Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (2): 167-175.doi: 10.17521/cjpe.2015.0016

• Orginal Article • Previous Articles     Next Articles

Comparison of different treatments of rare species in canonical correspondence analysis

CAO Jing, MIAO Yan-Ming, FENG Fei, XU Qiang, ZHANG Qin-Di*(), BI Run-Cheng*()   

  1. College of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, China
  • Received:2014-07-18 Accepted:2014-11-02 Online:2015-03-10 Published:2015-02-01
  • Contact: Qin-Di ZHANG,Run-Cheng BI E-mail:nyzqd@126.com;sxrcbi@126.com
  • About author:

    # Co-first authors

Abstract: <i>Aims</i>

Rare species can indicate certain ecological significance. Studies of rare species on plant community structure and composition were still insufficient. Our objective was to compare the results of three different treatments, eliminating, downweighting and untreated rare species in canonical correspondence analysis (CCA), and to verify the influences of rare species.

<i>Methods</i>

For assessing the impact of different treatments CCA, different data of plant communities and environment from southern Lüliang Mountain, eliminating rare species, downweighting rare species, and untreated data sets, were used in the CCA analyses, respectively. Spearman rank correlation coefficient was taken to test the correlation of corresponding ordination axis.

<i>Important findings</i>

The performances of three methods were basically the same when the number of environmental factors was less. But some differences were existed on the explanation tendency for each environmental factor. Base on the correlation analyses, the consistency of untreated CCA and downweighting rare species CCA was better than that of eliminating rare species CCA and downweighting rare species CCA. If the correlation analysis was based on quadrat coordinates of environmental data only, the correlation between eliminating rare species CCA and downweighting of rare species CCA was a little higher. For the first four axes, untreated CCA and the downweighting rare species CCA were correlated significantly and correspondingly. If the analysis were based on environmental and species data, eliminating rare species CCA and the downweighting rare species CCA were significantly correlated for the three first corresponding axes. However, the correlation based on species data only showed insignificant for the first four corresponding axes. Considering the interpretation quantity of species-environment variance, the downweighting rare species is the best method in the three treatments. Three methods are arranged in the order for accurately reveal species and environment relations as follows: downweighting rare species CCA, untreated CCA and eliminating rare species CCA.

Key words: rare species, canonical correspondence analysis (CCA), plant community ordination, southern Lüliang Mountain

Table 1

Cumulative percentage variance of species-environment relations explained by ordination axes"

排序轴 Ordination axis
1 2 3 4
物种-环境关系方差解释的累计百分比
Cumulative percentage variance of
species-environment relation (%)
未对稀有种处理的CCA Untreated rare species CCA 33.0 55.6 74.1 87.4
降低稀有种权重的CCA Downweighting of rare species CCA 39.2 60.0 76.9 89.4
剔除稀有种的CCA Eliminating rare species CCA 34.2 56.6 75.4 88.5

Table 2

Correlation coefficients of the first four canonical correspondence analysis (CCA) axes with environmental variables"

未对稀有种处理的CCA
Untreated rare species CCA
降低稀有种权重的CCA
Downweighting of rare species CCA
剔除稀有种的CCA
Eliminating rare species CCA
排序轴 Ordination axis 排序轴 Ordination axis 排序轴 Ordination axis
1 2 3 4 1 2 3 4 1 2 3 4
海拔 Elevation 0.912* 0.155 -0.004 0.165 -0.854* 0.199 -0.042 0.200 -0.882* 0.237 -0.024 0.044
坡度 Slope 0.518 -0.111 0.385 -0.362 -0.540 -0.081 0.388 -0.252 -0.514 -0.078 0.418 0.133
坡向 Aspect 0.415 -0.005 -0.640* -0.195 -0.458 -0.021 -0.615* -0.260 -0.403 -0.026 -0.586* 0.237
水分条件 Moisture condition -0.494 0.761* 0.065 -0.040 0.558 0.662* 0.018 -0.018 0.549 0.702* 0.038 0.027
人为干扰强度
Density of human disturbance
-0.428 -0.358 0.115 -0.601* 0.352 -0.270 0.325 -0.588* 0.386 -0.411 0.107 -0.608*

