Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum
LI Yao, ZHANG Xing-Wang, FANG Yan-Ming*,
Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;and College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
通讯作者: * 通信作者Author for correspondence (E-mail: jwu4@njfu.edu.cn)
AimsQuercus chenii is a representative species of the flora in East China, with high ecological and economic values. Here, we aim to simulate the changes in the distribution pattern of this tree species following the Last Glacial Maximum (LGM) and to explore how climatic factors constrain the potential distribution, so as to provide scientific basis for protection and management of the germplasm resources in Q. chenii. Methods Based on 55 presence point records and data on eight environmental variables, we simulated the potential distribution of Q. chenii during the Last Glacial Maximum, mid-Holocene, present and the year 2070 (the scenario of greenhouse gas emission is Representative Concentration Pathway 8.5) with MaxEnt model. The novel climate area and main factors influencing the changes in distribution pattern were evaluated by multivariate environmental similarity surface analysis and the most dissimilar variable analysis. The importance of environmental variables was evaluated by percent contribution, permutation importance and Jackknife test. Response curves were used to estimate the suitable value range of each variable. Important findings The accuracy of MaxEnt model is very high, as indicated by the value of the area under the receiver operator characteristic curve of 0.9869 ± 0.0045. The highly suitable region for the present distribution covers southern Anhui, western Zhejiang, northeastern Jiangxi and eastern Hubei. The main factors affecting the potential distribution of Q. chenii are temperature and precipitation, with the former being more important. Mean temperature of the driest quarter is likely the main factor restricting Q. chenii growing in the north. During the LGM, the East China Sea Shelf occurs as the highly suitable region for the distribution of Q. chenii. In the mid-Holocene, the outline of the suitable area for the distribution of Q. chenii is similar to the present. The potential distribution region will likely move northward and experience an area expansion under the climate condition in 2070. At that time, climate anomaly will also be most severe compared to the LGM, mid-Holocene and present. Temperature seasonality and precipitation seasonality may be the main climatic factors promoting changes in the distribution pattern of Q. chenii.
Keywords:Quercus chenii
;
MaxEnt model
;
Last Glacial Maximum
;
climate change
;
distribution pattern
LIYao, ZHANGXing-Wang, FANGYan-Ming. Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum. Chinese Journal of Plant Ecology, 2016, 40(11): 1164-1178 https://doi.org/10.17521/cjpe.2016.0032
Appendix I Presence point records of Quercus chenii for model prediction
序号 Code
居群位置 Location of populations
经度 Longitude
纬度 Latitude
来源 Source
1
安徽省太湖县天华镇 Tianhua Town, Taihu County, Anhui Province
116.13° E
30.45° N
实地调查 Field survey
2
安徽省东至县响岭村 Xiangling Village, Dongzhi County, Anhui Province
116.91° E
30.00° N
CVH PE 00296660
3
安徽省青阳县朱备镇 Zhubei Town, Qingyang County, Anhui Province
117.88° E
30.55° N
CVH NAS 00203812
4
安徽省黄山市焦村镇 Jiaocun Town, Huangshan City, Anhui Province
118.08° E
30.19° N
实地调查 Field survey
5
安徽省祁门县棕里村 Zongli Village, Qimen County, Anhui Province
117.72° E
29.85° N
CVH NAS 00203826
6
安徽省歙县 She County, Anhui Province
118.44° E
29.87° N
CVH NAS 00203796
7
安徽省休宁县齐云山 Qiyun Mountain, Xiuning County, Anhui Province
118.11° E
29.84° N
实地调查 Field survey
8
安徽省休宁县五城镇 Wucheng Town, Xiuning County, Anhui Province
118.19° E
29.61° N
CVH NAS 00203816
9
安徽省金寨县金刚台国家地质公园 Jingangtai National Geopark, Jinzhai County, Anhui Province
115.64° E
31.68° N
Fang, 2012
10
安徽省金寨县天堂寨镇 Tiantangzhai Town, Jinzhai County, Anhui Province
115.82° E
31.15° N
实地调查 Field survey
11
安徽省广德县金龙山 Jinlong Mountain, Guangde County, Anhui Province
119.21° E
30.76° N
CVH NAS 00203814
12
安徽省广德县七里冲 Qilichong, Guangde County, Anhui Province
119.22° E
30.65° N
CVH NAS 00203819
13
安徽省绩溪县华阳镇 Huayang Town, Jixi County, Anhui Province
118.60° E
30.07° N
CVH NAS 00203813
14
福建省浦城县 Pucheng County, Fujian Province
118.50° E
27.94° N
SRSPE 2151C0001H00006202
15
福建省沙县洞天岩 Dongtianyan, Sha County, Fujian Province
117.74° E
26.39° N
CVH PE 00296673
16
福建省泰宁县 Taining County, Fujian Province
115.10° E
26.73° N
CVH PE 00296672
17
河南省桐柏县太白顶 Taibaiding, Tongbai County, Henan Province
113.29° E
32.38° N
SRSPE 2151C0001400004887
18
河南省信阳市鸡公山 Jigong Mountain, Xinyang City, Henan Province
114.09° E
31.81° N
Ye et al., 2014
19
湖北省大冶市 Daye City, Hubei Province
115.00° E
30.05° N
SRSPE 2151C0001M07001199
20
湖北省武汉市珞珈山 Luojia Hill, Wuhan City, Hubei Province
114.38° E
30.54° N
CVH WUK 0310424
21
湖北省崇阳县桂花林场 Guihua Forest Farm, Chongyang County, Hubei Province
113.88° E
29.55° N
Lü et al., 2013
22
湖北省孝感市钱家垅 Qianjialong, Xiaogan City, Hubei Province
113.92° E
31.07° N
CVH LBG 00066761
23
湖南省桃源县桃花源 Taohuayuan, Taoyuan County, Hunan Province
111.44° E
28.79° N
实地调查 Field survey
24
湖南省株洲县砖桥乡 Zhuanqiao Township, Zhuzhou County, Hunan Province
113.13° E
27.40° N
实地调查 Field survey
25
湖南省宜章县栗源镇 Liyuan Town, Yizhang County, Hunan Province
112.99° E
25.21° N
实地调查 Field survey
26
江苏省南京市溧水林场 Lishui Forest Farm, Nanjing City, Jiangsu Province
119.04° E
31.60° N
实地调查 Field survey
27
江苏省宜兴市磬山 Qingshan Mountain, Yixing City, Jiangsu Province
119.75° E
31.19° N
CVH NAS 00102536
28
江西省广昌县塘坊乡 Tangfang Township, Guangchang County, Jiangxi Province
116.49° E
26.62° N
CVH LBG 00018225
29
江西省乐安县茅岗村 Maogang Vallige, Le’an County, Jiangxi Province
115.91° E
27.34° N
实地调查 Field survey
30
江西省黎川县河樟村 Hezhang Vallige, Lichuan County, Jiangxi Province
116.78° E
27.04° N
CVH LBG 00018220
31
江西省南城县 Nancheng County, Jiangxi Province
116.64° E
27.56° N
CVH KUN 504150
32
江西省宜黄县 Yihuang County, Jiangxi Province
116.42° E
27.49° N
PPBC 232584
33
江西省石城县丰山乡 Fengshan Township, Shicheng County, Jiangxi Province
116.50° E
26.42° N
CVH LBG 00018202
34
江西省吉水县白沙镇 Baisha Town, Jishui County, Jiangxi Province
115.47° E
26.98° N
实地调查 Field survey
35
江西省九江市庐山区白鹿洞 Bailudong, Lushan District, Jiujiang City, Jiangxi Province
116.05° E
29.52° N
CVH LBG 00018208
附录I (续) Appendix I (continued)
序号 Code
居群位置 Location of populations
经度 Longitude
纬度 Latitude
来源 Source
36
江西省九江县岷山乡 Minshan Township, Jiujiang County, Jiangxi Province
115.66° E
29.46° N
CVH HHBG HZ003664
37
江西省彭泽县钱家湾 Qianjiawan, Pengze County, Jiangxi Province
116.75° E
30.05° N
CVH NAS 00203760
38
江西省武宁县鲁溪镇 Luxi Town, Wuning County, Jiangxi Province
115.20° E
29.50° N
实地调查 Field survey
39
江西省武宁县甫田乡 Futian Township, Wuning County, Jiangxi Province
114.88° E
29.30° N
实地调查 Field survey
40
江西省星子县温泉镇 Wenquan Town, Xingzi County, Jiangxi Province
115.90° E
29.42° N
CVH KUN 504149
41
江西省修水县 Xiushui County, Jiangxi Province
114.54° E
29.03° N
CVH NAS 00203795
42
江西省永修县 Yongxiu County, Jiangxi Province
115.62° E
29.09° N
实地调查 Field survey
43
江西省德兴市大茅山 Damao Mountain, Dexing City, Jiangxi Province
117.75° E
28.92° N
CVH LBG 00018216
44
江西省鄱阳县侯岗村 Hougang Village, Poyang County, Jiangxi Province
116.86° E
29.53° N
CVH LBG 00018224
45
江西省鄱阳县千秋河 Qianqiuhe, Poyang County, Jiangxi Province
116.88° E
29.36° N
CVH NAS 00203763
46
江西省宜丰县官山自然保护区 Guanshan Nature Reserve, Yifeng County, Jiangxi Province
114.57° E
28.50° N
CVH LBG 00018217
47
江西省婺源县鹤溪村 Hexi Village, Wuyuan County, Jiangxi Province
117.87° E
29.23° N
实地调查 Field survey
48
江西省玉山县陇首村 Longshou Village, Yushan County, Jiangxi Province
117.91° E
28.90° N
CVH LBG 00018218
49
江西省铜鼓县大沩山 Dawei Mountain, Tonggu County, Jiangxi Province
114.28° E
28.49° N
CVH LBG 00018203
50
浙江省临安市太庙山 Taimiao Mountain, Lin’an City, Zhejiang Province
119.73° E
30.24° N
SRSPE 2151C0001T00066148
51
浙江省临安市指南村 Zhinan Village, Lin’an City, Zhejiang Province
119.57° E
30.36° N
实地调查 Field survey
52
浙江省松阳县香奶山 Xiangnai Mountain, Songyang County, Zhejiang Province
119.28° E
28.40° N
SRSPE 2151C0001S60002828
53
浙江省余姚市四明山 Siming Mountain, Yuyao City, Zhejiang Province
121.12° E
29.74° N
CVH PE 00296654
54
浙江省诸暨市七家龙 Qijialong, Zhuji City, Zhejiang Province
120.37° E
29.81° N
CVH NAS 00203798
55
浙江省诸暨市外陈村 Waichen Village, Zhuji City, Zhejiang Province
120.19° E
29.66° N
CVH PE 00296650
CVH, Chinese Virtual Herbarium, subsequent code represents the specimen bar code in the herbarium; PPBC, Plant Photo Bank of China, subsequent code represents the photo ID; SRSPE, Specimen Resources Sharing Platform for Education, subsequent code represents the resource number in the platform.CVH, 中国数字植物标本馆, 其后代码为标本的馆藏条码; PPBC, 中国植物图像库, 其后代码为图片编号; SRSPE, 教学标本资源共享平台, 其后代码为标本的平台资源号。
Fang TQ (2012). Preliminary report on the regional botanical resources survey of Jingangtai National Geopark in Jinzhai County. Anhui Forestry Science and Technology, 38(4), 19–21. (in Chinese with English abstract) [方泰泉 (2012). 金刚台国家地质公园(金寨)区域植物资源调查初报. 安徽林业科技, 38(4), 19–21.]
Lü Y, Zhang J, Zang H (2013). Analysis of Castanopsis sclerophylla mixed stand’s natural compose index. Scientia Silvae Sinicae, 49(7), 86–90. (in Chinese with English abstract) [吕勇, 张江, 臧颢 (2013). 苦槠混交林自然构成指数分析. 林业科学, 49(7), 86–90.]
Ye YZ, Li PX, Qu WY (2014). Science Survey of Henan Jigongshan Nature Reserve. Science Press, Beijing. (in Chinese) [叶永忠, 李培学, 瞿文元 (2014). 河南鸡公山国家级自然保护区科学考察集. 科学出版社, 北京.]
