Chin J Plan Ecolo ›› 2003, Vol. 27 ›› Issue (4): 441-447.doi: 10.17521/cjpe.2003.0063

• Research Articles • Previous Articles     Next Articles

Responses of Soil Respiration to Temperature in Eleven Communities in Xilingol Grassland, Inner Mongolia

CHEN Quan-Sheng, LI Ling Hao, HAN Xing-Guo, YAN Zhi-Dan, WANG Yan-Fen, ZHANG Yan, YUAN Zhi-You, TANG Fang   

  • Online:2015-11-04 Published:2003-04-10
  • Contact: SUN Wei


Soil surface carbon dioxide flux, the sum of plant and microbial respiration, is an important component of the carbon cycle of terrestrial ecosystems. Temperature is a key factor that regulates many terrestrial biogeochemical processes, such as soil respiration. Numerous studies show that soil respiration increases with temperature, creating a positive feedback to global warming. Accurately quantifying the relationship between soil respiration and temperature is necessary, because it will help to develop mechanisms of the feedback, which will aid in predicting the tendency of global change. In order to determine the law of soil respiration dynamics driven by temperature, and to detect the sensitivity of soil respiration in response to temperature in different communities of temperate grassland, in summer and autumn, we measured soil respiration in eleven communities using the alkali absorption method. We examined seasonal patterns of soil respiration, average respiration rate and responses of soil respiration to temperature. All the communities were located in Xilin River Basin, which has a typical temperate and semi-arid climate.The seasonal variations of soil respiration were similar to those of temperature, but were not completely consistent with each other. The highest value of soil respiration was in summer (June to Aug.). Average soil respiration rates of all communities varied from 565.07 mg C·m-2·d-1 to 1 349.56 mg C·m-2·d-1, and the difference was significant (p<0.001). Respiration was greatest in wet mixed grasses community and least in Caragana stenophylla community. There was no notable relationship between average soil respiration and air temperature in all eleven communities, though relation of soil respiration and temperature could be described well by exponential functions for each community (R2 = 0.330 5 - 0.731 2, p<0.000 1-0.022 0). The modeling was better at lower temperature than at higher. Q10 values of all communities were between 1.47 and 1.84, which were similar to or a little higher than the value in global scale. The Q10 value of wheat community was higher than that of other communities, which implied that land use could affect the sensitivity of soil respiration to temperature, and cultivation of the soil in grassland might be a CO2 source for atmosphere along with global warming.

No related articles found!
Full text



[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] . [J]. Chin Bull Bot, 1996, 13(专辑): 103 .
[5] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[6] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[8] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[9] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[10] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .