Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (6): 604-615.doi: 10.17521/cjpe.2015.0058

• Orginal Article • Previous Articles     Next Articles

Ecological wood anatomy of Rhizophora stylosa

DENG Chuan-Yuan1,*(), ZHENG Jun-Ming1, ZHANG Wan-Chao1, GUO Su-Zhi2, XUE Qiu-Hua1, YE Lu-Ying1, SUN Jian-Wen1   

  1. 1College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    2College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2015-09-18 Accepted:2015-04-14 Online:2015-07-02 Published:2015-06-01
  • Contact: Chuan-Yuan DENG E-mail:dengchuanyuan@163.com
  • About author:

    # Co-first authors

Abstract: <i>Aims</i>

Mangrove forest is desirable for studying variations in wood structure along an ecological gradient because mangroves are subjected to considerable habitat changes apart from salt stress within a small area. To elucidate the adaptive capability of wood structures towards fluctuating environmental conditions, variations in wood structures were investigated in 18 individuals of Rhizophora stylosa representing 6 populations along a natural soil physicochemical gradient in the National Nature Reserve of Dongzhai Harbor, Hainan Province.

<i>Methods</i>

Soil physicochemical properties were determined at the sites of 18 sampling trees in six R. stylosa populations. The anatomical characteristics of the secondary xylem were studied in details in the 18 trees by means of light microscopy, laser scanning confocal microscopy, scanning electron microscopy and transmission electron microscopy. Variations in the quantitative wood anatomical features in R. stylosa were assessed in details. Relationships between soil physicochemical variables and the quantitative wood anatomical features were analyzed by means of statistical methods.

<i>Important findings</i>

Some common specialized wood structures were observed in R. stylosa growing in different habitats, suggesting that these features may function for safely conducting water under high negative pressure and are thus adaptive to intertidal habitats. These common features include the occurrence of: 1) some fibriform vessel elements and a few vasicentric tracheids; 2) vesturing in pits of vessels and helical structures on vessel walls; 3) growth rings; 4) starch grains in ray cells and septate fibers. The quantitative anatomical characteristics have great plasticity in response to heterogeneous habitats. Stepwise regression analyses revealed that the total salt, contents of Mn2+, Na+, Cl-, Ca2+, organic matters, and total phosphorus of soils, and soil pH all have significant effects on quantitative wood anatomical features. Variations in the quantitative wood anatomical features in R. stylosa growing at different sites are adaptive to fluctuating environmental conditions in the intertidal areas.

Key words: ecological anatomy, Rhizophora stylosa, soil physicochemical factors, wood structure

Table 1

Nutrient conditions and salt composition analysis of soils at different sampling sites of Rhizophora stylosa (mean ± SD)"

