植物生态学报 ›› 2006, Vol. 30 ›› Issue (6): 960-968.DOI: 10.17521/cjpe.2006.0122
收稿日期:
2005-12-19
接受日期:
2006-04-08
出版日期:
2006-12-19
发布日期:
2006-11-30
通讯作者:
谢宗强
作者简介:
* E-mail: xie@ibcas.ac.cn.基金资助:
YI Ying-Hua1,2, FAN Da-Yong1, XIE Zong-Qiang1,*(), CHEN Fang-Qing1
Received:
2005-12-19
Accepted:
2006-04-08
Online:
2006-12-19
Published:
2006-11-30
Contact:
XIE Zong-Qiang
摘要:
研究了人工模拟淹水胁迫对两年生栓皮栎(Quercus variabilis)和枫杨(Pterocarya stenoptera)树苗的影响。经过70 d的淹水处理两种植物的存活率均为100%。淹水对两种植物生理生态过程的早期影响是快速降低了二者的最大净光合速率(Pmax)、气孔导度(Gs)、最大光化学量子效率(Fv/Fm)。经过7 d的淹水处理后,受淹栓皮栎的最大净光合速率是对照的39%,枫杨是对照的42%;受淹栓皮栎的气孔导度是对照的38.8%,枫杨是对照的71.9%;水淹5 d后,枫杨和栓皮栎的最大光化学量子效率分别为0.694和0.757。但经过最初的下降后,枫杨的最大净光合速率、气孔导度和最大光化学量子效率逐渐恢复,而栓皮栎的则持续下降。到淹水70 d时栓皮栎的最大净光合速率下降了94.1%,最大光化学量子效率的平均值为0.537。在试验过程中,枫杨产生了有利于吸收氧气的不定根和肥大的皮孔,而栓皮栎没有产生不定根。随淹水时间的增加枫杨的叶绿素含量与对照没有显著差异;而栓皮栎的叶绿素含量在第33 d后大幅降低,Chla/Chlb的比值下降。淹水后第10 d和第70 d测定的清晨水势,受淹栓皮栎比对照高,而受淹枫杨比对照低,因此淹水导致的叶片水势的变化可能与树种相关。以上的试验结果表明受淹的栓皮栎的光合机构运转受到了严重影响,因此栓皮栎应属于对淹水较敏感的树种。从两种植物受淹水胁迫的形态和生理变化看,枫杨比栓皮栎更耐淹,更适合库塘消落区生境。
衣英华, 樊大勇, 谢宗强, 陈芳清. 模拟淹水对枫杨和栓皮栎气体交换、叶绿素荧光和水势的影响. 植物生态学报, 2006, 30(6): 960-968. DOI: 10.17521/cjpe.2006.0122
YI Ying-Hua, FAN Da-Yong, XIE Zong-Qiang, CHEN Fang-Qing. EFFECTS OF WATERLOGGING ON THE GAS EXCHANGE, CHLOROPHYLL FLUORESCENCE AND WATER POTENTIAL OF QUERCUS VARIABILIS AND PTEROCARYA STENOPTERA. Chinese Journal of Plant Ecology, 2006, 30(6): 960-968. DOI: 10.17521/cjpe.2006.0122
图2 淹水对栓皮栎和枫杨光合速率和气孔导度的影响(平均值±标准误差)
Fig.2 Effect of waterlogging of net assimilation rate (Pmax) and stomatal conductance (Gs) in seedlings of Quercus variabilis and Pterocarya stenoptera (mean±SE)
物种 Species | 生理指标 Index of physiology | 第7~10 d On 7-10 d | 第70 d On 70 day | |||
---|---|---|---|---|---|---|
对照 Control | 处理 Treatment | 对照 Control | 处理 Treatment | |||
栓皮栎 Quercus variabilis | 最大净光合速率Pmax (μmol·m-2·s-1) | 8.64±0.684 | 2.78±0.563** | 8.00±1.430 | 0.473±0.061** | |
气孔导度Gs (mmol·m-2·s-1) | 0.152±0.006 | 0.063±0.002** | 0.113±0.031 | 0.041±0.006* | ||
叶绿素荧光 Chlorophyll fluorescence | 0.813±0.004 | 0.720±0.007** | 0.807±0.005 | 0.537±0.025** | ||
Chla/Chlb | 3.298±0.012 | 3.270±0.021 | 3.511±0.040 | 2.302±0.170* | ||
清晨水势 Predraw water potential (MPa) | -0.37±0.06 | -0.25±0.04* | -0.27±0.05 | -0.19±0.03* | ||
枫杨 Pterocarya stenoptera | 最大净光合速率Pmax (umol·m-2·s-1) | 11.27±0.795 | 7.64±0.762* | 8.07±0.649 | 8.42±1.700 | |
气孔导度Gs (mmol·m-2·s-1) | 0.178±0.011 | 0.142±0.011 | 0.120±0.032 | 0.138±0.006 | ||
叶绿素荧光 Chlorophyll fluorescence | 0.821±0.011 | 0.791±0.005* | 0.811±0.018 | 0.766±0.007* | ||
Chla/Chlb | 2.760±0.20 | 2.610±0.14 | 2.938±0.18 | 3.101±0.34 | ||
