Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (5): 447-457.doi: 10.17521/cjpe.2018.0228

• Research Articles • Previous Articles     Next Articles

Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei, China

WANG Jin1,ZHU Jiang1,*(),AI Xun-Ru1,YAO Lan1,HUANG Xiao1,WU Man-Ling1,ZHU Qiang1,HONG Jian- Feng2   

  1. 1. School of Forestry and Horticulture, Hubei Minzu University, Enshi, Hubei 445000, China
    2. Bureau of Xingdoushan National Nature Reserve, Enshi, Hubei 445000, China
  • Received:2018-09-17 Accepted:2019-03-20 Online:2019-10-18 Published:2019-05-20
  • Contact: ZHU Jiang E-mail:2017052@hbmy.edu.cn
  • Supported by:
    Supported by the National Key R&D Program of China(2016YFC0503100)

Abstract: Aims Exploring the effects of topography on leaf functional traits across plant life forms is helpful to understand species diversity maintenance in forests. The objective of this study is to test how leaf traits among trees, shrubs and woody lianas respond to topographic variability distinctly. Methods Five leaf functional traits (leaf area, leaf thickness, leaf dry mass, leaf dry matter content and specific leaf area) were measured for 224 woody plant species with contrasting life forms (trees, shrubs and woody lianas) across 50 plots of evergreen and deciduous broadleaved mixed forests in Xingdou Mountain, Hubei Province, China. The variation in leaf functional traits of trees, shrubs and woody lianas were analyzed by one-way ANOVA. We tested the significance of the effect of topographic variability on leaf functional traits of woody plants by Partial Mantel test at community level and species level, respectively. Important findings The coefficient of variation of leaf functional traits in different life forms ranged from 23.42% to 110.45%, and there were significant differences in leaf functional traits among different life forms. At the community level, there was a significant positive correlation between altitude and tree leaf dry mass, shrub leaf area and woody liana leaf thickness. Slope only had significant influences on shrub and woody liana leaf area, and slope aspect had significant effects on shrubs leaf thickness. There was a significant positive correlation between leaf dry mass and specific leaf area. At the species level, the effects of slope and slope aspect on plant leaf functional traits were more significant than those of altitude, and the sensitivity in the responses of functional traits to topographic variation was not consistent across different species. After controlling for the effects of spatial structure, the effects of topographic factors on functional traits of plant leaves were reduced. The results showed that the responses of leaf functional traits to topographic variation were different in different life forms, which might be one of the major mechanisms maintaining plant diversity in the evergreen and deciduous broadleaved mixed forests of Xingdou Mountain.

Key words: evergreen and deciduous broadleaved mixed forest, variation of traits, spatial structure, Partial Mantel test

Fig. 1

Basic topography status of 50 plots in Xingdou Moutain. The altitude and slope were presented as the actual observation data, and the aspects were sinusoidally transformed."

Fig. 2

Species diversity of plants from different life forms in 50 plots of Xingdou Mountain. In the box, “□” is the average, “—” is the median. “○” is the abnormal value."

Fig. 3

Variation of leaf functional traits across three life forms of plants at community level. The figures on top of the boxed are the coefficients of variation (CV) of that trait across all plots. In the box, “█” is the average, “—” is the median. “○” is the abnormal value. LA, leaf area; LT, leaf thickness; LDM, leaf dry mass; LDMC, leaf dry matter content; SLA, specific leaf area. **, p < 0.01; *, p < 0.05; ns, p > 0.05."

Fig. 4

Variation in leaf functional traits across dominant species (species level). LA, leaf area; LT, leaf thickness; LDM, leaf dry mass; LDMC, leaf dry matter content; SLA, specific leaf area. The figures on top of the boxes are the coefficients of variation of each trait for a species across all sampled plots. In the box, “█” is the average, “—” is the median. “○” is the abnormal value. 1-6 represent species in the abscissa: 1, Carpinus fargesiana; 2, Enkianthus serrulatus; 3, Eurya alata; 4, Stranvaesia davidiana; 5, Dalbergia dyeriana; 6, Actinidia chinensis."

