficiency than evergreen trees due to the differences in leaf mass per area (LMA) and nitrogen allocation to Rubisco. 2) The relationship between Vcmax,25 and Na had seasonal and annual variations. In years without water stress, the highest value of the slope mostly occurred in spring or summer. A change of the slope was related to seasonal variations in LMA and nitrogen allocation to Rubisco. The slope increased in drought seasons or years. 3) The slope of the linear relationship between Vcmax,25 and Na for perennial needle leaf was reduced due to a decrease in Rubisco content in response to elevated CO2. The maximum leaf carboxylation rate, nitrogen content, and the slope of their linear relationship increased with increment of nitrogen application rate. On the basis of these analyses, we suggest that simulating the relationship between maximum leaf carboxylation and leaf nitrogen should consider seasonal variations in LMA and nitrogen allocation to Rubisco, the influences of water stress, atmospheric CO2 concentration, and nitrogen supply level. More multi-factor experimental studies are needed to further investigate the underlying mechanisms of the variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen content, to obtain more observational data with systematic approaches, and thus to further improve ecosystem process-based models.

[闫霜, 张黎, 景元书, 何洪林, 于贵瑞 (2014).

植物叶片最大羧化速率与叶氮含量关系的变异性

植物生态学报, 38, 640-652.]

DOI:10.3724/SP.J.1258.2014.00060      [本文引用: 1]

叶片最大羧化速率是表征植物光合能力的关键参数, 受到光照、温度、水分、CO<sub>2</sub>浓度、叶片氮含量等多个要素的控制。准确地模拟植物叶片最大羧化速率对环境因子的响应是预测未来植被生产力和碳循环过程的前提。目前大多数陆地碳循环过程模型以Farqhuar光合作用模型为基础模拟植物的光合作用, 关于植物叶片的最大羧化速率与叶氮含量关系的模拟方法却各不相同。该文汇总了1990-2013年国内外植物叶片光合速率观测研究文献中叶片最大羧化速率与叶氮含量的关系式及相关数据, 分析了叶片最大羧化速率与叶氮含量关系随不同植被功能型和时间的变化特征, 以及环境因子变化条件下最大羧化速率与叶氮含量关系的变化特征, 探讨了二者关系变异性的可能原因以及影响因子。结果表明: 1)不同功能型植物叶片的最大羧化速率和叶氮含量的关系存在较大差异, 二者线性关系式的斜率平均值变化范围为16.29-50.25 μmol CO<sub>2</sub>·g N<sup>-1</sup>·s<sup>-1</sup>。落叶植被叶片的最大羧化速率随叶氮含量的变化率和光合氮利用效率一般都高于常绿植被, 其变异主要源于植物的比叶重和叶片内部氮素分配的差异。2)叶片最大羧化速率随叶氮含量的变化存在季节和年际变异。在没有受到水分胁迫的年份中, 叶片最大羧化速率随叶氮含量变化的速率一般在春季或夏季最高, 其季节变异与比叶重和叶氮在Rubisco的分配比例的季节变化有关。受到干旱的影响, 叶片最大羧化速率随叶氮含量的变化率会升高。3)当大气CO<sub>2</sub>浓度增加时, 由于叶片中Rubisco含量的降低, 多年生针叶叶片最大羧化速率和叶氮关系斜率值会出现降低; 当供氮水平增加时, 叶片最大羧化速率和叶片氮含量均表现出增加趋势, 二者线性关系的斜率也相应增加。在此基础上, 该文指出在模拟叶片最大羧化速率与叶氮含量的关系时, 应考虑叶片比叶重和叶氮在Rubisco中的分配比例的季节变异、水分胁迫、大气CO<sub>2</sub>浓度和供氮水平变化对二者关系的影响。囿于数据的有限性, 今后应进一步加强多因子控制实验研究, 深入探讨叶片最大羧化速率与叶氮含量关系的变异性机理, 并获得更系统的观测数据, 以助生态系统过程模型的改进, 提高模型的模拟精度。

Yang JC, Magney T, Albert L, Richardson AD, Frankenberg C, Stutz J, Grossmann K, Burns S, Seyednasrollah B, Blanken P, Bowling D. (2022).

Gross primary production (GPP) and red solar induced fluorescence (SIF) respond differently to light and seasonal environmental conditions in a subalpine conifer forest

Agricultural and Forest Meteorology, 317, 108904. DOI: 10.1016/j.agrformet.2022.108904.

DOI:10.1016/j.agrformet.2022.108904      [本文引用: 1]

Yang KG, Ryu Y, Dechant B, Berry JA, Hwang Y, Jiang CY, Kang M, Kim J, Kimm H, Kornfeld A, Yang X. (2018a).

Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy

Remote Sensing of Environment, 216, 658-673.

DOI:10.1016/j.rse.2018.07.008      URL     [本文引用: 1]

Yang P, van der Tol C, Campbell P, Middleton E. (2021).

Unraveling the physical and physiological basis for the solar-induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop

Biogeosciences, 18, 441-465.

DOI:10.5194/bg-18-441-2021      URL     [本文引用: 1]

Yang PQ, van der Tol C. (2018).

Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance

Remote Sensing of Environment, 209, 456-467.

DOI:10.1016/j.rse.2018.02.029      URL     [本文引用: 1]

Yang PQ, van der Tol C, Campbell PKE, Middleton EM. (2020).

Fluorescence Correction Vegetation Index (FCVI): a physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence

Remote Sensing of Environment, 240, 111676. DOI: 10.1016/j.rse.2020.111676.

DOI:10.1016/j.rse.2020.111676      [本文引用: 1]

Yang X, Shi HY, Stovall A, Guan KY, Miao GF, Zhang YG, Zhang Y, Xiao XM, Ryu Y, Lee JE. (2018b).

FluoSpec 2—An automated field spectroscopy system to monitor canopy solar-induced fluorescence

Sensors, 18, 2063. DOI: 10.3390/s18072063.

DOI:10.3390/s18072063      [本文引用: 2]

Yang X, Tang JW, Mustard JF, Lee JE, Rossini M, Joiner J, Munger JW, Kornfeld A, Richardson AD. (2015).

Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest

Geophysical Research Letters, 42, 2977-2987.

DOI:10.1002/2015GL063201      URL     [本文引用: 4]

Yao L, Liu Y, Yang DX, Cai Z, Wang J, Lin C, Lu N, Lyu D, Tian L, Wang MH, Yin Z, Zheng YQ, Wang SS. (2022).

Retrieval of solar-induced chlorophyll fluorescence (SIF) from satellite measurements: comparison of SIF between TanSat and OCO-2

Atmospheric Measurement Techniques, 15, 2125-2137.

DOI:10.5194/amt-15-2125-2022      URL     [本文引用: 1]

Yao L, Yang DX, Liu Y, Wang J, Liu LY, Du SS, Cai ZN, Lu NM, Lyu DR, Wang MH, Yin ZS, Zheng YQ. (2021).

A new global solar-induced chlorophyll fluorescence (SIF) data product from TanSat measurements

Advances in Atmospheric Sciences, 38, 341-345.

DOI:10.1007/s00376-020-0204-6      URL     [本文引用: 1]

Yoshida Y, Joiner J, Tucker C, Berry J, Lee JE, Walker G, Reichle R, Koster R, Lyapustin A, Wang Y. (2015).

The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence: insights from modeling and comparisons with parameters derived from satellite reflectances

Remote Sensing of Environment, 166, 163-177.

DOI:10.1016/j.rse.2015.06.008      URL     [本文引用: 1]

Yu GR, Zhang L, He HL, Yang M. (2021).

A process-based model and simulation system of dynamic change and spatial variation in large-scale terrestrial ecosystems

Chinese Journal of Applied Ecology, 32, 2653-2665.