采样点Sampling
sites
土壤中离子含量 Ion content in soil TSC
(g·kg-1)
pH TP
(g·kg-1)
OM
(g·kg-1)
TN
(g·kg-1)
Cl-
(g·kg-1)
K+
(g·kg-1)
Ca2+
(g·kg-1)
Na+
(g·kg-1)
Mg2+
(g·kg-1)
Al3+
(µg·g-1)
Mn2+
(µg·g-1)
1 A 4.67 ±
1.15
0.725 ±
0.075
0.15 ±
0.043
4.01 ±
0.13
0.14 ±
0.012
73.59 ±
8.57
557.76 ±
88.64
11.23 ±
1.07
3.02 ±
0.04
0.39 ±
0.04
4.29 ±
0.63
0.75 ±
0.17
B 4.38 ±
1.51
0.700 ±
0.053
0.16 ±
0.012
3.77 ±
0.09
0.16 ±
0.019
71.82 ±
6.34
504.34 ±
63.24
12.15 ±
1.65
3.50 ±
0.06
0.31 ±
0.04
4.07 ±
0.82
0.88 ±
0.19
C 4.21 ±
1.26
0.752 ±
0.082
0.18 ±
0.029
4.23 ±
0.19
0.13 ±
0.023
66.57 ±
8.91
556.32 ±
75.52
10.12 ±
2.01
4.01 ±
0.07
0.48 ±
0.06
5.40 ±
0.67
0.95 ±
0.12
2 A 5.36 ±
1.11
0.843 ±
0.098
0.35 ±
0.015
4.10 ±
0.23
0.17 ±
0.025
63.24 ±
10.02
499.72 ±
101.22
11.49 ±
1.32
7.24 ±
0.05
1.15 ±
0.06
8.42 ±
0.89
1.54 ±
0.37
B 5.42 ±
1.21
0.792 ±
0.029
0.29 ±
0.019
3.27 ±
0.15
0.12 ±
0.014
64.25 ±
9.58
510.07 ±
97.25
11.81 ±
1.43
6.92 ±
0.04
1.14 ±
0.09
8.31 ±
0.48
1.49 ±
0.31
C 4.85 ±
1.03
0.834 ±
0.092
0.27 ±
0.021
3.73 ±
0.11
0.11 ±
0.010
58.61 ±
9.12
505.36 ±
107.45
11.49 ±
1.52
7.65 ±
0.11
1.11 ±
0.06
7.72 ±
0.64
1.26 ±
0.28
3 A 6.87 ±
1.06
0.670 ±
0.095
0.31 ±
0.012
4.34 ±
0.09
0.15 ±
0.022
49.87 ±
6.33
621.67 ±
94.68
12.36 ±
1.09
7.12 ±
0.08
1.16 ±
0.10
7.68 ±
0.73
1.56 ±
0.43
B 6.98 ±
0.96
0.540 ±
0.084
0.37 ±
0.024
4.17 ±
0.22
0.25 ±
0.017
54.55 ±
7.45
687.69 ±
99.32
13.86 ±
1.17
6.72 ±
0.08
1.05 ±
0.09
7.31 ±
0.82
1.72 ±
0.32
C 6.52 ±
1.24
0.610 ±
0.076
0.33 ±
0.019
4.05 ±
0.16
0.16 ±
0.021
47.41 ±
4.13
630.21 ±
103.25
14.37 ±
1.58
7.02 ±
0.07
0.91 ±
0.08
7.17 ±
0.77
1.11 ±
0.24
4 A 7.87 ±
1.32
0.727 ±
0.085
0.42 ±
0.016
4.68 ±
0.24
0.12 ±
0.022
43.54 ±
8.41
505.61 ±
75.65
17.75 ±
1.35
6.94 ±
0.14
0.86 ±
0.05
6.75 ±
0.69
0.59 ±
0.21
B 7.85 ±
1.22
0.746 ±
0.046
0.49 ±
0.025
4.44 ±
0.29
0.10 ±
0.018
38.81 ±
7.59
545.32 ±
98.64
16.36 ±
1.87
6.05 ±
0.09
0.77 ±
0.02
7.50 ±
0.72
0.49 ±
0.19
C 6.94 ±
1.19
0.790 ±
0.091
0.45 ±
0.028
4.95 ±
0.13
0.13 ±
0.029
41.21 ±
5.39
571.88 ±
82.63
19.38 ±
1.96
6.79 ±
0.03
0.91 ±
0.03
6.21 ±
0.77
0.65 ±
0.28
5 A 8.63 ±
0.98
0.521 ±
0.102
0.34 ±
0.014
3.41 ±
0.12
0.15 ±
0.031
44.74 ±
11.25
569.21 ±
97.54
12.70 ±
1.23
6.85 ±
0.07
1.06 ±
0.14
6.69 ±
0.34
1.27 ±
0.41
B 8.31 ±
1.09
0.485 ±
0.079
0.37 ±
0.015
3.77 ±
0.17
0.15 ±
0.027
37.22 ±
7.73
528.96 ±
102.57
12.12 ±
1.54
5.64 ±
0.04
1.25 ±
0.13
5.70 ±
0.45
1.12 ±
0.26
C 9.23 ±
1.13
0.519 ±
0.099
0.33 ±
0.021
4.28 ±
0.14
0.12 ±
0.022
35.98 ±
10.36
584.21 ±
85.95
13.23 ±
2.01
6.64 ±
0.06
1.30 ±
0.21
6.69 ±
0.38
1.13 ±
0.33
6 A 10.95 ±
0.97
0.347 ±
0.086
0.06 ±
0.011
5.16 ±
0.15
0.07 ±
0.013
28.93 ±
6.12
129.43 ±
64.57
14.86 ±
1.82
6.87 ±
0.10
0.30 ±
0.04
9.39 ±
0.66
1.20 ±
0.25
B 10.36 ±
1.13
0.358 ±
0.056
0.08 ±
0.016
5.90 ±
0.26
0.09 ±
0.014
33.65 ±
3.25
102.57 ±
81.47
15.42 ±
1.52
6.53 ±
0.05
0.37 ±
0.02
10.80 ±
0.47
1.48 ±
0.31
C 12.24 ±
1.28
0.301 ±
0.092
0.05 ±
0.013
5.81 ±
0.32
0.05 ±
0.011
26.35 ±
4.99
122.33 ±
57.39
14.52 ±
1.69
6.93 ±
0.06
0.27 ±
0.04
10.20 ±
0.52
1.34 ±
0.23