Table 1

Partial Mantel tests for the relationships between leaf functional traits of different life forms and topographic factors at community level"

生活型
Life form
性状
Trait
空间结构
Spatial
structure
未控制空间结构影响
Uncontrolled spatial structure effect
控制空间结构影响
Controlling the influence of spatial structure
海拔
Altitude
坡度
Slope
坡向
Slope aspect
海拔
Altitude
坡度
Slope
坡向
Slope aspect
乔木
Tree
LA (cm2) 0.26* 0.27* 0.07 0.15* 0.10 0.00 0.09
LT (mm) -0.02 -0.02 -0.02 0.00 -0.01 -0.02 0.01
LDM (g) 0.15 0.20* 0.02 0.12 0.15* -0.02 0.09
LDMC (g·g-1) 0.13* 0.08 -0.00 0.05 -0.09 -0.04 0.02
SLA (cm2·g-1) 0.06 0.07 0.01 0.09 0.04 -0.01 0.08
灌木
Shrub
LA (cm2) 0.18* 0.23** 0.05 0.13* 0.15* -0.00 0.09
LT (mm) 0.39** 0.36** 0.02 0.19** 0.03 -0.09 0.11*
LDM (g) 0.32** 0.31** 0.19* 0.34** 0.07 0.12 0.29**
LDMC (g·g-1) 0.15 0.11 0.12 0.02 -0.04 0.08 -0.01
SLA (cm2·g-1) 0.30** 0.31** 0.23** 0.19** 0.10 0.16* 0.13*
木质藤本Woody liana LA (cm2) -0.02 -0.03 -0.07 0.01 -0.02 -0.07 0.02
LT (mm) 0.23 0.39* 0.21 0.11 0.40** 0.14 0.05
LDM (g) -0.15 -0.16* -0.04 -0.05 -0.05 0.01 -0.02
LDMC (g·g-1) -0.07 -0.08 0.04 -0.09 -0.05 0.06 -0.07
SLA (cm2·g-1) 0.16 0.20 -0.06 0.02 0.12 -0.12* -0.02

Table 2

Partial Mantel tests for the relationships between leaf functional traits of different life forms and topographic factors at species level across"

物种
Species
性状
Trait
空间结构
Spatial
structure
未控制空间结构影响
Uncontrolled spatial structure effect
控制空间结构影响
Controlling the influence of spatial structure
海拔
Altitude
坡度
Slope
坡向
Slope aspect
海拔
Altitude
坡度
Slope
坡向
Slope aspect
川陕鹅耳枥
Carpinus fargesiana
LA (cm2) 0.27* 0.34* 0.16 0.20 0.24* 0.07 0.12
LT (mm) 0.40** 0.43** 0.09 0.29** 0.15 -0.07 0.20*
LDM (g) 0.37** 0.38** 0.19* 0.16* 0.12 0.06 0.07
LDMC (g·g-1) 0.21* 0.12 -0.05 0.17* -0.16 -0.14* 0.11
SLA (cm2·g-1) 0.35* 0.38* 0.21* 0.15 0.16 0.09 0.06
齿缘吊钟花
Enkianthus
serrulatus
LA (cm2) 0.18* 0.17* -0.01 -0.03 0.03 -0.02 -0.09
LT (mm) -0.10 -0.10 0.04 -0.06 -0.03 0.04 -0.03
LDM (g) 0.29* 0.30* 0.03 0.05 0.11 0.02 -0.04
LDMC (g·g-1) 0.17 0.06 0.02 0.04 -0.17* 0.02 -0.01
SLA (cm2·g-1) 0.06 0.08 -0.01 -0.06 0.07 -0.01 -0.08
翅柃
Eurya alata
LA (cm2) 0.38** 0.40** 0.12 0.04 0.17* 0.02 -0.06
LT (mm) 0.02 0.05 -0.02 0.07 0.08 -0.03 0.07
LDM (g) 0.15* 0.18* 0.01 0.07 0.12 -0.03 0.04
LDMC (g·g-1) 0.22** 0.20* -0.02 0.02 0.01 -0.08 -0.04
SLA (cm2·g-1) 0.11 0.07 0.02 0.20** -0.07 -0.01 0.18**
红果树
Stranvaesia
davidiana
LA (cm2) 0.15 0.24* 0.16* 0.03 0.21* 0.13 -0.02
LT (mm) -0.03 -0.08 -0.05 0.05 -0.10 -0.04 0.07
LDM (g) 0.30* 0.37* 0.00 0.39** 0.23* -0.08 0.32**
LDMC (g·g-1) 0.09 0.16 0.03 0.11 0.15 0.01 0.09
SLA (cm2·g-1) 0.29* 0.36* 0.02 0.32** 0.23* -0.05 0.25**
大金刚藤
Dalbergia
dyeriana
LA (cm2) 0.21 0.38** -0.14 0.62** 0.33* -0.14* 0.60*
LT (mm) 0.37* 0.07 -0.14 0.05 -0.13 -0.15 -0.12
LDM (g) -0.05 0.00 -0.08 -0.13 0.03 -0.08 -0.12
LDMC (g·g-1) 0.27 -0.15 -0.05 -0.09 -0.32** -0.05 -0.23*
SLA (cm2·g-1) 0.01 0.27* 0.01 0.12 0.29* 0.01 0.12
中华猕猴桃
Actinidia
chinensis
LA (cm2) 0.43** 0.50** 0.06 -0.01 0.29* -0.25** -0.10
LT (mm) -0.08 -0.08 -0.07 0.01 -0.02 -0.03 0.02
LDM (g) 0.21 0.11 0.07 -0.01 -0.17 -0.06 -0.05
LDMC (g·g-1) -0.20* -0.17* -0.17** -0.16 0.03 -0.07 -0.13
SLA (cm2·g-1) 0.12 0.28* -0.12 0.11 0.40** -0.23** 0.09
1 Aem W, Fule PZ, Covington WW, Moore MM (2003). Diversity in ponderosa pine forest structure following ecological restoration treatments. Forest Science, 49, 885-900.
2 Cantón Y, Barrio GD, Solé-Benet A, Lázaro R (2004). Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. Catena, 55, 341-365.
3 Chen C, Liu DH, Wu JJ, Kang MY, Zhang JT, Liu QR, Liang Y (2015). Leaf traits of Quercus wutaishanica and their relationship with topographic factors in Mount Dongling. Chinese Journal of Ecology, 34, 2131-2139.
[ 陈晨, 刘丹辉, 吴键军, 康慕谊, 张金屯, 刘全儒, 梁钰 (2015). 东灵山地区辽东栎叶性状与地形因子关系. 生态学杂志, 34, 2131-2139.]
4 Condit R (1998). Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and A Comparison with Other Plots. Springer-Verlag, Berlin Heidelberg, New York.
5 Cornelissen JHC, Cerabolini B, Castrodíez P, Villarsalvador P, Montserratmartí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003a). Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science, 14, 311-322.
6 Cornelissen JHC, Lavorel S, Garnier E, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Heijden MGAV (2003b). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
7 Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126.
8 Cornwell WK, Schwilk LDW, Ackerly DD (2006). A trait- based test for habitat filtering: Convex hull volume. Ecology, 87, 1465-1471.
9 Dai N, Hirabuki Y, Mochida Y (2010). Influence of micro- landforms on forest structure, tree death and recruitment in a Japanese temperate mixed forest. Ecological Research, 18, 533-547.
10 Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2014). Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland. Chinese Journal of Plant Ecology, 38, 1307-1314.
