Chin J Plan Ecolo ›› 2010, Vol. 34 ›› Issue (11): 1265-1273.doi: 10.3773/j.issn.1005-264x.2010.11.003

• Research Articles • Previous Articles     Next Articles

Soil heterotrophic respiration and its temperature sensitivity in different-aged orange plantations in Three Gorges Reservoir area of China

ZHANG Wen-Li*, LIU Ju, WANG Jian-Zhu, CHEN Fang-Qing   

  1. College of Chemistry and Life Science, China Three Gorge University
  • Received:2010-05-17 Revised:2010-08-27 Online:2010-10-31 Published:2010-11-01
  • Contact: ZHANG Wen-Li E-mail:wendyibcas@163.com

Abstract:

Aims Orange (Citrus reticulate) plantations, as the primary industry of the Three Gorges Reservoir area of China, play a significant regulatory role in the maintenance of ecological balance in the region. Our objectives were to examine the main factors controlling soil heterotrophic respiration and its temperature sensitivity in three different-aged orange plantations and discuss their potential responses to future climate change in this region. Methods A laboratory simulation was conducted with soil samples collected at 0–10 cm depth from three different-aged orange plantations in Yichang. Samples were incubated in the laboratory at 5, 15, 25, and 35 °C, respectively, and the alkali absorption method was applied to measure soil respiration. Soil physical and chemical properties were also measured. Important findings With increasing age of the plantation, soil organic content and total nitrogen content increased, while soil pH and microbial biomass carbon decreased. The younger orange plantations released less CO2 from soil heterotrophic respiration under all temperature conditions. Compared with other studies, temperature sensitivity coefficients of soil heterotrophic respiration (Q10) in the orange plantations in this region were relatively low (1.45–1.69). All Q10 value changed with culture time. The temperature sensitivity coefficient of soil heterotrophic respiration of the plantations decreased with planting years, indicating that younger orange plantations will be more sensitive to future global warming than the older ones.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Li-rui and Cheng Mu-chu. Relationship between Plant Stress Resistance and Photorespiration[J]. Chin Bull Bot, 1991, 8(01): 43 -47 .
[2] . [J]. Chin Bull Bot, 1996, 13(专辑): 74 -75 .
[3] He Ping. Investigation of Pest Species and the Control of the Main Insect Pests in the Exhibition Green House of Beijing Botanical Garden[J]. Chin Bull Bot, 1996, 13(02): 44 -47 .
[4] Cui Kai-rong;Chen Ke-ming;Wang Xiao-zhe and Wang Ya-fu. Current Reseach on Plant Somatic Embryogenesis[J]. Chin Bull Bot, 1993, 10(03): 14 -20 .
[5] Huang Yao Li Chao-luan Ma Cheng Wu Nai-hu. Chloroplast DNA and Its Application to Plant Systematic Studies[J]. Chin Bull Bot, 1994, 11(02): 11 -25 .
[6] WANG Pu ZHAO Xiu-Qin. The Effect of Extracting Condition on the Analysis Result of Allelochemicals in Wheat Straw[J]. Chin Bull Bot, 2001, 18(06): 735 -738 .
[7] Yun Zihou;Liang Mingxia;Zhang Cunjie and Tan Zhiyi. The Determination of Trace Cytokinin in a Small Plant Sample by Gas Chromatography[J]. Chin Bull Bot, 1988, 5(01): 60 -63 .
[8] Yanxia He;Zicheng Wang*. Variation of DNA Methylation in Arabidopsis thaliana Seedlings After the Cryopreservation[J]. Chin Bull Bot, 2009, 44(03): 317 -322 .
[9] Yiting Shi, ShuhuaYang. Chinese Scientists Made Breakthrough in Study on Ethylene Signaling Transduction in Plants[J]. Chin Bull Bot, 2016, 51(3): 287 -289 .
[10] L Chao-Qun, SUN Shu-Cun. A REVIEW ON THE DISTRIBUTION PATTERNS OF CARBON DENSITY IN TERRESTRIAL ECOSYSTEMS[J]. Chin J Plan Ecolo, 2004, 28(5): 692 -703 .