Fig. 1

Ordination diagrams of environmental variables and quadrats (1-69) in untreated, downweighting and eliminating rare species CCA (for axes 1 and 2). A, Untreated rare species CCA. B, Eliminating rare species CCA. C, Downweighting rare species CCA. ASP, aspect; ELE, elevation; HD, human disturbance; MC, moisture condition; SLO, slope."

Table 3

Spearman’s rank correlation coefficients of the first four canonical correspondence analysis (CCA) axes based on the scores of environmental variables"

未对稀有种处理的CCA
Ordination axis of untreated rare species CCA
降低稀有种权重的CCA
Ordination axis of downweighting of rare species CCA
剔除稀有种的CCA
Ordination axis of eliminating rare species CCA
降低稀有种权重的CCA
Ordination axis of downweighting of rare species CCA
1 2 3 4 1 2 3 4
1 -1.000** -0.1 -0.1 0.4 1 1.000** 0.1 0.1 -0.4
2 0.1 1.000** -0.5 0.8 2 0.1 1.000** -0.5 0.8
3 0.1 -0.5 1.000** -0.2 3 0.1 -0.5 1.000** -0.2
4 -0.3 0.900* -0.6 0.900* 4 -0.5 0.1 -0.4 0.1

Table 4

Spearman’s rank correlation of the first four canonical correspondence analysis (CCA) axes based on the sample scores"

未对稀有种处理的CCA排序轴
Ordination axes of untreated rare species
降低稀有种权重的CCA排序轴
Ordination axis of downweighting of rare species CCA
剔除稀有种的CCA排序轴
Ordination axis of downweighting of eliminating rare species CCA
降低稀有种权重的CCA排序轴
Ordination axis of downweighting of rare species CCA
1 2 3 4 1 2 3 4
基于物种数据得到的样方坐标值
Based on the sample scores from species
data
1 -0.988** 0.086 -0.104 -0.017 1 0.980** -0.002 0.049 0.014
2 0.057 0.966** -0.053 0.101 2 0.007 0.946** -0.012 0.194
3 0.139 0.018 0.965** 0.139 3 0.143 -0.038 0.949** 0.126
4 0.055 0.014 -0.221 0.948** 4 0.049 -0.253* -0.213 0.535**
基于环境数据得到的样方坐标值
Based on the sample scores from environment data
1 -0.988** 0.235 -0.080 0.130 1 0.998** -0.108 0.068 -0.108
2 -0.025 0.982** -0.059 0.038 2 -0.102 0.980** 0.007 0.166
3 0.125 0.066 0.095** 0.289* 3 0.106 0 0.950** 0.265*
4 -0.052 0.023 -0.150 0.949** 4 -0.029 -0.085 -0.334** 0.534**

Fig. 2

Species ordination diagram in untreated, downweighting and eliminating rare species CCA. A, Untreated rare species CCA. B, Eliminating rare species CCA. C, Downweighting rare species CCA. Only species with the weight over 10% are shown: 1, Pinus bungeana; 3, Platycladus orientalis; 5, Ailanthus altissima; 12, Pinus armandii; 16, Quercus wutaishanica; 18, Paulownia elongate; 25, Populus davidiana; 26, Diospyros kaki; 36, Ailanthus altissima sapling; 40, Broussonetia papyrifera sapling; 45, Quercus baronii; 46, Rosa xanthina; 47, Cotinus coggygria; 49, Vitex negundo var. heterophylla; 50, Forsythia suspense; 65, Amygdalus davidiana sapling; 68, Viburnum schensianum; 70, Cotoneaster multiflorus; 101, Macleaya cordata; 125, Potentilla flagellaris; 189, Setaria viridis; 160, Humulus scandens; 208, Carex lanceolata."