Fig. 1

Map of the study sites in the National Nature Mangrove Reserve of Dongzhai Harbor, Hainan Province. Numbers 1 to 6 represent study sites where wood and soil samples were collected."

Fig. 2

Anatomical characteristics of secondary xylem in Rhizophora stylosa. A, Transverse section (LM), showing ring border delimited by narrower vessels. B, Transverse section (LSCM), showing ring border delimited by significantly narrower vessels. C, Transverse section (LSCM), showing vessels in short radial multiple. D, Macerated vasicentric tracheid (SEM). E, Macerated fibriform vessel element (SEM). F, Macerated vessel element with oblique end wall (SEM). G, Transverse section (TEM), showing haft-bordered pit-pair and simple pit pair. H, Macerated vessel element with round border pits or fence-like pits (SEM). I, Radial section (SEM), showing round remarkably reduced border pits. J, Radial section (SEM), showing long scalariform pits on one side contacted with alternate laternal wall pits (SEM). K, Transverse section (LM), showing gelatinous fibres. L, Radial section (SEM), showing crystals in the ray cells. M, Longitudinal section (SEM), showing starch grains in the ray cells. N, Radial section (SEM), showing perforated ray cell. O, Radial section (SEM), showing helical thickenings. P, Radial section (SEM), showing grooves and grooves interconnecting pit apertures. Q, Longitudinal section (SEM), showing vestured vessel wall. R, Longitudinal section (SEM), showing vestured pits. S, Longitudinal section (SEM), showing non-porous pit membrane. T, Radial section (SEM), an artefactual slit occurs in restricted pit field areas damaged by sample preparation. LM, light microscopy; SEM, scanning electron microscopy; TEM, transmission electron microscopy; LSCM, laser scanning confocal microscopy."

Table 2

Quantitative wood anatomical features of Rhizophora stylosa at six different sites (mean±SD)"

Table 3

Stepwise multiple regressions among secondary xylem characteristics and environmental factors"