[ 党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2014). 高寒草地甘肃臭草茎-叶性状的坡度差异性. 植物生态学报, 38, 1307-1314.]
11 Dı́az S, Cabido M (2001). Vive la difference: Plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655.
12 Ding J, Wu Q, Yan H, Zhang SR (2011). Effects of topographic variations and soil characteristics on plant functional traits in a subtropical ever green broad-leaved forest. Biodiversity Science, 19, 158-167.
[ 丁佳, 吴茜, 闫慧, 张守仁 (2011). 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响. 生物多样性, 19, 158-167.]
13 Editorial Board of Forest in China (2000). Forest in China. Vol. 3, Broad-leaved Forest. China Forestry Publishing House, Beijing
中国森林编辑委员会(2000). 中国森林第三卷: 阔叶森林. 中国林业出版社, 北京.]
14 Fang JY, Shen ZH, Cui HT (2004). Ecological characteristics of mountains and research issues of mountain ecology. Biodiversity Science, 12, 10-19.
[ 方精云, 沈泽昊, 崔海亭 (2004). 试论山地的生态特征及山地生态学的研究内容. 生物多样性, 12, 10-19.]
15 Gao XM, Chen LZ (1998). The revision of plant life form system and an analysis of the life-form spectrum of forest plants in the warm temperate zone of China. Acta Botanica Sinica, 40, 553-559.
[ 高贤明, 陈灵芝 (1998). 植物生活型分类系统的修订及中国暖温带森林植物生活型谱分析. 植物学报, 40, 553-559.]
16 Hara M, Hirata K, Fujihara M, Oono K (1996). Vegetation structure in relation to micro-landform in an evergreen broad-leaved forest on Amami Ohshima Island, south-west Japan. Ecological Research, 11, 325-337.
17 Harrod RJ, Mcrae BH, Hartl WE (1999). Historical stand reconstruction in ponderosa pine forests to guide silvicultural prescriptions. Forest Ecology and Management, 114, 433-446.
18 He D, Yan ER (2018). Size-dependent variations in individual traits and trait scaling relationships within a shade-tolerant evergreen tree species. American Journal of Botany, 105, 1165-1174.
19 Homyack JA, Harrison DJ, Krohn WB (2004). Structural differences between precommercially thinned and unthinned conifer stands. Forest Ecology and Management, 194, 131-143.
20 Huang HX, Yang XD, Sun BW, Zhang ZH, Yan ER (2013). Variability and association of leaf traits between current- year and former-year leaves in evergreen trees in Tiantong, Zhejiang, China. Chinese Journal of Plant Ecology, 37, 912-921.
[ 黄海侠, 杨晓东, 孙宝伟, 张志浩, 阎恩荣 (2013). 浙江天童常绿植物当年生与往年生叶片性状的变异与关联. 植物生态学报, 37, 912-921.]
21 Huang YT, Yao L, Ai XR, Lü SA, Ding Y (2015). Quantitative classification of the subtropical evergreen-deciduous broadleaved mixed forest and the deciduous and evergreen species composition structure across two national nature reserves in the southwest of Hubei, China. Chinese Journal of Plant Ecology, 39, 990-1002.
[ 黄永涛, 姚兰, 艾训儒, 吕世安, 丁易 (2015). 鄂西南两个自然保护区亚热带常绿落叶阔叶混交林类型及其常绿和落叶物种组成结构分析. 植物生态学报, 39, 990-1002.]
22 Kayama M, Sasa K, Koike T (2002). Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology, 22, 707-716.
23 Kenzo T, Inoue Y, Yoshimura M, Yamashita M, Tanakaoda A, Ichie T (2015). Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia, 177, 191-202.
24 Li HW, Wang XA, Guo H (2012). Leaf functional traits of different forest communities in Ziwuling Mountains of Loess Plateau. Chinese Journal of Ecology, 31, 544-550.
[ 李宏伟, 王孝安, 郭华 (2012). 黄土高原子午岭不同森林群落叶功能性状. 生态学杂志, 31, 544-550.]
25 Li JX, Xu WT, Xiong GM, Wang Y, Zhao CM, Lu ZJ, Li YL, Xie ZQ (2017). Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China. Chinese Journal of Plant Ecology, 41, 31-42.
[ 李家湘, 徐文婷, 熊高明, 王杨, 赵常明, 卢志军, 李跃林, 谢宗强 (2017). 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素. 植物生态学报, 41, 31-42.]