Table 5

Spearman’s correlation of the first four canonical correspondence analysis (CCA) axes based on the species scores"

未对稀有种处理的CCA排序轴
Ordination
axis of untreated rare species
降低稀有种权重的CCA排序轴
Ordination axis of downweighting of rare species CCA
剔除稀有种的CCA排序轴
Ordination
axis of downweighting of eliminating rare species CCA
降低稀有种权重的CCA排序轴
Ordination axis of downweighting of rare species CCA
1 2 3 4 1 2 3 4
1 -0.995** 0.172** -0.107 0.154* 1 0.034 -0.048 0.086 -0.110
2 0.030 0.982** -0.081 0.163* 2 -0.022 0.085 0.079 0.054
3 0.161* 0.055 0.976** 0.360** 3 0.062 -0.320** 0.123 -0.147
4 -0.076 0.148* -0.021 0.941** 4 -0.050 0.047 0.037 0.070
1 Bao YJ, Li ZH, Han XG, Han GD, Zhong YK (2007). The caloric content of plant species and its role in a Leymus chinensis steppe community of Inner Mongolia, China.Acta Ecologica Sinica, 27, 4443-4450.(in Chinese with English abstract)
[鲍雅静, 李政海, 韩兴国, 韩国栋, 仲延凯 (2007). 内蒙古羊草草原植物种能量含量及其在群落中的作用. 生态学报, 27, 4443-4450.]
2 Cheng YR, Zhang XP (2012). Microclimate’s affection on the composition of plant comnunity on southern and northern slope of purple mountain. Journal of Anhui Normal University (Natural Science), 35, 44-48.(in Chinese with English abstract)
[程寅瑞, 张小平 (2012). 小气候对紫金山南北坡植物群落组成的影响. 安徽师范大学学报(自然科学版), 35, 44-48.]
3 Dong LS, Zhang XD, Zhou JX, Song AY (2007). Quantitative classification and ordination of shrub species and communities in a loess landscape of western Shanxi.Acta Ecologica Sinica, 27, 3072-3080.(in Chinese with English abstract)
[董林水, 张旭东, 周金星, 宋爱云 (2007). 晋西黄土丘陵与土石山区交错地带灌木种的数量分类与排序. 生态学报, 27, 3072-3080.]
4 He SF, Jiang DM, Li XL, A La-Mu-Sa (2007). Important value and niche of herbages in Caragana microphylla sand-fixing communities. Journal of Arid Land Resources and Environment, 21(10), 150-155.(in Chinese with English abstract)
[贺山峰, 蒋德明, 李晓兰, 阿拉木萨 (2007). 小叶锦鸡儿固沙群落草本种群重要值与生态位的研究. 干旱区资源与环境, 21(10), 150-155.]
5 Lepš J, Šmilauer P (2003). Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge, UK.
6 Li JP, Shangguan TL, Meng DP, Guo DG, Ma XY, Xu JH (2007). Numerical taxonomy and ranking analysis on plant communities in South of the Luliang Mountains, Shanxi. Chinese Journal of Applied Environmental Biology, 13, 615-619.(in Chinese with English abstract)
[李晋鹏, 上官铁梁, 孟东平, 郭东罡, 马晓勇, 徐建红 (2007). 山西吕梁山南段植物群落的数量分类和排序研究. 应用与环境生物学报, 13, 615-619.]
7 Liu HY, Cui HT, Zhang JH, Xiang GL (1998). Effects of recreational development on the subalpine meadow in Donglin Mountain.Chinese Journal of Ecology, 17(3), 63-66.(in Chinese with English abstract)
[刘鸿雁, 崔海亭, 张金海, 向国良 (1998). 旅游开发对东灵山亚高山草甸的影响. 生态学杂志, 17(3), 63-66.]
8 Liu HY, Gao JX, Liu QR, Chen WL (2008). Changes in forest ground vegetation in subtropical forest ecosystems, Southern China.Acta Ecologica Sinica, 28, 906-923.