[本文引用: 1]

[于贵瑞, 张黎, 何洪林, 杨萌 (2021).

大尺度陆地生态系统动态变化与空间变异的过程模型及模拟系统

应用生态学报, 32, 2653-2665.]

DOI:10.13287/j.1001-9332.202108.040      [本文引用: 1]

当代生态系统科学研究更加关注区域生态环境及生态系统状态变化的监测、评估、预测、预警及生态环境可持续管理。在深入理解陆地生态系统的要素、过程、功能、格局及其相互作用机理基础上,发展生态系统定量化描述方法和数值模拟技术,集成构建大陆尺度的“多过程耦合-多技术集成-多目标应用”的陆地生态系统数值模拟器已成为生态系统与全球变化及其资源、环境和灾害效应科学研究的重要科技任务。本研究围绕宏观生态系统模拟分析方法问题,在回顾陆地生态系统模型研究现状和发展趋势的基础上,深入讨论开发大尺度陆地生态系统动态变化和空间变异及其资源环境效应模拟系统的理念,以及模拟系统的功能定位、结构设计等基本问题,为构造中国陆地生态系统数值模拟器提供参考。

Yu L, Wen J, Chang CY, Frankenberg C, Sun Y. (2019).

High-resolution global contiguous SIF of OCO-2

Geophysical Research Letters, 46, 1449-1458.

DOI:10.1029/2018GL081109      [本文引用: 1]

The Orbiting Carbon Observatory-2 (OCO-2) collects solar-induced chlorophyll fluorescence (SIF) at high spatial resolution along orbits ((SIF) over bar oco(2_orbit)), but its discontinuous spatial coverage precludes its full potential for understanding the mechanistic SIF-photosynthesis relationship. This study developed a spatially contiguous global OCO-2 SIF product at 0.05 degrees and 16-day resolutions ((SIF) over bar (oco2_005)) using machine learning constrained by physiological understandings. This was achieved by stratifying biomes and times for training and predictions, which accounts for varying plant physiological properties in space and time. (SIF) over bar (oco2_005) accurately preserved the spatiotemporal variations of SIFoco2_orbit across the globe. Validation of (SIf) over bar (oco2_005) with Chlorophyll Fluorescence Imaging Spectrometer airborne measurements revealed striking consistency (R-2 = 0.72; regression slope = 0.96). Further, without time and biome stratification, (1) (SIF) over bar (oco2_005) of croplands, deciduous temperate, and needleleaf forests would be underestimated during the peak season, (2) (SIF) over bar (oco2_005) of needleleaf forests would be overestimated during autumn, and (3) the capability of (SIF) over bar (oco2_005) to detect drought would be diminished. Plain Language Summary Newly available observations of solar-induced chlorophyll fluorescence (SIF) from satellite sensors represent a major step toward quantifying photosynthesis globally in real time. However, existing satellite SIF records are restricted to low spatial resolutions, sparse data acquisition, or both. These limitations impede the full capability of SIF for improving our understanding of dynamics of photosynthesis and its response to environmental changes (particularly in heterogeneous landscapes) to better support carbon source/sink attribution and verification. This study developed a novel high-resolution time series of spatially contiguous SIF for the globe, leveraging NASA's Orbiting Carbon Observatory-2 measurements. We combined machine learning algorithms with known physiological constraints for this effort. Comparison with independent airborne SIF measurements revealed strong consistency, confirming the high quality of this new SIF data set. The high-resolution and global contiguous coverage of this data set will greatly enhance the synergy between satellite SIF and photosynthesis measured on the ground at consistent spatial scales. Potential applications with this data set include advancing dynamic drought monitoring and mitigation, informing agricultural planning and yield estimation in a more spatially explicit way, and providing a benchmark for upcoming satellite missions with SIF capabilities at higher spatial resolutions.

Yue YM, Wang KL, Zhang B, Chen ZC. (2008).