Fig. 1 Extant occurrence points (black dots) and potential distribution for Quercus chenii during different periods predicted by the MaxEnt model. The solid line and dashed line represent the outline of modern suitable area and highly suitable area, respectively. A, Last Glacial Maximum. B, Mid-Holocene. C, Present. D, In 2070.
Fig. 2 Multivariate environmental similarity surface (MESS) and the most dissimilar (MoD) variable analysis for Quercus chenii during different periods. The solid line and dashed line represent the outline of modern suitable area and highly suitable area, respectively. In Fig. 2C, the circles represent novel climate points with suitability lower than present, and the triangles represent novel climate points with suitability higher than present. A, MESS for the Last Glacial Maximum (LGM). B, MoD for LGM. C, MESS for mid-Holocene. D, MoD for mid-Holocene. E, MESS for 2070. F, MoD for 2070. The codes of environmental variables see Table 1.
Fig. 3 Jackknife test of the importance of variables. Grey, white, and black bars represent running the MaxEnt model with only the variable, without the variable and with all variables, respectively. The codes of variables see Table 1.
Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: Multiple glacial refugia and mainland- migrated island populations
Phylogeography of a widespread Asian subtropical tree: Genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia
Molecular phylogeography and ecological niche modelling of a widespread herbaceous climber,Tetrastigma hemsleyanum(Vitaceae): Insights into plio- pleistocene range dynamics of evergreen forest in subtropical China
Integrating statistical genetic and geospatial methods brings new power to phylogeography
1
2011
... MaxEnt模型被广泛地应用于气候变化条件下物种潜在分布区的预测.它基于现代分布记录和环境数据构建物种分布模型, 并可以推广到诸如气候变化等新的情境, 其假设训练数据代表了现有分布区的环境状况, 并且在这种情境下物种处于平衡状态(Elith et al., 2010).该模型预测的对象非常广泛, 狭义的“物种”包括濒危物种(Kumar & Stohlgren, 2009; Matyukhina et al., 2015)、入侵物种(Padalia et al., 2014; 张熙骜等, 2014)和传染病原(Feidas et al., 2014)等, 广义的“物种”则涉及珍稀动物的栖息地或生境(侯宁等, 2014; 颜文博等, 2015)、梯田等农业景观(Galletti et al., 2013)和森林破坏(Souza & Marco, 2014)等生态退化过程, 预测尺度包括小尺度、中尺度或大尺度, 在样本量很小(<20)的情况下也有良好效果(Kumar & Stohlgren, 2009).值得注意的是, 在气候数据完整的情况下, MaxEnt模型还可投射到史前地质时期(末次间冰期、末次盛冰期和全新世中期等), 在谱系地理学研究中提供与遗传学、孢粉学、古生物学证据独立的额外信息.将MaxEnt模型同时应用于冰期和间冰期时, 研究人员可结合ArcGIS软件识别气候变迁过程中生态稳定性高的地区, 推断物种避难所位置(Chan et al., 2011), 也可将物种分布模型转换为生境阻力模型, 运用最小成本路径法等算法识别物种迁移路线(于海彬等, 2014); 当单独应用于冰期时, 可通过识别适宜度较高的地区辅助推断可能的避难所位置(白伟宁和张大勇, 2014), 进而从生态位模型角度对分子谱系地理学研究结论给予佐证(Chen et al., 2012; Shi et al., 2014; Wang et al., 2015; Zhang et al., 2015).因此, MaxEnt模型在进化生物学、谱系地理学、保护生物学和生态学等领域有着广泛的应用. ...
Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: Multiple glacial refugia and mainland- migrated island populations
1
2012
... MaxEnt模型被广泛地应用于气候变化条件下物种潜在分布区的预测.它基于现代分布记录和环境数据构建物种分布模型, 并可以推广到诸如气候变化等新的情境, 其假设训练数据代表了现有分布区的环境状况, 并且在这种情境下物种处于平衡状态(Elith et al., 2010).该模型预测的对象非常广泛, 狭义的“物种”包括濒危物种(Kumar & Stohlgren, 2009; Matyukhina et al., 2015)、入侵物种(Padalia et al., 2014; 张熙骜等, 2014)和传染病原(Feidas et al., 2014)等, 广义的“物种”则涉及珍稀动物的栖息地或生境(侯宁等, 2014; 颜文博等, 2015)、梯田等农业景观(Galletti et al., 2013)和森林破坏(Souza & Marco, 2014)等生态退化过程, 预测尺度包括小尺度、中尺度或大尺度, 在样本量很小(<20)的情况下也有良好效果(Kumar & Stohlgren, 2009).值得注意的是, 在气候数据完整的情况下, MaxEnt模型还可投射到史前地质时期(末次间冰期、末次盛冰期和全新世中期等), 在谱系地理学研究中提供与遗传学、孢粉学、古生物学证据独立的额外信息.将MaxEnt模型同时应用于冰期和间冰期时, 研究人员可结合ArcGIS软件识别气候变迁过程中生态稳定性高的地区, 推断物种避难所位置(Chan et al., 2011), 也可将物种分布模型转换为生境阻力模型, 运用最小成本路径法等算法识别物种迁移路线(于海彬等, 2014); 当单独应用于冰期时, 可通过识别适宜度较高的地区辅助推断可能的避难所位置(白伟宁和张大勇, 2014), 进而从生态位模型角度对分子谱系地理学研究结论给予佐证(Chen et al., 2012; Shi et al., 2014; Wang et al., 2015; Zhang et al., 2015).因此, MaxEnt模型在进化生物学、谱系地理学、保护生物学和生态学等领域有着广泛的应用. ...
Holocene vegetation history with implications of human impact in the Lake Chaohu area, Anhui Province, East China
Phylogeography of a widespread Asian subtropical tree: Genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia
1
2014
... MaxEnt模型被广泛地应用于气候变化条件下物种潜在分布区的预测.它基于现代分布记录和环境数据构建物种分布模型, 并可以推广到诸如气候变化等新的情境, 其假设训练数据代表了现有分布区的环境状况, 并且在这种情境下物种处于平衡状态(Elith et al., 2010).该模型预测的对象非常广泛, 狭义的“物种”包括濒危物种(Kumar & Stohlgren, 2009; Matyukhina et al., 2015)、入侵物种(Padalia et al., 2014; 张熙骜等, 2014)和传染病原(Feidas et al., 2014)等, 广义的“物种”则涉及珍稀动物的栖息地或生境(侯宁等, 2014; 颜文博等, 2015)、梯田等农业景观(Galletti et al., 2013)和森林破坏(Souza & Marco, 2014)等生态退化过程, 预测尺度包括小尺度、中尺度或大尺度, 在样本量很小(<20)的情况下也有良好效果(Kumar & Stohlgren, 2009).值得注意的是, 在气候数据完整的情况下, MaxEnt模型还可投射到史前地质时期(末次间冰期、末次盛冰期和全新世中期等), 在谱系地理学研究中提供与遗传学、孢粉学、古生物学证据独立的额外信息.将MaxEnt模型同时应用于冰期和间冰期时, 研究人员可结合ArcGIS软件识别气候变迁过程中生态稳定性高的地区, 推断物种避难所位置(Chan et al., 2011), 也可将物种分布模型转换为生境阻力模型, 运用最小成本路径法等算法识别物种迁移路线(于海彬等, 2014); 当单独应用于冰期时, 可通过识别适宜度较高的地区辅助推断可能的避难所位置(白伟宁和张大勇, 2014), 进而从生态位模型角度对分子谱系地理学研究结论给予佐证(Chen et al., 2012; Shi et al., 2014; Wang et al., 2015; Zhang et al., 2015).因此, MaxEnt模型在进化生物学、谱系地理学、保护生物学和生态学等领域有着广泛的应用. ...
