Chin J Plan Ecolo ›› 2005, Vol. 29 ›› Issue (2): 175-184.doi: 10.17521/cjpe.2005.0023

• Research Articles •     Next Articles

ECOLOGICAL REGIONALIZATION OF ARID LANDS IN NORTHWESTERN CHINA

NI Jian GUO Ke LIU Hai-Jiang and ZHANG Xin-Shi*   

  1. (Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China)
  • Online:2005-03-10 Published:2005-03-10
  • Contact: ZHANG Xin-Shi

Abstract: An ecological regionalization system was developed for the arid lands of northwestern China based on ecological and environmental factors, including climate, large-scale terrain features, landform, geology, vegetation, and soils, in combination with characteristics of social and economic development. The region was stratified into discrete geographical units of uniformity at three levels: Level I, the ecodomain, was based on climate and large-scale terrain features with consideration of the role of higher levels of regionalization and industrial development; Level II, the ecoregion, was based primarily on secondary landform, topography and large-scale vegetation types; and, Level III, the ecodistrict, was based on differences in local vegetation due to differences in geology and soils, as well as its eco-productive paradigm and potential future development. Based on this three-class system, we defined three ecodomains, 23 ecoregions and 80 ecodistricts. An ecoregional map of northwestern arid lands of China was drawn at 1∶1 million scale using GIS. The goals of the ecological regionalization classification were not only to develop a unique system of arid land ecological classification, but also to supervise local development and land use management to promote sustainable development of arid lands in northwestern China.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu De-li. Heat-Shock Proteins of Plants and their Functions[J]. Chin Bull Bot, 1996, 13(01): 14 -19 .
[2] Chengqiang Ding, Dan Ma, Shaohua Wang, Yanfeng Ding. Optimization Process and Method of 2-D Electrophoresis for Rice Proteomics[J]. Chin Bull Bot, 2011, 46(1): 67 -73 .
[3] SONG Ke-Min. Phosphorus Nutrition of Plants: Phosphate Transport Systems and their Regulation[J]. Chin Bull Bot, 1999, 16(03): 251 -256 .
[4] YANG Hong-QiangJIE Yu-lingLI Jun. The Stresses Messenger from Roots and Its Production and Transport in Plant[J]. Chin Bull Bot, 2002, 19(01): 56 -62 .
[5] Hui Li, Guangcan Zhang, Huicheng Xie, Jingwei Xu, Chuanrong Li, Juwen Sun. The Effect of Phenol Concentration on Photosynthetic Physiological Parameters of Salix babylonica[J]. Chin Bull Bot, 2016, 51(1): 31 -39 .
[6] . [J]. Chin Bull Bot, 1996, 13(专辑): 97 -98 .
[7] LIU Xiao-Mei, FANG Jian, ZHANG Jing, LIN Wu-Ying, FAN Ting-Lu, FENG Hu-Yuan. EFFECTS OF LONG-TERM FERTILIZATION ON VERTICAL DISTRIBUTION OF MICROORGANISMS IN WHEAT FIELD SOIL[J]. Chin J Plan Ecolo, 2009, 33(2): 397 -404 .
[8] Wang Renqing. Comparative Study on the Vegetation Between Shandong and Liaodong Peninsulas[J]. Chin J Plan Ecolo, 1984, 8(1): 41 -51 .
[9] Song Yongchang. The 2nd Symposium on Ecology of Europe and the 10th Annual Meeting on Ecology of Germany, FED, REP.[J]. Chin J Plan Ecolo, 1981, 5(2): 151 -166 .
[10] ZHOU Cai-Ping, OUYANG Hua. Temperature and Moisture Effects on Soil Nitrogen Mineralization in Deciduous Broad-Leaved Forest[J]. Chin J Plan Ecolo, 2001, 25(2): 204 -209 .