植物生态学报

• •    

镉污染下的植物响应:从吸收、转运到应答与缓解机制

柯嘉雯, 程张浩, 高雪夷, 徐云剑, 王毅   

  1. 植被结构功能与建造国家重点实验室,西南跨境生态安全教育部重点实验室,云南省植物繁殖适应与进化生态学重点实验室,云南大学生态与环境学院生物多样性研究院,昆明,650504, 云南 中国
    云南大学生命科学学院,昆明,650504, 北京 中国
  • 收稿日期:2025-05-27 修回日期:2025-07-03

Plant Responses to Cadmium Contamination: Mechanisms of Uptake, Transport, and Physiological-Molecular Mitigation

  1. , , China
  • Received:2025-05-27 Revised:2025-07-03

摘要: 镉(Cd)污染对植物生长及生态系统安全构成严重威胁,阐明植物对镉胁迫的响应机制对污染治理与农业安全至关重要。本文系统综述了植物对镉的吸收、转运、生理应答及缓解策略。镉主要通过根系共生途径(依赖Nramp、ZIP等转运蛋白)和胞外途径(如细胞壁吸附与木质部运输)进入植物体内,其生物有效性受土壤pH、有机质及微生物活动显著影响。在生理层面,镉胁迫诱导活性氧(ROS)积累,激活抗氧化酶系统(SOD、CAT、APX)及螯合机制(GSH、PCs、MTs),并通过液泡区隔化降低胞质镉毒性。分子机制上,HMA、ABC等转运蛋白家族协同调控镉的跨膜运输与解毒过程。应用层面,基于超积累植物的修复技术(如柳树、景天属植物)结合螯合剂(EDTA)与根际促生菌(PGPR)可提升土壤修复效率;通过基因编辑技术(如敲除OsNramp5、OsHMA3)培育的低镉作物显著降低籽粒镉含量。本综述为解析植物镉耐受机制提供了理论框架,并为镉污染治理与作物安全生产提供了技术参考。

关键词: 重金属镉, 转运蛋白, 螯合机制, 根际微生物互作, 植物修复技术

Abstract: Cadmium (Cd) contamination poses a significant threat to plant growth and ecosystem security. Elucidating the mechanisms underlying plant responses to Cd stress is critical for pollution remediation and agricultural safety. This review systematically examines Cd uptake, transport, physiological responses, and mitigation strategies in plants. Cd primarily enters plants through symplastic pathways (mediated by transporters such as Nramp and ZIP) and apoplastic pathways (e.g., cell wall adsorption and xylem transport), with its bioavailability significantly influenced by soil pH, organic matter, and microbial activity. At the physiological level, Cd stress induces reactive oxygen species (ROS) accumulation, activates antioxidant enzyme systems (SOD, CAT, APX) and chelation mechanisms (e.g., GSH, PCs, MTs), and reduces cytosolic Cd toxicity via vacuolar compartmentalization. Molecularly, transporter families such as Heavy Metal ATPase (HMA) and ATP-Binding Cassette (ABC) proteins synergistically regulate transmembrane Cd transport and detoxification processes. Practically, phytoremediation technologies utilizing hyperaccumulator plants (e.g., Salix spp. and Sedum spp.), combined with chelating agents (e.g., EDTA) and plant growth-promoting rhizobacteria (PGPR), enhance soil remediation efficiency. Additionally, low-Cd crops developed through gene-editing technologies (e.g., knockout of OsNramp5 and OsHMA3) exhibit significantly reduced grain Cd accumulation. This review provides a theoretical framework for understanding plant Cd tolerance mechanisms and offers technical references for Cd pollution control and safe crop production.

Key words: Heavy metal cadmium, Transporter protein, Chelation mechanism, Interaction between rhizosphere microorganisms, Phytoremediation technology