The use of species distribution models to predict the spatial distribution of deforestation in the western Brazilian Amazon
1
2014
... MaxEnt模型被广泛地应用于气候变化条件下物种潜在分布区的预测.它基于现代分布记录和环境数据构建物种分布模型, 并可以推广到诸如气候变化等新的情境, 其假设训练数据代表了现有分布区的环境状况, 并且在这种情境下物种处于平衡状态(Elith et al., 2010).该模型预测的对象非常广泛, 狭义的“物种”包括濒危物种(Kumar & Stohlgren, 2009; Matyukhina et al., 2015)、入侵物种(Padalia et al., 2014; 张熙骜等, 2014)和传染病原(Feidas et al., 2014)等, 广义的“物种”则涉及珍稀动物的栖息地或生境(侯宁等, 2014; 颜文博等, 2015)、梯田等农业景观(Galletti et al., 2013)和森林破坏(Souza & Marco, 2014)等生态退化过程, 预测尺度包括小尺度、中尺度或大尺度, 在样本量很小(<20)的情况下也有良好效果(Kumar & Stohlgren, 2009).值得注意的是, 在气候数据完整的情况下, MaxEnt模型还可投射到史前地质时期(末次间冰期、末次盛冰期和全新世中期等), 在谱系地理学研究中提供与遗传学、孢粉学、古生物学证据独立的额外信息.将MaxEnt模型同时应用于冰期和间冰期时, 研究人员可结合ArcGIS软件识别气候变迁过程中生态稳定性高的地区, 推断物种避难所位置(Chan et al., 2011), 也可将物种分布模型转换为生境阻力模型, 运用最小成本路径法等算法识别物种迁移路线(于海彬等, 2014); 当单独应用于冰期时, 可通过识别适宜度较高的地区辅助推断可能的避难所位置(白伟宁和张大勇, 2014), 进而从生态位模型角度对分子谱系地理学研究结论给予佐证(Chen et al., 2012; Shi et al., 2014; Wang et al., 2015; Zhang et al., 2015).因此, MaxEnt模型在进化生物学、谱系地理学、保护生物学和生态学等领域有着广泛的应用. ...
Molecular phylogeography and ecological niche modelling of a widespread herbaceous climber,Tetrastigma hemsleyanum(Vitaceae): Insights into plio- pleistocene range dynamics of evergreen forest in subtropical China
1
2015
... MaxEnt模型被广泛地应用于气候变化条件下物种潜在分布区的预测.它基于现代分布记录和环境数据构建物种分布模型, 并可以推广到诸如气候变化等新的情境, 其假设训练数据代表了现有分布区的环境状况, 并且在这种情境下物种处于平衡状态(Elith et al., 2010).该模型预测的对象非常广泛, 狭义的“物种”包括濒危物种(Kumar & Stohlgren, 2009; Matyukhina et al., 2015)、入侵物种(Padalia et al., 2014; 张熙骜等, 2014)和传染病原(Feidas et al., 2014)等, 广义的“物种”则涉及珍稀动物的栖息地或生境(侯宁等, 2014; 颜文博等, 2015)、梯田等农业景观(Galletti et al., 2013)和森林破坏(Souza & Marco, 2014)等生态退化过程, 预测尺度包括小尺度、中尺度或大尺度, 在样本量很小(<20)的情况下也有良好效果(Kumar & Stohlgren, 2009).值得注意的是, 在气候数据完整的情况下, MaxEnt模型还可投射到史前地质时期(末次间冰期、末次盛冰期和全新世中期等), 在谱系地理学研究中提供与遗传学、孢粉学、古生物学证据独立的额外信息.将MaxEnt模型同时应用于冰期和间冰期时, 研究人员可结合ArcGIS软件识别气候变迁过程中生态稳定性高的地区, 推断物种避难所位置(Chan et al., 2011), 也可将物种分布模型转换为生境阻力模型, 运用最小成本路径法等算法识别物种迁移路线(于海彬等, 2014); 当单独应用于冰期时, 可通过识别适宜度较高的地区辅助推断可能的避难所位置(白伟宁和张大勇, 2014), 进而从生态位模型角度对分子谱系地理学研究结论给予佐证(Chen et al., 2012; Shi et al., 2014; Wang et al., 2015; Zhang et al., 2015).因此, MaxEnt模型在进化生物学、谱系地理学、保护生物学和生态学等领域有着广泛的应用. ...