Applications of hyperspectral remote sensing in ecosystem: a review

Remote Sensing Technology and Application, 23, 471-478.

[本文引用: 1]

[岳跃民, 王克林, 张兵, 陈正超 (2008).

高光谱遥感在生态系统研究中的应用进展

遥感技术与应用, 23, 471-478.]

[本文引用: 1]

Zarco-Tajeda PJ, Miller JR, Haboudane D, Tremblay N, Apostol S. (2003).

Detection of chlorophyll fluorescence in vegetation from airborne hyperspectral CASI imagery in the red edge spectral region

//IEEE. 2003 IEEE International Geoscience and Remote Sensing Symposium Proceedings. IEEE, Toulouse, France. 598-600.

[本文引用: 1]

Zarco-Tejada PJ, Berni JAJ, Suárez L, Sepulcre-Cantó G, Morales F, Miller JR. (2009).

Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection

Remote Sensing of Environment, 113, 1262-1275.

DOI:10.1016/j.rse.2009.02.016      URL     [本文引用: 1]

Zarco-Tejada PJ, González-Dugo V, Berni JAJ. (2012).

Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera

Remote Sensing of Environment, 117, 322-337.

DOI:10.1016/j.rse.2011.10.007      URL     [本文引用: 1]

Zarco-Tejada PJ, Poblete T, Camino C, Gonzalez-Dugo V, Calderon R, Hornero A, Hernandez-Clemente R, Román-Écija M, Velasco-Amo MP, Landa BB, Beck PSA, Saponari M, Boscia D, Navas-Cortes JA. (2021).

Divergent abiotic spectral pathways unravel pathogen stress signals across species

Nature Communications, 12, 6088. DOI: 10.1038/s41467-021-26335-3.

DOI:10.1038/s41467-021-26335-3      [本文引用: 2]

Zeng YL, Badgley G, Chen M, Li J, Anderegg LDL, Kornfeld A, Liu QH, Xu BD, Yang B, Yan K, Berry JA. (2020).

A radiative transfer model for solar induced fluorescence using spectral invariants theory

Remote Sensing of Environment, 240, 111678. DOI: 10.1016/j.rse.2020.111678.

DOI:10.1016/j.rse.2020.111678      [本文引用: 1]

Zeng YL, Badgley G, Dechant B, Ryu Y, Chen M, Berry JA. (2019).

A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence

Remote Sensing of Environment, 232, 111209. DOI: 10.1016/j.rse.2019.05.028.

DOI:10.1016/j.rse.2019.05.028      [本文引用: 1]

Zeng YL, Chen M, Hao DL, Damm A, Badgley G, Rascher U, Johnson JE, Dechant B, Siegmann B, Ryu Y, Qiu H, Krieger V, Panigada C, Celesti M, Miglietta F, et al. (2022a).

Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses

Remote Sensing of Environment, 270, 112856. DOI: 10.1016/j.rse.2021.112856.

DOI:10.1016/j.rse.2021.112856      [本文引用: 4]

Zeng YL, Hao DL, Huete A, Dechant B, Berry J, Chen JM, Joiner J, Frankenberg C, Bond-Lamberty B, Ryu Y, Xiao JF, Asrar GR, Chen M. (2022b).

Optical vegetation indices for monitoring terrestrial ecosystems globally

Nature Reviews Earth & Environment, 3, 477-493.

[本文引用: 1]

Zhang LF, Qiao N, Huang CP, Wang SH. (2019a).

Monitoring drought effects on vegetation productivity using satellite solar-induced chlorophyll fluorescence

Remote Sensing, 11, 378. DOI: 10.3390/rs11040378.

DOI:10.3390/rs11040378      [本文引用: 1]

Zhang XK, Zhang ZY, Zhang YG, Zhang Q, Liu XJ, Chen JD, Wu YF, Wu LS. (2022a).