26 Li Y, Zhao CZ, Dong XG, Hou ZJ, Ma XL, Zhang Q (2013a). Twig and leaf trait differences in Stellera chamaejasme with slope in alpine grassland. Chinese Journal of Plant Ecology, 37, 709-717.
[ 李钰, 赵成章, 董小刚, 侯兆疆, 马小丽, 张茜 (2013a). 高寒草地狼毒枝-叶性状的坡度差异性. 植物生态学报, 37, 709-717.]
27 Li Y, Zhao CZ, Dong XG, Hou ZJ, Ma XL, Zhang Q (2013b). Responses of Stellera chamaejasme twig and leaf traits to slope aspect in alpine grassland of Northwest China. Chinese Journal of Ecology, 32, 3145-3151.
[ 李钰, 赵成章, 董小刚, 侯兆疆, 马小丽, 张茜 (2013b). 高寒草地狼毒枝-叶性状对坡向的响应. 生态学杂志, 32, 3145-3151.]
28 Liu XJ, Ma KP (2015). Plant functional traits-concepts, applications and future directions. Science China: Life Science, 45, 325-339.
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.]
29 Liu YP, Liu GF, Baiyila DF, Cheng WY, Chen ZJ, Jiang LL (2017). Effects of topographic factors on leaf traits of dominant species in different forest communities in Daqinggou Nature Reserves. Scientia Silvae Sinicae, 53(3), 154-162.
[ 刘玉平, 刘贵峰, 达福白乙拉, 程伟燕, 陈志婧, 姜丽丽 (2017). 地形因子对大青沟自然保护区不同森林群落叶性状的影响. 林业科学, 53(3), 154-162.]
30 Mark AF, Dickinson KJM, Allen J, Smith R, West CJ (2010). Vegetation patterns, plant distribution and life forms across the alpine zone in southern Tierra del Fuego, Argentina. Austral Ecology, 26, 423-440.
31 Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165.
[ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
32 Pérezharguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bretharte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, Steege H, Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
33 Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-‌manríquez G, Harms KE, Licona JC, Martínez-ramos M, Mazer SJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920.
34 Putz FE (1984). How trees avoid and shed liana. Biotropica, 1, 19-23.
35 Reich PB (2003). The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164.
36 Sakai A, Ohsawa M (1994). Topographical pattern of the forest vegetation on a river basin in a warm-temperate hilly region, central Japan. Ecological Research, 9, 269-280.
37 Schnitzer SA, Bongers F (2002). The ecology of lianas and their role in forests. Trends in Ecology & Evolution, 5, 223-230.
38 Shen ZH (2002). A multi-scale study on the vegetation-‌environment relationship of a mountain forest transect. Acta Ecologica Sinica, 22, 461-470.
[ 沈泽昊 (2002). 山地森林样带植被-环境关系的多尺度研究. 生态学报, 22, 461-470.]
39 Shen ZH, Zhang XS, Jin YX (2000). Gradient analysis of the influence of mountain topography on vegetation pattern. Acta Phytoecologica Sinica, 24, 430-435.
[ 沈泽昊, 张新时, 金义兴 (2000). 地形对亚热带山地景观尺度植被格局影响的梯度分析. 植物生态学报, 24, 430-435.]
40 Song YC (2001). Vegetation Ecology. East China Normal University Press, Shanghai.
[ 宋永昌 (2001). 植被生态学. 华东师范大学出版社, 上海.]
41 Song YC (2004). Tentative classification scheme of evergreen broad-leaved forests of China. Acta Phytoecologica Sinica, 28, 435-448.
[ 宋永昌 (2004). 中国常绿阔叶林分类试行方案. 植物生态学报, 28, 435-448.]
42 Toledo M, Poorter L, Claros MP, Alarcón A, Balcázar J, Leaño C, Licona JC, Llanque O, Vroomans V, Zuidema P, Bongers F (2011). Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 99, 254-264.
43 Waltz AEM, Fulé PZ, Covington WW, Moore MM (2003). Diversity in ponderosa pine forest structure following ecological restoration treatments. Forest Science, 49, 885-900.
44 Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216.
[ 王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.]
45 Wang HY, Chen H (2013). Plant functional groups based on vegetative and reproductive traits in a subtropical forest community. Journal of Forest Research, 18, 482-490.
