Chin J Plan Ecolo ›› 2003, Vol. 27 ›› Issue (4): 448-453.doi: 10.17521/cjpe.2003.0064

• Research Articles • Previous Articles     Next Articles

Response of Transpiration Characteristics and Water Use Efficiency of Setaria viridis to the Enhancement of Simulated Photosynthetic Radiation and CO2 Enrichment

SUN Wei, WANG De-Li, WANG Li, YANG Yun-Fei   

  • Online:2015-11-04 Published:2003-04-10
  • Contact: LIU Yun


To determine how transpiration characteristics and water use efficiency of annual C4 plants respond to simulated photosynthetic radiation enhancement and CO2 enrichment, we used LI-6400 Portable Photosynthesis System to examine photosynthesis rate (Pn), transpiration rate (Tr), intercellular CO2 concentration (Ci), stomatal conductance (Gs) and vapor deficit at the leaf surface (Vpdl) of Setaria viridis under simulated photosynthetic radiation (SPR) intensities from 0 to 2400μmol·m-2·s-1 and CO2 concentration from 300 to 1000μmol·mol-1. Pn, Tr and Gs increased with enhanced SPR intensity. The increase in Pn, Tr and Gs with each unit SPR added was reduced as SPR intensity increased. At last, these physiological parameters tend to dynamic balance. Water use efficiency (WUE) increased with enhanced SPR, then plateaued as SPR intensity exceeded 1200μmol·m-2·s-1. For photosynthesis process demands CO2, so Ci intensity enhancement. Vpdl also decreased with SPR intensity increase, then reached dynamic balance as SPR intensity exceeded 600μmol·m-2·s-1. Pn increased with CO2 concentration between 300 and 600μmol·mol-1, and then decreased as CO2 concentration increased from 600 to 1000μmol·mol-1. Ci, Vpdl and WUE of Setaria viridis rose with the elevation of CO2 concentration. Both Gs and Tr dropped as the CO2 concentration was elevated. We conclude that Pn of annual C4 plants was not sensitive to CO2 concentration variation. The response of Tr and WUE to CO2 enrichment was most significant. It is obvious that the function of instantaneous simulated CO2 enrichment to increased photosynthesis rate was gradually diminished. However, it could enhance primary production by improving the use efficiency of existing water.

No related articles found!
Full text



[1] Liu Ying-di. The Role of Ultrastructure in Algal Systematics[J]. Chin Bull Bot, 1990, 7(04): 18 -23 .
[2] Kaifa Wei*;Yiping Liu;Ziying Lin;Yafang Yang;Zehong Zhang;Wensuo Jia. Problems and Solutions in Agrobacterium tumefaciens-mediated Genetic Transformation of Monocotyledons[J]. Chin Bull Bot, 2008, 25(04): 491 -496 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 67 .
[4] Li Zheng-li (Lee Chenglee). Development of Dyes Used in Plant Microtechniques[J]. Chin Bull Bot, 1991, 8(01): 53 -57 .
[5] LI Yi-Kun and WANG Jin-Fa. Advances of the Studies on Plant Promoter[J]. Chin Bull Bot, 1998, 15(增刊): 1 -6 .
[6] Zijun Fang;Qilong Shi;Zhongnan Yang;Sen Zhang. Functional Analysis of OsMS2 Gene Involved in Anther Development of Rice[J]. Chin Bull Bot, 2008, 25(06): 665 -672 .
[7] LI Niang-Hui. Progress of the Study on the Transportation of Cytoplasmic Proteins Into Chloroplast[J]. Chin Bull Bot, 1998, 15(增刊): 18 -23 .
[8] Ding bao-zu;Yang Shu-hua;Wu Yi and Yang Jing-yi. Effect of C-AMP on cell Growth of Ginseng Callus[J]. Chin Bull Bot, 1984, 2(23): 74 -75 .
[9] He Guan-fu and Ma Zhong-wu. Study on the Effective Components in the Trunk of Magnolia biloba[J]. Chin Bull Bot, 1991, 8(01): 48 .
[10] Zhang Zhong-fu;Tao Guo-qing and Cui Cheng. The Regulation of Exogenous Glucose Translocatlon by Benzyladenine in Excised Garlic Scapes[J]. Chin Bull Bot, 1993, 10(01): 46 -47 .