Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (5): 570-576.doi: 10.17521/cjpe.2016.0245

• Research Articles • Previous Articles     Next Articles

Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla

Jian-Guo CAI*, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI   

  1. School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 311300, China
  • Online:2017-06-22 Published:2017-05-10
  • Contact: Jian-Guo CAI
  • About author:

    KANG Jing-yao(1991-), E-mail:


Aims The objectives were to investigate the effects of different light intensities on photosynthetic characteristics and chlorophyll fluorescence parameters, to clarify the physiological responses and photo-protective mechanisms of Hydrangea macrophylla to changes in light regimes in view of the distribution of energy absorbed and photosynthetic characteristics.Methods Three light regimes including natural and shade (shading rate 50% and 75% of natural light) were applied to plants for 60 days. After the treatment, the gas-exchange, chlorophyll a fluorescence and photosynthesis-light curves were measured by a portable leaf gas exchange system (LI-6400).Important findings The results showed that the weak light intensity treatment reduced dark respiration rate, light compensation point and light saturation point of plant, but increased apparent quantum yield, suggesting that plants had the physiological strategy to utilize the weakening light by reducing respiration. The net photosynthetic rate, intercellular CO2 concentration, transpiration rate and water use efficiency of plants grown below 50% of natural light showed significant difference compared with natural and shading rate 75% of natural light. There were significant difference between natural and shade treatments in the maximal quantum efficiency of PSII (Fv/Fm), as indicated that it was significantly less at full light than that at 50% of natural light. Initial fluorescence intensity (Fo) of plants was higher at full light than that at 50% of natural light, suggesting that photoinhibition occurred in natural light. The non-photochemical quenching (NQP) decreased with the aggravation of shade stress, indicating that shading decreased the efficiency of photochemical reaction by reducing the fraction of incident light in photochemical energy utilization and decreased thermal dissipation through regulating energy distribution in photosystem II (PSII) in the leaves of Hydrangea macrophylla. In general, the 70% of incident light in photochemical energy utilization was distributed to thermal dissipation, 20% was distributed to non-regulated energy dissipation and 4% was distributed to effective photochemical reaction. In conclusion, responses of plants to increased irradiance are governed by strategy: to utilize a high fraction of incident light in photochemistry and regulate energy dissipation in PSII and weaken the accumulation of excess excitation energy in PSII to protect the photosynthetic apparatus in the leaves of H. macrophylla under saturated radiation.

Key words: Hydrangea macrophylla, shading, photosynthesis, chlorophyll fluorescence, light adaptation

Fig. 1

Light response curves of net photosynthetic rate (Pn) in Hydrangea macrophylla under different light treatments (mean ± SD)."

Table 1

Effects of light treatments on photosynthesis-light response parameters of Hydrangea macrophylla"

Full light
Shading rate 50%
Shading rate 75%
AQY (mmol CO2·mol-1 photos)
0.03 0.04 0.03
Pnmax (μmolCO2·m-2·s-1)
3.50 3.85 3.83
Rd (μmolCO2·m-2·s-1)
0.53 0.36 0.41
LCP (μmol·m-2·s-1)
15.75 6.71 8.00
LSP (μmol·m-2·s-1s-1)
307.42 278.14 281.57
相关系数 r 0.919 0.908 0.948

Table 2

Effects of light treatments on the gas exchange parameters of Hydrangea macrophylla (mean ± SD)"

参数 Parameter
Pn (μmol CO2·m-2·s-1) Ci ( μmol·mol-1) Gs (mol·m-2·s-1) Tr (mmol·m-2·s-1) WUE (mmol CO2·mol-1H2O)
全光 Full light 1.64 ± 0.34a 326.55 ± 21.45a 0.04 ± 0.004b 0.92 ± 0.11a 1.82 ± 0.53a
遮光率50% Shading rate 50% 2.14 ± 0.38b 300.46 ± 17.85b 0.04 ± 0.009b 1.40 ± 0.22b 1.54 ± 0.27b
遮光率75% Shading rate 75% 1.73 ± 0.28a 293.99 ± 18.33b 0.02 ± .009a 0.86 ± 0.26a 2.11 ± 0.47a