清晨水势 Predraw water potential (MPa) | -0.31±0.02 | -0.41±0.06* | -0.17±0.03 | -0.26±0.07* |
表1 受淹的两种植物在第7~10和70 d时各生理指标的数值(平均值±标准误差)
Table 1 Values of indexes of physiology on 7-10 and 70 days in two waterlogged seedlings (mean±SE)
物种 Species | 生理指标 Index of physiology | 第7~10 d On 7-10 d | 第70 d On 70 day | |||
---|---|---|---|---|---|---|
对照 Control | 处理 Treatment | 对照 Control | 处理 Treatment | |||
栓皮栎 Quercus variabilis | 最大净光合速率Pmax (μmol·m-2·s-1) | 8.64±0.684 | 2.78±0.563** | 8.00±1.430 | 0.473±0.061** | |
气孔导度Gs (mmol·m-2·s-1) | 0.152±0.006 | 0.063±0.002** | 0.113±0.031 | 0.041±0.006* | ||
叶绿素荧光 Chlorophyll fluorescence | 0.813±0.004 | 0.720±0.007** | 0.807±0.005 | 0.537±0.025** | ||
Chla/Chlb | 3.298±0.012 | 3.270±0.021 | 3.511±0.040 | 2.302±0.170* | ||
清晨水势 Predraw water potential (MPa) | -0.37±0.06 | -0.25±0.04* | -0.27±0.05 | -0.19±0.03* | ||
枫杨 Pterocarya stenoptera | 最大净光合速率Pmax (umol·m-2·s-1) | 11.27±0.795 | 7.64±0.762* | 8.07±0.649 | 8.42±1.700 | |
气孔导度Gs (mmol·m-2·s-1) | 0.178±0.011 | 0.142±0.011 | 0.120±0.032 | 0.138±0.006 | ||
叶绿素荧光 Chlorophyll fluorescence | 0.821±0.011 | 0.791±0.005* | 0.811±0.018 | 0.766±0.007* | ||
Chla/Chlb | 2.760±0.20 | 2.610±0.14 | 2.938±0.18 | 3.101±0.34 | ||
清晨水势 Predraw water potential (MPa) | -0.31±0.02 | -0.41±0.06* | -0.17±0.03 | -0.26±0.07* |
图3 淹水对栓皮栎和枫杨最大光化学效率(Fv/Fm)的影响(平均值±标准误差)
Fig.3 Effect of waterlogging of Chla fluorescence maximum quantum efficiency (Fv/Fm) in seedlings of Quercus variabilis and Pterocarya stenoptera (mean±SE)
图4 淹水对栓皮栎和枫杨叶绿素含量的影响(平均值±标准误差)
Fig.4 Effect of waterlogging of leaf pigment compisition in seedlings of Quercus variabilis and Pterocarya stenoptera (mean±SE)
图5 淹水对栓皮栎和枫杨水势的影响(平均值±标准误差)
Fig.5 Effect of waterlogging of predraw water potential in seedlings of Quercus variabilis and Pterocarya stenoptera (mean±SE)
[1] | Ashraf M, Arfan M (2005). Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. Biologia Plantarum, 49,459-462. |
[2] | Castonguay Y, Nadeau P, Simard RR (1993). Effects of flooding on carbohydrate and ABA levels in roots and shoots of alfalfa. Plant, Cell and Environment, 16,695-701. |
[3] | Carvalho LC, Amancio S (2002). Antioxidant defence system in plantlets transferred from in vitro to ex vitro: effects of increasing light intensity and CO2 concentration. Plant Science, 162,33-40. |
[4] | Chen HJ, Robert GQ, Robert RB (2005). Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquatic Botany, 82,250-268. |
[5] |
Christiane FS, Shabala S (2003). Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Functional Plant Biology, 30,335-343.