9 Liu YH (2002). Study on the Diversity of Forest Plants and Related Factors in the Eastern Part of Northeast Forest Region. PhD dissertation, Northeast Forestry University, Harbin.(in Chinese with English abstract)
[刘艳红(2002). 东北东部森林植物多样性及其影响因素研究. 博士学位论文, 东北林业大学, 哈尔滨.]
10 Nan HL, Han HR, Ma QY, Yi LT, Kang FF (2006). Species diversity of herb and shrub layers in gaps of a mixed conifer broad-leaved forest in Taiyue Mountain of Shanxi Province.Journal of Beijing Forestry University, 28(2), 52-56.(in Chinese with English abstract)
[南海龙, 韩海荣, 马钦彦, 伊力塔, 康峰峰 (2006). 太岳山针阔混交林林隙草本和灌木物种多样性研究. 北京林业大学学报, 28(2), 52-56.]
11 Palmer MW (1993). Putting things in even better order: The advantages of canonical correspondence analysis.Ecology, 74, 2215-2230.
12 Qu YN, Miao YM, ZhangG QD, Liu XN, Bi RC (2013). The influence of tourism disturbance on the Yunqiu mountain scenery vegetation.Journal of Biology , 30(6), 45-49.(in Chinese with English abstract)
[曲亚男, 苗艳明, 张钦弟, 刘晓宁, 毕润成 (2013). 旅游干扰对云丘山景区内植被的影响. 生物学杂志, 30(6), 45-49.]
13 Suruguga, Zhang JT, Zhang B, Cheng JJ, Tian SG, Zhang QD, Liu SJ (2010). Numerical classification and ordination of forest communities in the Songshan National Nature Reserve.Acta Ecologica Sinica, 30, 2621-2629.(in Chinese with English abstract)
[苏日古嘎, 张金屯, 张斌, 程佳佳, 田世广, 张钦弟, 刘素军 (2010). 松山自然保护区森林群落的数量分类和排序. 生态学报, 30, 2621-2629.]
14 ter Braak CJF, Šmilauer P (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide―Software for Canonical Community Ordination (Version 4.5). Microcomputer, Ithaca, New York.
15 Wang ZM (2009). Population Dynamic of Fig Wasps in Ficus Benjiamina. Master degree dissertation, Shandong Agricultural University, Tai’an. 36-39.(in Chinese with English abstract)
[王仲敏 (2009). 垂叶榕榕小蜂自然种群动态. 硕士学位论文, 山东农业大学, 泰安. 36-39.]
16 Wu H, Wang DX, Hu YN, Huang QP (2012). Numerical classification and ordination of pine and oak mixed forest communities in the middle part of Qinling Mountains.Acta Botanica Boreali-Occidentalia Sinica, 32, 1671-1679.(in Chinese with English abstract)
[吴昊, 王得祥, 胡有宁, 黄青平 (2012). 秦岭中段松栎混交林群落数量分类与排序. 西北植物学报, 32, 1671-1679.]
17 Xia S, Zhang Q, Liu GX, Hu ZY (2013). Ecological influences of phytoplankton community in an experimental man-made lake.Acta Hydrobiologica Sinica, 37, 640-646.(in Chinese with English abstract)
[夏爽, 张琪, 刘国祥, 胡征宇 (2013). 人工试验湖泊浮游藻类群落的生态学研究. 水生生物学报, 37, 640-646.]
18 Yan DF, Yang XT (2010). Quantitative ordination and environmental analysis of woody plant communities in Baotianman, Henan Province.Ecology and Environmental Sciences, 19, 2826-2831.(in Chinese with English abstract)
[闫东锋, 杨喜田 (2010). 宝天曼木本植物群落数量排序与环境解释. 生态环境学报, 19, 2826-2831.]