Influences of fractional vegetation cover on the spatial variability of canopy SIF from unmanned aerial vehicle observations

International Journal of Applied Earth Observation and Geoinformation, 107, 102712. DOI: 10.1016/j.jag.2022.102712.

DOI:10.1016/j.jag.2022.102712      [本文引用: 1]

Zhang Y, Joiner J, Alemohammad SH, Zhou S, Gentine P. (2018a).

A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks

Biogeosciences, 15, 5779-5800.

DOI:10.5194/bg-15-5779-2018      URL     [本文引用: 3]

Zhang Y, Xiao XM, Wolf S, Wu JY, Wu XC, Gioli B, Wohlfahrt G, Cescatti A, Tol C, Zhou S, Gough C, Gentine P, Zhang YG, Steinbrecher R, Ardö J. (2018b).

Spatio-temporal convergence of maximum daily light-use efficiency based on radiation absorption by canopy chlorophyll

Geophysical Research Letters, 45, 3508-3519.

DOI:10.1029/2017GL076354      URL     [本文引用: 2]

Zhang YG, Guanter L, Berry JA, Joiner J, van der Tol C, Huete A, Gitelson A, Voigt M, Köhler P. (2014).

Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models

Global Change Biology, 20, 3727-3742.

DOI:10.1111/gcb.12664      PMID:24953485      [本文引用: 1]

Photosynthesis simulations by terrestrial biosphere models are usually based on the Farquhar's model, in which the maximum rate of carboxylation (Vcmax ) is a key control parameter of photosynthetic capacity. Even though Vcmax is known to vary substantially in space and time in response to environmental controls, it is typically parameterized in models with tabulated values associated to plant functional types. Remote sensing can be used to produce a spatially continuous and temporally resolved view on photosynthetic efficiency, but traditional vegetation observations based on spectral reflectance lack a direct link to plant photochemical processes. Alternatively, recent space-borne measurements of sun-induced chlorophyll fluorescence (SIF) can offer an observational constraint on photosynthesis simulations. Here, we show that top-of-canopy SIF measurements from space are sensitive to Vcmax at the ecosystem level, and present an approach to invert Vcmax from SIF data. We use the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model to derive empirical relationships between seasonal Vcmax and SIF which are used to solve the inverse problem. We evaluate our Vcmax estimation method at six agricultural flux tower sites in the midwestern US using spaced-based SIF retrievals. Our Vcmax estimates agree well with literature values for corn and soybean plants (average values of 37 and 101 μmol m(-2)  s(-1), respectively) and show plausible seasonal patterns. The effect of the updated seasonally varying Vcmax parameterization on simulated gross primary productivity (GPP) is tested by comparing to simulations with fixed Vcmax values. Validation against flux tower observations demonstrate that simulations of GPP and light use efficiency improve significantly when our time-resolved Vcmax estimates from SIF are used, with R(2) for GPP comparisons increasing from 0.85 to 0.93, and for light use efficiency from 0.44 to 0.83. Our results support the use of space-based SIF data as a proxy for photosynthetic capacity and suggest the potential for global, time-resolved estimates of Vcmax. © 2014 John Wiley & Sons Ltd.

Zhang YG, Guanter L, Berry JA, van der Tol C, Yang X, Tang JW, Zhang FM. (2016).

Model-based analysis of the relationship between Sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications

Remote Sensing of Environment, 187, 145-155.

DOI:10.1016/j.rse.2016.10.016      URL     [本文引用: 1]

Zhang YG, Guanter L, Joiner J, Song L, Guan KY. (2018c).

Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data

Remote Sensing of Environment, 210, 362-374.

DOI:10.1016/j.rse.2018.03.031      URL     [本文引用: 1]

Zhang YG, Zhang Q, Liu LY, Zhang YJ, Wang SQ, Ju WM, Zhou GS, Zhou L, Tang JW, Zhu XD, Wang F, Huang Y, Zhang ZZ, Qiu B, Zhang XK, et al. (2021a).