DOI URL PMID |
[6] | Close DC, Davidson NJ (2003). Long-term waterlogging: nutrient, gas exchange photochemical and pigment characteristics of Eucalyptus nitens saplings. Russian Journal of Plant Physiology, 50,843-847. |
[7] | Crawford RMM, Braendle R (1996). Oxygen deprivation stress in a changing environment. Journal of Experimental Botany, 47,145-159. |
[8] | Crawford RMM, Walton JC, Wollenweber-Ratzer B (1994). Similarities between post-ischaemic injury to animal tissues and post-anoxic injury in plants. Proceedings of the Royal Society of Edinburgh, 102B,325-332. |
[9] | Farquhar G, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 33,317-345. |
[10] | Frye J, Grosse W (1992). Growth responses to flooding and recovery of deciduous trees. Leitschrift für Naturforsch Section C: Bioscience, 47,683-689. |
[11] |
Gomes ARS, Kozlowski TT (1980). Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding. Plant Physiology, 66,267-271.
DOI URL PMID |
[12] |
Gravatt DA, Kirby CJ (1998). Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiology, 18,411-417.
URL PMID |
[13] | Hook DD (1984). Waterlogging tolerance of lowland tree species of the south. Southern Journal of Applied Forestry, 8,136-149. |
[14] | Huang BR, Johnson JW, Nesmith S, Bridges DC (1994). Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. Journal of Experimental Botany, 45,193-202. |
[15] | Islam MA, Macdonald SE (2004). Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees, 18,35-42. |
[16] | Jing YX(靖元孝), Cheng HQ(程惠青), Peng JZ(彭建宗), Chen ZP(陈兆平), Mo XM(莫熙穆), Zheng ZH(郑中华), Xu DB(许大彬) (2001a). Preliminary studies on responses of the seedlings of Cleistocalyx operculatus to flooding. Acta Ecologica Sinica(生态学报), 21,810-813. ( in Chinese with English abstract). |
[17] | Jing YX(靖元孝), Chen ZP(陈兆平), Yang DJ(杨丹菁) (2001b). Preliminary studies on responses and adaptations of Vetiveria zizanioides to flooding. Journal of South China Normal University(Natural Science Edition)(华南师范大学学报(自然科学版)), 4,40-43. ( in Chinese with English abstract). |
[18] | Joly CA, Crawford RMM (1982). Variation in tolerance and metabolic responses to flooding in some tropical trees. Journal of Experimental Botany, 33,799-809. |
[19] | Keeley JE (1979). Population differentiation along a flood frequency gradient: physiological adaptations to flooding in Nyssa sylvatica. Ecological Monographs, 49,89-108. |
[20] | Kozlowski TT (1997). Responses of woody plants to flooding and salinity. Tree Physiology Monograph, 1,1-29. |
[21] | Larcher W (2003). Physiological Plant Ecology 4th edn. Springer, Berlin, Heidelberg, New York. |
[22] | Li HS(李合生) (2000). Principles and Techniques of Plant Physiological Biochemical Experiment(植物生理生化试验原理和技术). Higher Education Press, Beijing,134-137. (in Chinese) |
[23] | Liao CT, Lin CH (1994). Effect of flooding stress on photosynthetic activities of Momordica charantia. Plant Physiology and Biochemistry, 32,1-5. |
[24] | Liao CT, Lin CH (1996). Photosynthetic responses of grafted bitter melon seedlings to flooding stress. Environmental and Experimental Botany, 36,167-172. |
[25] |
Lopez OR, Kusar TA (1999). Flood tolerance of four tropical tree species. Tree Physiology, 19,925-932.
DOI URL PMID |
[26] | Malik AI, Colmer TD, Lambers H, Schortemeyer M (2001). Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Australian Journal of Plant Physiology, 28,1121-1131. |
[27] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51,659-668.
URL PMID |
[28] | McLeod KW, McCarron JK, Conner WH (1999). Photosynthesis and water relations of four oak species: impact of flooding and salinity. Trees, 13,178-187. |
[29] | Mielke MS, Almeida AF, Gomes FP, Aguilar MAG, Mangabeira PAO (2003). Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environmental and Experimental Botany, 50,221-231. |
[30] | Pezeshki SR (2001). Wetland plant responses to soil flooding. Environmental and Experimental Botany, 46,299-312. |
[31] | Pezeshki SR, Pardue JH, DeLaune RD (1993). The influence of soil oxygen deficiency on alcohol dehydrogenase activity, root porosity, ethylene production, and photosynthesis in Spartina patens. Environmental and Experimental Botany, 33,565-573. |
[32] |
Pezeshki SR, Pardue JH, DeLaune RD (1996). Leaf gas exchange and growth of flood-tolerant and flood-sensitive tree species under low soil redox conditions. Tree Physiology, 16,453-458.