19 Yang C (2008). Ecology. Higher Education Press, Beijing.
(in Chinese) [杨持 (2008). 生态学. 高等教育出版社, 北京.]
20 Zhang B, Zhang JT, Suriguga, Zhang QD, Cheng JJ, Tian SG (2009). A comparison of co-inertia analysis and canonical correspondence analysis in plant community ordination.Chinese Journal of Plant Ecology, 33, 842-851.(in Chinese with English abstract)
[张斌, 张金屯, 苏日古嘎, 张钦弟, 程佳佳, 田世广 (2009). 协惯量分析与典范对应分析在植物群落排序中的应用比较. 植物生态学报, 33, 842-851.]
21 Zhang JT (2004). Quantitative Ecology. 2nd edn. Science Press, Beijing.
(in Chinese) [张金屯 (2004). 数量生态学. 第2版. 科学出版社, 北京.]
22 Zhang JY, Ma KM (2008). Numerical classification and ordination of forest communities in the Sanjiang Agricultural Reclamation Bureau.Wetland Science, 6, 359-364.(in Chinese with English abstract)
[张洁瑜, 马克明 (2008). 建三江农垦分局湿地植物群落分类和排序. 湿地科学, 6, 359-364.]
23 Zhang LX, Zhang F, Shangguan TL (2001). Quantity analysis of plant communities on Mountain Luya, Shanxi.Chinese Bulletin of Botany, 18, 231-239.(in Chinese with English abstract)
[张丽霞, 张峰, 上官铁梁 (2001). 山西芦芽山植物群落的数量分类. 植物学通报, 18, 231-239.]
24 Zhang QD, Zhang JT, Suriguga, Zhang B, Cheng JJ, Tian SG (2011). Self-organizing feature map classification and ordination of Larix principis-rupprechtii forest in Pangquangou Nature Reserve.Acta Ecologica Sinica, 31, 2990-2998.(in Chinese with English abstract)
[张钦弟, 张金屯, 苏日古嘎, 张斌, 程佳佳, 田世广 (2011). 庞泉沟自然保护区华北落叶松林的自组织特征映射网络分类与排序. 生态学报, 31, 2990-2998.]
25 Zhao MF, Liu QR, Kang MY, Jiang Y, Meng SY, Wang JL (2010). Distribution pattern of plant communities along the Riparian zone of the mainstream of Dongjiang River.Journal of Natural Resources, 25, 1547-1556.(in Chinese with English abstract)
[赵鸣飞, 刘全儒, 康慕谊, 江源, 孟世勇, 王菁兰 (2010). 东江干流河岸带植物群落类型分布格局研究. 自然资源学报, 25, 1547-1556.]
[1] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow [J]. Biodiv Sci, 2020, 28(2): 107-116.
[2] LI Quan-Di, LIU Min-Xia, XIA Su-Juan, NAN Xiao-Ning, JIANG Xiao-Xuan. Changes in species-abundance relationships of plant communities with slopes in alpine meadows of Gannan, China [J]. Chin J Plant Ecol, 2019, 43(5): 418-426.
[3] Hui Ding,Yanming Fang,Xinhu Yang,Fayin Yuan,Liheng He,Jianfei Yao,Jun Wu,Bin Chi,Yao Li,Shuifei Chen,Tingting Chen,Haigen Xu. Community characteristics of a subtropical evergreen broad-leaved forest in Huangshan, Anhui Province, East China [J]. Biodiv Sci, 2016, 24(8): 875-887.
[4] Yin Guo,Yunquan Wang,Lei Chen,Xiangcheng Mi,Haibao Ren,Shengwen Chen,Jianhua Chen. Comparing tree seedling composition and distribution patterns under different sampling intensities in the 24 ha Gutianshan forest dynamics plot [J]. Biodiv Sci, 2016, 24(10): 1093-1104.