ChinaSpec: a network for long-term ground-based measurements of solar-induced fluorescence in China

Journal of Geophysical Research: Biogeosciences, 126, e2020JG006042. DOI: 10.1029/2020jg006042.

DOI:10.1029/2020jg006042      [本文引用: 1]

Zhang YJ, Fan CK, Huang K, Liu YJ, Zu JX, Zhu JT. (2017).

Opportunities and challenges in remote sensing applications to ecosystem ecology

Chinese Journal of Ecology, 36, 809-823.

[本文引用: 1]

[张扬建, 范春捆, 黄珂, 刘瑶杰, 俎佳星, 朱军涛 (2017).

遥感在生态系统生态学上应用的机遇与挑战

生态学杂志, 36, 809-823.]

[本文引用: 1]

Zhang YM, Zhou GS. (2012).

Advances in leaf maximum carboxylation rate and its response to environmental factors

Acta Ecologica Sinica, 32, 5907-5917.

DOI:10.5846/stxb201108091168      URL     [本文引用: 1]

[张彦敏, 周广胜 (2012).

植物叶片最大羧化速率及其对环境因子响应的研究进展

生态学报, 32, 5907-5917.]

[本文引用: 1]

Zhang ZX, Xu W, Qin QM, Chen YJ. (2020a).

Monitoring and assessment of agricultural drought based on solar-induced chlorophyll fluorescence during growing season in North China Plain

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 775-790.

DOI:10.1109/JSTARS.2020.3032414      URL     [本文引用: 1]

Zhang ZY, Wang SH, Qiu B, Song L, Zhang YG. (2019).

Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application

Journal of Remote Sensing, 23, 37-52.

[本文引用: 2]

[章钊颖, 王松寒, 邱博, 宋练, 张永光 (2019).

日光诱导叶绿素荧光遥感反演及碳循环应用进展

遥感学报, 23, 37-52.]

[本文引用: 2]

Zhang ZY, Zhang XK, Albert PC, Chen JM, Ju WM, Wu LS, Wu YF, Zhang YG. (2022b).

Sun-induced chlorophyll fluorescence is more strongly related to photosynthesis with hemispherical than nadir measurements: evidence from field observations and model simulations

Remote Sensing of Environment, 279, 113118. DOI: 10.1016/j.rse.2022.113118.

DOI:10.1016/j.rse.2022.113118      [本文引用: 2]

Zhang ZY, Zhang YG, Joiner J, Migliavacca M. (2018d).

Angle matters: Bidirectional effects impact the slope of relationship between gross primary productivity and sun-induced chlorophyll fluorescence from Orbiting Carbon Observatory-2 across biomes

Global Change Biology, 24, 5017-5020.

DOI:10.1111/gcb.14427      URL     [本文引用: 1]

Zhang ZY, Zhang YG, Porcar-Castell A, Joiner J, Guanter L, Yang X, Migliavacca M, Ju WM, Sun ZG, Chen SP, Martini D, Zhang Q, Li ZH, Cleverly J, Wang HZ, Goulas Y. (2020b).

Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence

Remote Sensing of Environment, 240, 111722. DOI: 10.1016/j.rse.2020.111722.

DOI:10.1016/j.rse.2020.111722      [本文引用: 1]

Zhang ZY, Zhang YG, Zhang Q, Chen JM, Porcar-Castell A, Guanter L, Wu YF, Zhang XK, Wang HZ, Ding DW, Li ZY. (2020c).

Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies

Agricultural and Forest Meteorology, 295, 108147. DOI: 10.1016/j.agrformet.2020.108147.

DOI:10.1016/j.agrformet.2020.108147      [本文引用: 1]

Zhang ZZ, Chen JM, Guanter L, He LM, Zhang YG. (2019b).

From canopy-leaving to total canopy far-red fluorescence emission for remote sensing of photosynthesis: first results from TROPOMI

Geophysical Research Letters, 46, 12030-12040.