DOI URL PMID |
[33] | Pezeshki SR (1993). Differences in patterns of photosynthetic responses to hypoxia in flood-tolerant and flood-sensitive tree species. Photosynthetica, 28,423-430. |
[34] | Schmull M, Thomas FM (2000). Morphological and physiological reactions of young deciduous trees (Quercus robur L., Q. petraea [Matt.] Liebl., Fagus sylvatica L.) to waterlogging. Plant and Soil, 225,227-242. |
[35] |
Schwanz P, Picon C, Vivin P, Dryer E, Guehl JM, Polle A (1996). Responses of antioxidative systems to drought stress in penduncultae oak and maritime pine as modulated by elevated CO2. Plant Physiology, 110,393-402.
URL PMID |
[36] | Sun OJ, Sweet GB, Whitehead D, Buchan GD (1995). Physiological responses to water stress and waterlogging in Nothofagus species. Tree Physiology, 15,629-638. |
[37] | Vartapetian BB, Jackson MB (1997). Plant adaptation to anaerobic stress. Annals of Botany, 79(Suppl.A),3-20. |
[38] | Vu JCV, Yelenosky G (1991). Photosynthetic responses of citrus trees to soil flooding. Physiologia Plantarum, 81,7-14. |
[39] | Wang YH(汪佑宏), Xiao CB(肖成宝), Liu XE(刘杏娥), Xu B(徐斌) (2002). Effect of flooding degree on the relation between the mechanic properties and air-dry density, anatomy features of Pterocarya stenptera. Journal of Northwest Forestry University(西北林学院学报), 18(2),80-83. (in Chinese with English abstract) |
[40] | Wang YH(汪佑宏), Xiao CB(肖成宝), Liu XE(刘杏娥), Xu B(徐斌) (2003a). Effect of different flooding degrees on the wood rays of Pterocrya stenptera C.DC. grown in the beaches of Changjiang river. Journal of Anhui Agricultural University(安徽农业大学学报), 29,293-296. (in Chinese with English abstract) |
[41] | Wang YH(汪佑宏), Xu B(徐斌), Liu XE(刘杏娥) (2003b). Effects of flooding degree on the chemical properties of Pterocrya stenptera C.DC. wood grown in the beaches. Journal of Central South Forestry University(中南林学院学报), 23,37-39. ( in Chinese with English abstract). |
[42] | Xie HC(谢会成), Zhu XC(朱西存) (2004). The effect of water stress on the photosynthetic characteristics and growth yield of oriental oak seedlings. Journal of Shandong Forestry Science and Technology(山东林业科技), (2),6-7. ( in Chinese with English abstract). |
[43] |
Yamamoto F, Sakata T, Terazawa K (1995). Physiological, morphological and anatomical responses of Fraxinus mandshurica seedlings to flooding. Tree Physiology, 15,713-719.
URL PMID |
[1] | 章异平, 海旭莹, 徐军亮, 吴文霞, 曹鹏鹤, 安文静. 秦岭东段栓皮栎枝条非结构性碳水化合物含量的季节动态[J]. 植物生态学报, 2019, 43(6): 521-531. |
[2] | 李理渊, 李俊, 同小娟, 孟平, 张劲松, 张静茹. 黄河小浪底栓皮栎、刺槐叶片电子传递速率-光响应的模拟[J]. 植物生态学报, 2018, 42(10): 1009-1021. |
[3] | 周旋,何正飚,康宏樟,孙逍,刘春江. 温带-亚热带栓皮栎种子形态的变异及其与环境因子的关系[J]. 植物生态学报, 2013, 37(6): 481-491. |
[4] | 张文辉, 段宝利, 周建云, 刘祥君. 不同种源栓皮栎幼苗叶片水分关系和保护酶活性对干旱胁迫的响应[J]. 植物生态学报, 2004, 28(4): 483-490. |
[5] | 史作民, 刘世荣, 程瑞梅. 宝天曼地区栓皮栎林恢复过程中高等到植物物种多样性变化[J]. 植物生态学报, 1998, 22(5): 415-421. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3233
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 4874
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La