Table 3

Effects of light treatments on chlorophyll a fluorescence parameters of Hydrangea macrophylla (mean ± SD)"

参数 Parameter 处理 Treatment
全光 Full light 遮光率50% Shading rate 50% 遮光率75% Shading rate 75%
PSⅡ原初光能转化效率 Fv/Fm 0.63 ± 0.03b 0.67 ± 0.01c 0.60 ± 0.04a
PSⅡ潜在活性 Fv/Fo 1.72 ± 0.21b 2.00 ± 0.08c 1.51 ± 0.20a
初始荧光 Fo 786.59 ± 13.23b 770.21 ± 21.12a 836.86 ± 28.73b
PSII实际光量子产量 v/m 0.25 ± 0.01a 0.26 ± .04a 0.28 ± 0.06a
非光化学淬灭系数 NPQ 2.39 ± 0.16c 1.95 ± 0.09b 1.41 ± 0.34a
光化学淬灭系数 qP 0.17 ± 0.04a 0.18 ± 0.02a 0.15 ± 0.03a
电子传递速率 ETR 19.43 ± 3.88a 20.31 ± 5.53a 18.57 ± 4.50a

Table 4

The distribution of light energy absorbed in Hydrangea macrophylla under different light intensities"

能量分配 Energy distribution
Fraction of photons dissipated
in the antenna (%)
Fraction of photons utilized
in PSII photochemistry (%)
Fraction of absorbed photons by PSII
neither used in photochemistry nor
dissipated in the PSII (%)
全光 Full light 74.55 ± 5.32 4.44 ± 0.89 21.01 ± 1.12
遮阴50% Shading 50% 74.22 ± 4.50 4.65 ± 1.27 21.12 ± 3.34
遮阴75% Shading 75% 74.55 ± 5.32 4.24 ± 1.02 23.64 ± 6.13
[1] Asada K (1999). The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons.Plant Biology, 50, 601-639.
[2] Boardman NK (1977). Comparative photosynthesis of sun and shade plants.Plant Physiology, 28, 355-377.
[3] Cai SQ, Xu DQ (2002). Light intensity-dependent reversible down-regulation and irreversible damage of PSII in soybean leaves.Plant Science, 163, 847-853.
[4] Cui XW, Gao J, Zhang ZJ, Yue XH, Ma YJ (2011). Chlorophyll fluorescent characteristics of five dwarf bamboos.Acta Agriculturae Universitatis Jiangxiensis, 33, 726-730. (in Chinese with English abstract)[崔晓伟, 高健, 张志坚, 岳祥华, 马艳军 (2011). 5种地被竹叶绿素荧光特性研究. 江西农业大学学报, 33, 726-730.]
[5] Depuydt S, Trenkamp S, Fernie AR, Elftieh S, Renou JP, Vuylsteke M, Holsters M, Vereecke D (2009). An integrated genomics approach to define niche establishment byRhodococcus fascians. Plant Physiology, 149, 1366-1386.
[6] Ehlert B, Hinchaok DK (2008). Chlomphyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses inArabidaopsis leaves. Plant Methods, 4, 1-7.
[7] He YH, Guo LS, Tian YL (2006). Chlorophyll fluorescence quenching characteristics of seven coniferous and broadleaved species in different light intensities.Scientia Silvae Sinicae, 42(2), 27-31. (in Chinese with English abstract)[何炎红, 郭连生, 田有亮 (2006). 7种针阔叶树种不同光照强度下叶绿素荧光猝灭特征. 林业科学, 42(2), 27-31.]
[8] Hong SS, Xu DQ (1999). Reversible inactivation of PSII reaction centers and the dissociation of LHCII from PSII complex in soybean leaves.Plant Science, 1147, 111-118.
[9] Hu WH, Zhang SS, Xiao YA, Yan XH (2015). Physiological responses and photo-protective mechanisms of twoRhododendron plants to natural sunlight after long term shading. Chinese Journal of Plant Ecology, 39, 1093-1100. (in Chinese with English abstract)[胡文海, 张斯斯, 肖宜安, 闫小红 (2015). 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制. 植物生态学报, 39, 1093-1100.]