DOI:10.1029/2019GL084832      URL     [本文引用: 1]

Zhang ZZ, Zhang YG, Chen JM, Ju WM, Migliavacca M, El-Madany TS. (2021b).

Sensitivity of estimated total canopy SIF emission to eemotely sensed LAI and BRDF products

Journal of Remote Sensing, 1, 145-162.

[本文引用: 1]

Zhang, Zhang, Li, Wu, Zhang (2019c).

Comparison of Bi-hemispherical and hemispherical-conical configurations for in situ measurements of solar-induced chlorophyll fluorescence

Remote Sensing, 11, 2642. DOI: 10.3390/rs11222642.

DOI:10.3390/rs11222642      [本文引用: 2]

Zhao DY, Hou YQ, Zhang ZY, Wu YF, Zhang XK, Wu LS, Zhu XL, Zhang YG. (2022a).

Temporal resolution of vegetation indices and solar-induced chlorophyll fluorescence data affects the accuracy of vegetation phenology estimation: a study using in situ measurements

Ecological Indicators, 136, 108673. DOI: 10.1016/j.ecolind.2022.108673.

DOI:10.1016/j.ecolind.2022.108673      [本文引用: 3]

Zhao F, Guo YQ, Verhoef W, Gu XF, Liu LY, Yang GJ. (2014).

A method to reconstruct the solar-induced canopy fluorescence spectrum from hyperspectral measurements

Remote Sensing, 6, 10171-10192.

DOI:10.3390/rs61010171      URL     [本文引用: 2]

Zhao F, Li R, Verhoef W, Cogliati S, Liu XJ, Huang YB, Guo YQ, Huang JX. (2018).

Reconstruction of the full spectrum of solar-induced chlorophyll fluorescence: intercomparison study for a novel method

Remote Sensing of Environment, 219, 233-246.

DOI:10.1016/j.rse.2018.10.021      URL     [本文引用: 1]

Zhao F, Li ZJ, Verhoef W, Fan CR, Luan HX, Yin TG, Zhang J, Liu ZQ, Tong CM, Bao YF. (2022b).

Simulation of solar-induced chlorophyll fluorescence by modeling radiative coupling between vegetation and atmosphere with WPS.

Remote Sensing of Environment, 277, 113075. DOI: 10.1016/j.rse.2022.113075.

DOI:10.1016/j.rse.2022.113075      [本文引用: 1]

Zheng SX, Shangguan ZP. (2007).

Photosynthetic characteristics and their relationships with leaf nitrogen content and leaf mass per area in different plant functional types

Acta Ecologica Sinica, 27, 171-181.

[本文引用: 1]

[郑淑霞, 上官周平 (2007).

不同功能型植物光合特性及其与叶氮含量、比叶重的关系

生态学报, 27, 171-181.]

[本文引用: 1]

Zhou L, Chi YG, Liu XT, Dai XQ, Yang FT. (2020).

Land surface phenology tracked by remotely sensed sun-induced chlorophyll fluorescence in subtropical evergreen coniferous forests

Acta Ecologica Sinica, 40, 4114-4125.

[本文引用: 1]

[周蕾, 迟永刚, 刘啸添, 戴晓琴, 杨风亭 (2020).

日光诱导叶绿素荧光对亚热带常绿针叶林物候的追踪

生态学报, 40, 4114-4125.]

[本文引用: 1]

Zhou YY. (2022).

Understanding urban plant phenology for sustainable cities and planet

Nature Climate Change, 12, 302-304.

DOI:10.1038/s41558-022-01331-7      URL     [本文引用: 2]

Zhu XD, Hou YW, Zhang YG, Lu XL, Liu ZQ, Weng QH. (2021).

Potential of Sun-induced chlorophyll fluorescence for indicating mangrove canopy photosynthesis

Journal of Geophysical Research: Biogeosciences, 126, e2020JG006159. DOI: 10.1029/2020jg006159.

DOI:10.1029/2020jg006159      [本文引用: 1]

/