46 Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261-268.
47 Wu ZY (1980). Chinese Vegetation. Science Press, Beijing. 279-306.
[ 吴征镒 (1980). 中国植被. 科学出版社, 北京. 279-306.]
48 Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Ecologica Sinica, 28, 844-852.
[ 张林, 罗天祥 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.]
49 Zhang QP (2011). Differentiation Patterns of Leaf Traits of Main Trees Along Altitudinal and Micro-Topographical Gradients on Tianmushan Mountain. Master degree dissertation, East China Normal University, Shanghai.
[ 张奇平 (2011). 天目山主要树种叶性状在海拔梯度和微地形上的分异格局. 硕士学位论文, 华东师范大学, 上海.]
50 Zhong QL, Liu LB, Xu X, Yang Y, Guo YM, Xu HY, Cai XL, Ni J (2018). Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China. Chinese Journal of Plant Ecology, 42, 562-572.
[ 钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健 (2018). 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 42, 562-572.]
51 Zhou L, Zhang WQ, Tang HH, Chen WG, Pan LJ (2014). Ecological stoichiometry characteristics of young-and-middle aged conifer-broadleaved plantation in Southern Subtropical Region. Ecology and Environmental Sciences, 23, 1732-1738.
[ 周丽, 张卫强, 唐洪辉, 陈伟光, 盘李军 (2014). 南亚热带中幼龄针阔混交林生态化学计量特征. 生态环境学报, 23, 1732-1738.]
52 Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, Zhang SR, Zheng YR, Xiao CW (2011). Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 35, 687-698.
[ 祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺 (2011). 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 35, 687-698.]
[1] GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. What is the optimal number of leaves when measuring leaf area of tree species in a forest community? [J]. Chin J Plan Ecolo, 2018, 42(9): 917-925.
[2] LIU Zhen-Guo, LI Zhen-Qing. PERSPECTIVES ON SMALL_SCALE SPATIAL STRUCTURE OF PLANT SPECIES IN PLANT COMMUNITIES [J]. Chin J Plan Ecolo, 2005, 29(6): 1020-1028.
[3] XUE Li, XUE Da, LUO Shan. Seasonal Dynamics of Litterfall and Nutrient Concentrations in Leaf Litter in Scenic Forests of Nagoga [J]. Chin J Plan Ecolo, 2001, 25(3): 359-360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Chang Jie, Liu Ke, Ge Ying, Qin Guoqiang. Features of the Photosynthesis of Mosla hangchowensis and the Response of Photosynthesis to Soil Water Status[J]. Chin J Plan Ecolo, 1999, 23(1): 62 -70 .
[2] Jun-Mei LIU, Hong ZHANG,Yan LI. Cytoskeleton in Pollen and Pollen Tubes of Ginkgo biloba L.[J]. J Integr Plant Biol, 2005, 47(8): .
[3] Hyunsook Kim, Mikiko Kojima, Daeseok Choi, Soyoung Park, Minami Matsui, Hitoshi Sakakibara, and Ildoo Hwang. Overexpression of INCREASED CAMBIAL ACTIVITY, a putative methyltransferase, increases cambial activity and plant growth[J]. J Integr Plant Biol, 2016, 58(11): 874 -889 .
[4] Yi Wang. Practice and innovation for overarching institution design of China’s
national park
[J]. Biodiv Sci, 2017, 25(10): 1037 -1039 .
[5] ZHANG Xiu-Jun, XU Hui, CHEN Guan-Xiong. N2O Emission Rate from Trees[J]. Chin J Plan Ecolo, 2002, 26(5): 538 -542 .
[6] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[7] Hong Ma, Kang Chong and Xing-Wang Deng. Rice Research: Past, Present and Future[J]. J Integr Plant Biol, 2007, 49(6): 729 -730 .
[8] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[9] Jianhua LI, Zhi-Hong ZHANG. Sequences of 72 plastid genes support the early divergence of Cornales in the asterids[J]. J Syst Evol, 2010, 48(6): 426 -434 .
[10] ZHOU Qi-Xing, GU Zhi-Jian, YUE Zhong-Shu. Karyomorphology and relationships of Amentotaxus Pilg.[J]. J Syst Evol, 2000, 38(6): 522 -527 .