[10] Huang QX, Zhao S, Liu CM, Li YL (2015). Effects of shading treatments on chlorophyll fluorescence characteristics ofSabina vulgaris seedlings grown in iron tailings media. Scientia Silvae Sinicae, 51(6), 18-25. (in Chinese with English abstract)[黄秋娴, 赵顺, 刘春梅, 李玉灵 (2015). 遮荫处理对铁尾矿基质臭柏实生苗快速叶绿素荧光特性的影响. 林业科学, 51(6), 18-25.]
[11] Huang SM, Wei ZF, Lu LD, Pan JT (1995). Flora Republicae Popularis Sinicae. Science Press, Beijing. 226-227. (in Chinese with English abstract)[黄淑美, 卫兆芬, 陆玲娣, 潘锦堂 (1995). 中国植物志. 科学出版社, 北京. 226-227.]
[12] Ji LL, Lu BS, Zhou RJ, Bai ZY, Liang HY (2007). Effects of shading on photosynthetic parameters of leaf in David maple (Acer davidii Franch). Acta Horticulturae Sinica, 34(1), 173-178. (in Chinese with English abstract)[缴丽莉, 路丙社, 周如久, 白志英, 梁海永 (2007). 遮光对青榨槭光合速率及叶绿素荧光参数的影响. 园艺学报, 34(1), 173-178.]
[13] Kagawa T, Sakai T, Suetsugu N, Oikawa K, Lshiguro S (2001). Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response.Science, 291, 2138-2141.
[14] Kasahara M, Kagawa T, Oikawa, Suetsugu N, Miyao M (2002). Chloroplast avoidance movement reduces photodamage in plant. Nature, 420, 829-832.
[15] Li JP, Dong R (2011). Diurnal change of photosynthetic characteristics of threeHosta cultivars. Journal of Northeast Forestry University, 39(10), 56-58. (in Chinese with English abstract)[李金鹏, 董然 (2011). 3种彩叶玉簪光合日变化. 东北林业大学学报, 39(10), 56-58.]
[16] Li ZZ, Liu DH, Zhao SW, Jiang CD, Shi L (2014). Mechanisms of photoinhibition induced by high light in Hosta grown outdoors. Chinese Journal of Plant Ecology, 38, 720-728. (in Chinese with English abstract)[李志真, 刘东焕, 赵世伟, 姜闯道, 石雷 (2014). 环境强光诱导玉簪叶片光抑制的机制. 植物生态学报, 38, 720-728.]
[17] Liu JF, Yang WJ, Jing ZP, Guo QS, Jing JQ, Xue L (2011). Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of the endangered plantThuja sutchuenensis. Acta Ecologica Sinica, 31, 5999-6004. (in Chinese with English abstract)[刘建锋, 杨文娟, 江泽平, 郭泉水, 金江群, 薛亮 (2011). 遮荫对濒危植物崖柏光合作用和叶绿素荧光参数的影响. 生态学报, 31, 5999-6004.]
[18] Murchie EH, Horton P (1998). Contrasting patterns of photo-synthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality.Plant, Cell & Environment, 21, 139-148.
[19] Nedbal L, Soukupova J, Kaftan D, Whitmarsh J, Trtilek M (2000). Kinetic imaging lf chlorophyll fluorescence using modulated light.Photosynthesis Research, 66, 3-12.
[20] Poorther H, Perez-Soba M (2000). The growth response of plants to elevated CO2 under non-optimal environmental conditions.Oecologia, 27, 595-607.
[21] Richardson AD, Berlyn GP (2002). Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield. American Journal of Botany, 9, 88-94.
[22] Wang K, Zhu JJ, Yu LZ, Sun YR, Chen GH (2009). Effects of shading on the photosynthetic characteristics and light use efficiency ofPhellodendron amurense seedlings. Chinese Journal of Plant Ecology, 33, 1003-1012. (in Chinese with English abstract)[王凯, 朱教君, 于立忠, 孙一荣, 陈光华 (2009). 遮阴对黄波罗幼苗的光合特性及光能利用效率的影响. 植物生态学报, 33, 1003-1012.]