[5] ZHANG Wen-Jing,ZHANG Qin-Di,WANG Jing,FENG Fei,BI Run-Cheng. A comparison of multivariate regression tree and two-way indicator species analysis in plant community classification [J]. Chin J Plan Ecolo, 2015, 39(6): 586-592.
[6] Jia Hang,Yun Shi,Wenhui Liu,Dahan He. Diversity of ground-dwelling beetles (Coleoptera) in restored habitats in the hill and gully area of Loess Plateau, Ningxia Hui Autonomous Region [J]. Biodiv Sci, 2014, 22(4): 516-524.
[7] LI Wen-Huai, ZHENG Shu-Xia, and BAI Yong-Fei. Effects of grazing intensity and topography on species abundance distribution in a typical steppe of Inner Mongolia [J]. Chin J Plan Ecolo, 2014, 38(2): 178-187.
[8] YU Min, ZHOU Zhi-Yong, KANG Feng-Feng, OUYANG Shuai, MI Xiang-Cheng, and SUN Jian-Xin. Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China [J]. Chin J Plan Ecolo, 2013, 37(5): 373-383.
[9] ZHANG Bin, ZHANG Jin-Tun, Suriguga, ZHANG Qin-Di, CHENG Jia-Jia, TIAN Shi-Guang. A COMPARISON OF CO-INERTIA ANALYSIS AND CANONICAL CORRESPONDENCE ANALYSIS IN PLANT COMMUNITY ORDINATION [J]. Chin J Plan Ecolo, 2009, 33(5): 842-851.
[10] Yinggui Dai, Min Li. Fish resources around Fanjing Mountain, Guizhou [J]. Biodiv Sci, 2006, 14(1): 55-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Ying-di. The Role of Ultrastructure in Algal Systematics[J]. Chin Bull Bot, 1990, 7(04): 18 -23 .
[2] Fan Guo-qiang and Jiang Jian-ping. Study on the Methods of Extraction of Protein from Paulownia Leaves[J]. Chin Bull Bot, 1997, 14(03): 61 -64 .
[3] Tong Zhe and Lian Han-ping. Cryptochrome[J]. Chin Bull Bot, 1985, 3(02): 6 -9 .
[4] Huang Ju-fu and Luo Ai-ling. The Advances of the Studies on Extraction of FeMoco from Nitrogenase Molybdenum-Iron Protein[J]. Chin Bull Bot, 1991, 8(03): 19 -25 .
[5] Hsu Rong-jiang Gu Wen-mao Gao Jing-cheng and Peng Chang-ming. Inhibitory Effect of High CO2 and Low O2 Tension on Ethylene Evolution in Apples[J]. Chin Bull Bot, 1984, 2(01): 29 -31 .
[6] Zou Shu-hua;Zhao Shu-wen and Xu Bao. Electropheresis Profiles of Esterase Isozymes in Different Types of Soybean[J]. Chin Bull Bot, 1985, 3(06): 18 -20 .
[7] . [J]. Chin Bull Bot, 1999, 16(增刊): 49 -52 .
[8] Houqing Zeng, Yaxian Zhang, Shang Wang, Xiajun Zhang, Huizhong Wang, Liqun Du. Calcium/calmodulin-mediated Signal Transduction System in Plants[J]. Chin Bull Bot, 2016, 51(5): 705 -723 .
[9] Gu An-gen;Wang Mao and Wang Li-jun. Different Opinions on the Origins and Evolutions of Pteridophyte and Oymnosperms[J]. Chin Bull Bot, 1990, 7(02): 58 -62 .
[10] Xiaojuan Su, Baoguo Fan, Lichai Yuan, Xiuna Cui, Shanfa Lu. Selection and Validation of Reference Genes for Quantitative RT-PCR Analysis of Gene Expression in Populus trichocarpa[J]. Chin Bull Bot, 2013, 48(5): 507 -518 .