解剖性状
Anatomical characteristics
生态因子
Ecological factor
回归方程
Regression equation
校正决定系数Adjusted
R2
VEL 土壤全盐含量 Total soil salt content Y VEL = 344.761 + 12.039XTSC 0.386**
RD 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content Y RD = 101.890 - 0.042X Mn2+ - 5.777X Na+ 0.726**
RD50 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content YRD = 128.047 - 0.050X Mn2+ - 5.634X Na+ 0.587**
TD 土壤全磷含量 Soil total phosphorus content、土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content、土壤有机质含量 Soil organic matter content、土壤Cl-含量 Soil Cl- content YTD = 71.773 + 12.836 XTP - 0.033X Mn2+ -
3.589X Na+ - 0.901XOM + 0.547 XCl-
0.896**
PA 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content、土壤全磷含量 Soil total phosphorus content、土壤有机质含量 Soil organic matter content YPA = 5262.683 - 3.836 X Mn2+ +
916.810XTP -315.615XNa+
-75.814XOM
0.900**
PA50 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content、土壤全磷含量 Soil total phosphorus content、土壤有机质含量 Soil organic matter content YPA50 = 8978.891 - 6.142XMn2+ -
454.463XNa+ + 1191.560XTP - 177.127XOM
0.815**
CA 土壤pH值 Soil pH value YCA = 5.695 + 0.453XpH 0.385**
PD 土壤Ca2+含量、土壤全盐量 Total soil salt content YPD = 10.615 + 40.737XCa2+ + 1.608XTSC 0.762**
RH 土壤Ca2+含量 Soil Ca2+ content YRH = 967.204 + 754.122XCa2+ 0.422**
RW 土壤Ca2+含量 Soil Ca2+ content、土壤全磷含量 Soil total phosphorus content、土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content YRW = 24.786 + 20.811XCa2+ - 8.091XTP+
0.024X Mn2+ + 3.194X Na+
0.723**
RF 土壤全磷含量 Soil total phosphorus content、土壤Ca2+含量 Soil Ca2+ content YRF = 9.331 - 2.759XTP + 6.038XCa2+ 0.562**
FL 土壤Mn2+含量 Soil Mn2+ content、土壤Ca2+含量 Soil Ca2+ content YFL = 1287.519 - 0.687XMn2+ +
491.239XCa2+
0.819**
FWT 土壤Mn2+含量 Soil Mn2+ content YFWT = 6.868 - 0.002X 0.441**
[1] Alongi DM, Clough BF, Robertson AI (2005). Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina.Aquatic Botany, 82, 121-131.
[2] Ashton PMS, Olander LP, Berlyn GP, Thadani R, Cameron IR (1998). Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock.Canadian Journal of Botany, 76, 1180-1187.
[3] Berlyn GP, Miksche JP (1976). Botanical Microtechnique and Cytochemistry. The Iowa State University Press, Iowa.
[4] Carlquist S (2001). Comparative Wood Anatomy. 2nd edn. Springer, Berlin.
[5] Deng CY, Lin P, Guo SZ (2004a). Study on wood anatomy of Lumnitzera species.Journal of Xiamen University (Natural Science), 43, 406-411. (in Chinese with English abstract)
[邓传远, 林鹏, 郭素枝 (2004a). 榄李属(Lumnitzera)红树植物的木材解剖学研究. 厦门大学学报(自然科学版), 43, 406-411. ]
[6] Deng CY, Lin P, Guo SZ (2004b). Wood structures of some Sonneratia species and their adaptation to intertidal habitats.Acta Phytoecologica Sinica, 28, 392-399. (in Chinese with English abstract)
[邓传远, 林鹏, 郭素枝 (2004b). 海桑属红树植物次生木质部解剖特征及其对潮间带生境的适应. 植物生态学报, 28, 392-399. ]
[7] Fei SL, Fang JY, Fan YJ, Zhao K, Liu XJ, Cui KM (1999). Anatomical characteristics of leaves and woods of Fagus lucida and their relationship to ecological factors in Mountain Fanjingshan, Guizhou, China.Acta Botanica Sinica, 41, 1002-1009. (in Chinese with English abstract)
[费松林, 方精云, 樊拥军, 赵坤, 刘雪皎, 崔克明 (1999). 贵州梵净山亮叶水青冈叶片和木材的解剖学特征及其与生态因子的关系. 植物学报, 41, 1002-1009. ]
[8] Fonti P, von Arx G, García-González I, Eilmann B, Sass- Klaassen U, Gärtner H, Eckstein D (2010). Studying glob- al change through investigation of the plastic responses of xylem anatomy in tree rings.New Phytologist, 185, 42-53.
[9] Herbette S, Cochard H (2010). Calcium is a major determinant of xylem vulnerability to cavitation.Plant Physiology, 153, 1932-1939.
[10] IAWA Committee (1989). IAWA list of microscopic features for hardwood identification: With an appendix on non-anatomical information.IAWA Bulletin New Series, 10, 219-332.
[11] Junghans U, Polle A, Düchtig P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006). Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology.Plant, Cell & Environment, 29, 1519-1531.
[12] Kohonen MM, Helland Å (2009). On the function of wall sculpturing in xylem conduits.Journal of Bionic Engineering, 6, 324-329.
[13] Lin P (1999). Mangrove Ecosystem in China. Science Press, Beijing.
[14] Liu GS (1996). Soil Physical and Chemical Analysis & Description of Soil Profiles. Standards Press of China, Beijing. (in Chinese)
[刘光崧 (1996). 土壤理化分析与剖面描述. 中国标准出版社, 北京. ]
[15] Lu RK (2000). Analytical Methods for Soil and Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing. (in Chinese)
[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
[16] Nardini A, Lo Gullo MA, Salleo S (2011). Refilling embolized xylem conduits: Is it a matter of phloem unloading?Plant Science, 180, 604-611.
[17] Plavcová L, Hacke UG (2011). Heterogeneous distribution of pectin epitopes and calcium in different pit types of four angiosperm species.New Phytologist, 192, 885-897.
[18] Robert EMR, Koedam N, Beeckman H, Schmitz N (2009). A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora.Functional Ecology, 23, 649-657.
[19] Robert EMR, Schmitz N, Okello JA, Boeren I, Beeckman H, Koedam N (2011). Mangrove growth rings: Fact or fiction?Trees, 25, 49-58.
[20] Salleo S, Trifilò P, Nardini A, Lo Gullo MA (2009). Starch-to- sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: A component of the signal pathway for embolism repair?Functional Plant Biology, 36, 815-825.
[21] Santandrea G, Schiff S, Bennici A (1998). Effects of manganese on Nicotiana species cultivated in vitro and characterization of regenerated Mn-tolerant tobacco plants.Plant Science, 132, 71-82.
[22] Schmitz N, Jansen S, Verheyden A, Kairo JG, Beeckman H, Koedam N (2007). Comparative anatomy of intervessel pits in two mangrove species growing along a natural salinity gradient in Gazi Bay, Kenya.Annals of Botany, 100, 271-281.
[23] Schmitz N, Verheyden A, Beeckman H, Kairo JG, Koedam N (2006). Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata.Annals of Botany, 98, 1321-1330.
[24] Secchi F, Zwieniecki MA (2011). Sensing embolism in xylem vessels: The role of sucrose as a trigger for refilling.Plant, Cell & Environment, 34, 514-524.
[25] Shi GR, Cheng XL, Liu L, Ma CC (2006). Anatomical and water physiological plasticity of Grewia biloba var. parviflora leaf and secondary xylem.Chinese Journal of Applied Ecology, 17, 1801-1806. (in Chinese with English abstract)
[史刚荣, 程雪莲, 刘蕾, 马成仓 (2006). 扁担木叶片和次生木质部解剖和水分生理特征的可塑性. 应用生态学报, 17, 1801-1806. ]
[26] Shi GR, Liu L (2006). Secondary xylem anatomic characteristics of dominant plant species in three communities in Xiangshan Mountain, Huaibei, China.Acta Botanica Yunnanica, 28, 363-370. (in Chinese with English abstract)
[史刚荣, 刘蕾 (2006). 淮北相山三种群落中优势树种次生木质部的解剖学特征. 云南植物研究, 28, 363-370. ]
[27] Strauss-Debenedetti S, Bazzaz FA (1991). Plasticity and acclimation to light in tropical Moraceae of different sucessional positions.Oecologia, 87, 377-387.
[28] Sun Q, Lin P (1997). Wood structure of Aegiceras corniculatum and its ecological adaptations to salinities.Hydrobiologia, 352, 61-65.
[29] Turner NC (1979). Drought resistance and adaptation to water deficits in crop plants. In: Mussell H, Staples RC eds. Stress Physiology in Crop Plants. John Wiley & Sons, New York.
[30] Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction?IAWA Journal, 15, 335-360.
[31] Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. 2nd edn. Springer, Berlin.
[32] Verheyden A, de Ridder F, Schmitz N, Beeckman H, Koedam N (2005). High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate.New Phytologist, 167, 425-435.
[33] Yáñez-Espinosa L, Terrazas T, López-Mata L (2001). Effects of flooding on wood and bark anatomy of four species in a mangrove forest community.Trees, 15, 91-97.
[34] Zwieniecki MA, Holbrook NM. (2009). Confronting Maxwell’s demon: Biophysics of xylem embolism repair.Trends in Plant Science, 14, 530-534.
[1] SHI Gang-Rong, TANG Ying, ZHANG Zheng. LEAF ANATOMY OF DOMINANT PLANT SPECIES IN THE SUCCESSIONAL COMMUNITIES OF XIANGSHAN MOUTNAIN, HUAIBEI, CHINA [J]. Chin J Plan Ecolo, 2006, 30(2): 314-322.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 91 .
[2] QIAN Ying-Qian. Some Issues in Biodiversity[J]. Chin Bull Bot, 1998, 15(06): 1 -18 .
[3] ZHANG Xiu-Juan MEI Li WANG Zheng-Quan HAN You-Zhi. Advances in Studying Fine Root Decomposition in Forests[J]. Chin Bull Bot, 2005, 22(02): 246 -254 .
[4] CHENG Long-Jun GUO De-Ping GE Hong-Juan. The Special Proteins in Sweet Potato Tuber—Sporamin[J]. Chin Bull Bot, 2001, 18(06): 672 -677 .
[5] Tang Yancheng. A Short Guide to the International Code of Botanical Nomenclature[J]. Chin Bull Bot, 1984, 2(06): 49 -54 .
[6] Chuanyuan Deng, Guiliang Xin, Wanchao Zhang, Suzhi Guo, Qiuhua Xue, Zhongxiong Lai, Luying Ye. SEM Observations and Measurements of Vestured Pits of the Secondary Xylem in the Tribe Rhizophoreae[J]. Chin Bull Bot, 2015, 50(1): 90 -99 .
[7] YANG Xiao-Lin, ZHANG Xi-Ming, LI Yi-Ling, LI Shao-Cai, SUN Hai-Long. ANALYSIS OF ROOT ARCHITECTURE AND ROOT ADAPTIVE STRATEGY IN THE TAKLIMAKAN DESERT AREA OF CHINA[J]. Chin J Plan Ecolo, 2008, 32(6): 1268 -1276 .
[8] Zhang Jintun, Pickett S. T. A. Gradient Analysis of Forest Vegetation Along an Urban-Rural Transect in New York[J]. Chin J Plan Ecolo, 1998, 22(5): 392 -397 .
[9] JI Fang, MA Ying-Jie, FAN Zi-Li. Soil Water Regime in Populus euphratica Forest on the Tarim River Alluvial Plain[J]. Chin J Plan Ecolo, 2001, 25(1): 17 -21 .
[10] JIANG Fu-Wei, JIANG Hong, LI Wei, YU Shu-Quan, ZENG Bo, WANG Yan-Hong. PHOTOSYNTHETIC AND PHYSIOLOGICAL CHARACTERISTICS OF THREE ANGIOSPERMS OF DIFFERENT EVOLUTIONARY AGES UNDER ACID RAIN STRESS[J]. Chin J Plan Ecolo, 2009, 33(1): 125 -133 .