[23] Wu CW, Ke TS, Chang YJ, Chang YS (2013). Chlorophyll fluorescence and leaf-air temperature difference as potential shade-tolerance indexes of ornamental plants.Journal of Computational & Theoretical Nanoscience, 19, 3063-3066.
[24] Xu DQ (2003). Several problems in the research of plant light stress.Plant Physiology Communications, 39, 493-495. (in Chinese with English abstract)[许大全 (2003). 植物光胁迫研究中的几个问题. 植物生理学通讯, 39, 493-495.]
[25] Xu DQ (2013). The Science of Photosynthesis.. Science Press, Beijing. 94-95. (in Chinese)[许大全 (2013). 光合作用学. 科学出版社, 北京. 94-95.]
[26] Xu DQ, Sheng YK (1999). Light stress: Photoinhibition of photosynthesis in plants under natural conditions . In: Pessarakli M ed. Handbook of Plant and Crop Stress. Marcel Dekker, New York .315-336.
[27] Yang XH, Zou Q, Wang W (2001). Photoinhibition in shaded cotton leaves after exposing to high light and the time course of its restoration. Acta Botanica Sinica, 43, 1255-1259. (in Chinese with English abstract)[杨兴洪, 邹琦, 王玮 (2001). 遮荫棉花转入强光后光合作用的光抑制及其恢复. 植物学报, 43, 1255-1259.]
[28] Yin LQ, Hu Y, Tang GJ, Huang WC, Li SZ, Wang XQ (2010). In vitro culture and rapid propagation ofHydrangea serrata ‘Preziosa’. Acta Agriculturae Shanghai, 26(1), 38-41. (in Chinese with English abstract)[殷丽青, 胡永, 汤桂钧, 黄卫昌, 李世忠, 王新其 (2010). 优良八仙花品种(Hydrangea serrata ‘Preziosa’)的离体培养与快速繁殖. 上海农业学报, 26(1), 38-41.]
[29] Zhang CY, Fang YM, Ji HL, Ma XT (2011). Effects of shading on photosynthesis characteristics ofPhotinia × frasery and Aucuba japonica var. variegate. Chinese Journal of Applied Ecology, 22, 1743-1749. (in Chinese with English abstract)[张聪颖, 方炎明, 姬红利, 马戌涛 (2011). 遮荫处理对红叶石楠和洒金桃叶珊瑚光合特性的影响. 应用生态学报, 22, 1743-1749.]
[30] Zhang SR (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance.Chinese Bulletin of Botany, 16, 444-448. (in Chinese with English abstract)[张守仁 (1999). 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 16, 444-448.]
[1] Liang-Hua CHEN, Juan LAI, Xiang-Wei HU, Wan-Qin YANG, Jian ZHANG, Xiao-Jun WANG, Ling-Jie TAN. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution [J]. Chin J Plan Ecolo, 2017, 41(4): 480-488.
[2] HU Chu-Qi,LIU Jin-Ke,WANG Tian-Hong,WANG Wen-Lin,LU Shan,ZHOU Chang-Fang. Influence of three types of salt stress on photosynthesis in Spartina alterniflora and Phragmites australis [J]. Chin J Plan Ecolo, 2015, 39(1): 92-103.
Full text



[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] CHEN Shao-Liang LI Jin-Ke BI Wang-Fu WANG Sha-Sheng. Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress[J]. Chin Bull Bot, 2001, 18(05): 587 -596 .
[6] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[7] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[8] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[9] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[10] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .