研究论文

接种丛枝菌根真菌对干旱胁迫燕麦非结构性碳水化合物及碳氮磷化学计量特征的影响

  • 张斌 ,
  • 张浩成 ,
  • 乔天 ,
  • 吕治兵 ,
  • 许亚男 ,
  • 李雪芹 ,
  • 原向阳 ,
  • 冯美臣 ,
  • 张美俊
展开
  • 山西农业大学农学院, 山西太谷 030801
*张美俊, E-mail: meijunz@126.com

收稿日期: 2024-12-04

  录用日期: 2025-04-08

  网络出版日期: 2025-05-09

基金资助

中央引导地方科技发展资金项目(YDZJSX2022A037);山西省现代农业产业技术体系建设专项资金(2024CYJSTX03-18);2024年山西省研究生教育创新项目(2024KY294)

Effect of arbuscular mycorrhizal fungi inoculation on non-structural carbohydrates and C, N and P stoichiometry in oat plants under drought stress

  • ZHANG Bin ,
  • ZHANG Hao-Cheng ,
  • QIAO Tian ,
  • LÜ Zhi-Bing ,
  • XU Ya-Nan ,
  • LI Xue-Qin ,
  • YUAN Xiang-Yang ,
  • FENG Mei-Chen ,
  • ZHANG Mei-Jun
Expand
  • College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China

Received date: 2024-12-04

  Accepted date: 2025-04-08

  Online published: 2025-05-09

Supported by

Central Guidance for Local Science and Technology Development Fund Project(YDZJSX2022A037);Shanxi Province Modern Agriculture Minor Cereals Industrial Technology System(2024CYJSTX03-18);2024 Postgraduate Education Innovation Project in Shanxi Province(2024KY294)

摘要

植物营养成分积累与植物生存和产量密切相关, 从植物各器官营养成分变化角度探求接种丛枝菌根真菌(AMF)对干旱胁迫植物的调控, 可为运用AMF增强植物抗旱性提供理论依据。该研究采用盆栽实验, 以燕麦(Avena sativa)品种‘坝莜1号’为材料, 设置两个土壤相对含水量(田间持水量的75%和55%), 并分别设置接种AMF和未接种2个处理。在燕麦拔节期和灌浆期取样测定侵染率, 各器官非结构性碳水化合物(NSC)及碳(C)、氮(N)、磷(P)含量; 成熟期测定燕麦籽粒产量。结果表明: 干旱胁迫接种AMF, AMF侵染率, 燕麦株高、根冠比显著增加, 籽粒产量显著提高13.31%, 生长指标和产量提高的幅度高于正常供水接种AMF提高的幅度; 茎、叶可溶性糖含量显著增加; 根、茎、叶C、N、P含量显著提高, 其中对叶P含量影响最大; 极显著提高叶C:N, 降低叶N:P。叶可溶性糖和茎C、根N含量分别是解释遭受干旱胁迫和接种AMF时引起燕麦生长及籽粒产量变化的重要调节指标。以上结果表明: 干旱胁迫下接种AMF, 通过增加AMF侵染率, 协同提高燕麦器官可溶性糖和C、N、P含量, 并调节叶C:N和N:P, 增强燕麦抗旱性, 提高燕麦籽粒产量。

本文引用格式

张斌 , 张浩成 , 乔天 , 吕治兵 , 许亚男 , 李雪芹 , 原向阳 , 冯美臣 , 张美俊 . 接种丛枝菌根真菌对干旱胁迫燕麦非结构性碳水化合物及碳氮磷化学计量特征的影响[J]. 植物生态学报, 2025 , 49(7) : 1082 -1095 . DOI: 10.17521/cjpe.2024.0434

Abstract

Aims The accumulation of nutritional components in plants is critically linked to their survival capacity and productivity. Investigating how arbuscular mycorrhizal fungi (AMF) inoculation regulates drought tolerance in plants through nutrient component changes in various organ will establish a theoretical framework for applying AMF to improve crop resilience under water-limited conditions.
Methods The study employed a controlled pot experiment with two water regimes (75% vs. 55% field capacity) and AMF inoculation treatments, using oat (Avena sativa) cultivar ‘Bayou 1’. Mycorrhizal colonization rates were quantified at jointing and filling stages, followed by analysis of non-structural carbohydrates (NSC), carbon (C), nitrogen (N), phosphorus (P) contents in root, stem, and leaf. Grain yield was recorded at the maturity stage.
Important findings In oat plants inoculated with AMF under drought stress, the AMF colonization rate, plant height, and root-to-shoot ratio were significantly enhanced, resulting in 13.31% increase in grain yield. Notably, these improvements in growth parameters and yield exceeded those observed in AMF-inoculated plants under well-watered conditions. Furthermore, AMF inoculation under drought stress increased soluble sugar accumulation in stem and leaf. Concurrently, the contents of C, N, P in root, stem, leaf, as well as the leaf C:N significantly increased, especially the contents of P in leaf. In contrast, the leaf N:P significantly declined. Redundancy analysis revealed that the contents of leaf soluble sugars, and stem C, root N contents served as key indicators explaining variations in growth traits and grain yield under drought stress and AMF inoculation, respectively. Overall, AMF inoculation under drought conditions enhanced oat drought tolerance and hence improved grain yield, primarily attributed to increase AMF colonization rate, which facilitated synergistically the accumulation of soluble sugar and C, N, P in organs, and modulated the leaf stoichiometric ratios (C:N and N:P).

参考文献

[1] Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012). Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal of Plant Physiology, 169, 704-709.
[2] Attarzadeh M, Balouchi H, Rajaie M, Dehnavi MM, Salehi A (2019). Improvement of Echinacea purpurea performance by integration of phosphorus with soil microorganisms under different irrigation regimes. Agricultural Water Management, 221, 238-247.
[3] Azizi S, Kouchaksaraei MT, Hadian J, Abad ARFN, Sanavi SAMM, Ammer C, Bader MKF (2021). Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology and Management, 497, 119478. DOI: 10.1016/j.foreco.2021.119478.
[4] Bago B, Pfeffer PE, Shachar-Hill Y (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 124, 949-958.
[5] Bao SD (2000). Soil Agrochemical Analysis. 3rd ed. China Agriculture Press, Beijing.
  [鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.]
[6] Bitterlich M, Jansa J, Graefe J, Pauwels R, Sudová R, Rydlová J, Püschel D (2024). Drought accentuates the role of mycorrhiza in phosphorus uptake, part II—The intraradical enzymatic response. Soil Biology & Biochemistry, 193, 109414. DOI: 10.1016/j.soilbio.2024.109414.
[7] Cai HX, Wu FZ, Yang WQ (2011). Effects of drought stress on the photosynthesis of Salix paraqplesia and Hippophae rhamnoides seedlings. Acta Ecologica Sinica, 31, 2430-2436.
  [蔡海霞, 吴福忠, 杨万勤 (2011). 干旱胁迫对高山柳和沙棘幼苗光合生理特征的影响. 生态学报, 31, 2430-2436.]
[8] Chen BD, Wang ET (2025). Research prospects on ecology, physiology and application technology of arbuscular mycorrhizal fungi. Bulletin of Botanical Research, 45, 329-332.
  [陈保冬, 王二涛 (2025). 丛枝菌根生态生理与应用技术研究展望. 植物研究, 45, 329-332.]
[9] Cheng HQ, Zou YN, Wu QS, Ku?a K (2021). Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H+-ATPase activity and gene expression. Frontiers in Plant Science, 12, 659694. DOI: 10.3389/fpls.2021.659694.
[10] Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant physiology, 171, 1009-1023.
[11] Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020). Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity, 12, 370. DOI: 10.3390/d12100370.
[12] Ditmarová L, Kurjak D, Palmroth S, Kme? J, St?elcová K (2010). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, 30, 205-213.
[13] Doubková P, Vlasáková E, Sudová R (2013). Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant and Soil, 370, 149-161.
[14] Du JH, Shao JY, Li SF, Qin J (2020). Non-structural carbohydrate content of trees and its influencing factors at multiple spatial-temporal scales: a review. Chinese Journal of Applied Ecology, 31, 1378-1388.
  [杜建会, 邵佳怡, 李升发, 秦晶 (2020). 树木非结构性碳水化合物含量多时空尺度变化特征及其影响因素研究进展. 应用生态学报, 31, 1378-1388.]
[15] Duan HX, Luo CL, Zhu Y, Zhao L, Wang J, Wang W, Xiong YC (2024). Arbuscular mycorrhizal fungus activates wheat physiology for higher reproductive allocation under drought stress in primitive and modern wheat. European Journal of Agronomy, 161, 127376. DOI: 10.1016/j.eja.2024.127376.
[16] Genre A, Lanfranco L, Perotto S, Bonfante P (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18, 649-660.
[17] Gupta A, Rico-Medina A, Ca?o-Delgado AI (2020). The physiology of plant responses to drought. Science, 368, 266-269.
[18] Jiang WT, Gong L, Yang LH, He SP, Liu XH (2021). Dynamics in C, N, and P stoichiometry and microbial biomass following soil depth and vegetation types in low mountain and hill region of China. Scientific Reports, 11, 19631. DOI: 10.1038/s41598-021-99075-5.
[19] Li XX, Li JZ (2013). Determination of the content of soluble sugar in sweet corn with optimized anthrone colorimetric method. Storage and Process, 13(4), 24-27.
[20] Li YL, Jin ZX, Luo GY, Chen C, Sun ZS, Wang XY (2022). Effects of arbuscular mycorrhizal fungi inoculation on non-structural carbohydrate contents and C:N:P stoichiometry of Heptacodium miconioides under drought stress. Chinese Journal of Applied Ecology, 33, 963-971.
  [李月灵, 金则新, 罗光宇, 陈超, 孙中帅, 王晓燕 (2022). 干旱胁迫下接种丛枝菌根真菌对七子花非结构性碳水化合物积累及C、N、P化学计量特征的影响. 应用生态学报, 33, 963-971.]
[21] Li Z, Tan XF, Lu K, Zhang L, Long HX, Lü JB, Lin Q (2017). Influence of drought stress on the growth, leaf gas exchange, and chlorophyll fluorescence in two varieties of tung tree seedlings. Acta Ecologica Sinica, 37, 1515-1524.
  [李泽, 谭晓风, 卢锟, 张琳, 龙洪旭, 吕佳斌, 林青 (2017). 干旱胁迫对两种油桐幼苗生长、气体交换及叶绿素荧光参数的影响. 生态学报, 37, 1515-1524.]
[22] Liu KL, Han TF, Hu HW, Huang QH, Yu XC, Li DM, Ye HC, Hu ZH (2018). Response of soil enzyme activity in flowering stages of maize to long-term fertilization in red soil. Journal of Plant Nutrition and Fertilizers, 24, 1610-1618.
  [柳开楼, 韩天富, 胡惠文, 黄庆海, 余喜初, 李大明, 叶会财, 胡志华 (2018). 红壤旱地玉米开花期土壤酶活性对长期施肥的响应. 植物营养与肥料学报, 24, 1610-1618.]
[23] Liu N, Zhao ZY, Jiang XL, Xing XK (2021). Review and prospect of researches on the mechanisms of mycorrhizal fungi in improving plant drought resistance. Mycosystema, 40, 851-872.
  [刘娜, 赵泽宇, 姜喜铃, 邢晓科 (2021). 菌根真菌提高植物抗旱性机制的研究回顾与展望. 菌物学报, 40, 851-872.]
[24] Liu YX, Lu JH, Cui L, Tang ZH, Ci DW, Zou XX, Zhang XJ, Yu XN, Wang YF, Si T (2023). The multifaceted roles of arbuscular mycorrhizal fungi in peanut responses to salt, drought, and cold stress. BMC Plant Biology, 23, 36. DOI: 10.1186/s12870-023-04053-w.
[25] Luginbuehl LH, Menard GN, Kurup S, van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GE, Eastmond PJ (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356, 1175-1178.
[26] Ma Y, Su BL, Han YG, Wu XH, Zhou WM, Wang QW, Zhou L, Yu DP (2021). Response of photosynthetic characteristics and non-structural carbohydrate accumulation of Betula ermanii seedlings to drought stress. Chinese Journal of Applied Ecology, 32, 513-520.
  [马玥, 苏宝玲, 韩艳刚, 吴星慧, 周旺明, 王庆伟, 周莉, 于大炮 (2021). 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应. 应用生态学报, 32, 513-520.]
[27] Mathur S, Tomar RS, Jajoo A (2019). Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynthesis Research, 139, 227-238.
[28] Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, Bisht JK, Pattanayak A, Naveed M, Dotaniya M (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecological Engineering, 107, 8-32.
[29] Millard P, Sommerkorn M, Grelet GA (2007). Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175, 11-28.
[30] Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642.
[31] O’Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A (2014). Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 4, 710-714.
[32] Pu ZT, Zhang L, Zhang C, Wang H, Wang XX (2022). Research progress of arbuscular mycorrhizal fungi and plant symbiosis affecting plant water regime. Soils, 54, 882-889.
  [蒲子天, 张林, 张弛, 王红, 王鑫鑫 (2022). 丛枝菌根真菌与植物共生影响植物水分状态的研究进展. 土壤, 54, 882-889.]
[33] Püschel D, Bitterlich M, Rydlová J, Bukovská P, Sudová R, Jansa J (2023). Benefits in plant N uptake via the mycorrhizal pathway in ample soil moisture persist under severe drought. Soil Biology & Biochemistry, 187, 109220. DOI: 10.1016/j.soilbio.2023.109220.
[34] Püschel D, Bitterlich M, Rydlová J, Jansa J (2021). Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biology & Biochemistry, 157, 108243. DOI: 10.1016/j.soilbio.2021.108243.
[35] Rahimzadeh S, Pirzad A (2017). Microorganisms (AMF and PSB) interaction on linseed productivity under water-deficit condition. International Journal of Plant Production, 11, 259-274.
[36] Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010). Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biology & Biochemistry, 42, 1189-1191.
[37] Shi JC, Wang XL, Wang ET (2023). Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annual Review of Plant Biology, 74, 569-607.
[38] Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae, 107, 245-253.
[39] Sun XM, He MZ, Yang RZ, Li JX, Chen NL (2021). Correlation of non-structural carbohydrates with C:N:P stoichiometry among the organs of Nitraria tangutorum. Acta Ecologica Sinica, 41, 1081-1091.
  [孙小妹, 何明珠, 杨睿哲, 李金霞, 陈年来 (2021). 白刺器官间非结构性碳水化合与C:N:P计量比的关联性. 生态学报, 41, 1081-1091.]
[40] Tereucán G, Ruiz A, Nahuelcura J, Oyarzún P, Santander C, Winterhalter P, Ademar Avelar Ferreira P, Cornejo P (2022). Shifts in biochemical and physiological responses by the inoculation of arbuscular mycorrhizal fungi in Triticum aestivum growing under drought conditions. Journal of the Science of Food and Agriculture, 102, 1927-1938.
[41] Thioub M, Ewusi-Mensah N, Sarkodie-Addo J, Adjei-Gyapong T (2019). Arbuscular mycorrhizal fungi inoculation enhances phosphorus use efficiency and soybean productivity on a haplic acrisol. Soil and Tillage Research, 192, 174-186.
[42] Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998). Ink and vinegar, a simple staining technique for arbuscular- mycorrhizal fungi. Applied and Environmental Microbiology, 64, 5004-5007.
[43] Wang GW, Jin ZX, George TS, Feng G, Zhang L (2023a). Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytologist, 238, 2578-2593.
[44] Wang J, Tang Z (2014). The regulation of soluble sugars in the growth and development of plants. Botanical Research, 3, 71-76.
[45] Wang K, Shen C, Sun B, Wang XN, Wei D, Lv LY (2018). Effects of drought stress on C, N and P stoichiometry of Ulmus pumila seedlings in Horqin sandy land, China. Chinese Journal of Applied Ecology, 29, 2286-2294.
  [王凯, 沈潮, 孙冰, 王潇楠, 魏东, 吕林有 (2018). 干旱胁迫对科尔沁沙地榆树幼苗C、N、P化学计量特征的影响. 应用生态学报, 29, 2286-2294.]
[46] Wang Q, Liu MM, Wang ZF, Li JR, Liu K, Huang D (2024). The role of arbuscular mycorrhizal symbiosis in plant abiotic stress. Frontiers in Microbiology, 14, 1323881. DOI: 10.3389/fmicb.2023.1323881.
[47] Wang Y, Han XY, Ai W, Zhan H, Ma SJ, Lu XJ (2023b). Non-structural carbohydrates and growth adaptation strategies of Quercus mongolica Fisch. ex Ledeb. seedlings under drought stress. Forests, 14, 404. DOI: 10.3390/f14020404.
[48] Wang YN, Lin JX, Yang F, Tao S, Yan XF, Zhou ZQ, Zhang YH (2022). Arbuscular mycorrhizal fungi improve the growth and performance in the seedlings of Leymus chinensis under alkali and drought stresses. PeerJ, 10, e12890.
[49] Wang Y, Zou YN, Shu B, Wu QS (2023c). Deciphering molecular mechanisms regarding enhanced drought tolerance in plants by arbuscular mycorrhizal fungi. Scientia Horticulturae, 308, 111591. DOI: 10.3390/ijms20174199.
[50] Wu QS, Xia RX, Zou YN (2008). Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology, 44, 122-128.
[51] Wu YJ, Chen CJ, Wang GA (2024). Inoculation with arbuscular mycorrhizal fungi improves plant biomass and nitrogen and phosphorus nutrients: a meta-analysis. BMC Plant Biology, 24, 960. DOI: 10.1186/s12870-024-05638-9.
[52] Xie H, Zhang QF, Chen TT, Zeng QX, Zhou JC, Wu Y, Lin HY, Liu YY, Yin YF, Chen YM (2022). Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition. Chinese Journal of Plant Ecology, 46, 811-822.
  [谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民 (2022). 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性. 植物生态学报, 46, 811-822.]
[53] Zhang B, Lv YF, Li Y, Li L, Jia JQ, Feng MC, Wang C, Song XY, Yang WD, Shafiq F, Zhang MJ (2023). Inoculation with Rhizophagus intraradices confers drought stress tolerance in oat by improving nitrogen and phosphorus nutrition. Journal of Soil Science and Plant Nutrition, 23, 2039-2052.
[54] Zhang ZF, Zhang JC, Huang YQ, Xu GP, Zhang DN, Yu YC (2016). Effects of mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings. Acta Ecologica Sinica, 36, 3402-3410.
  [张中峰, 张金池, 黄玉清, 徐广平, 张德楠, 俞元春 (2016). 接种菌根真菌对青冈栎幼苗耐旱性的影响. 生态学报, 36, 3402-3410.]
[55] Zhao RX, Guo W, Bi N, Guo JY, Wang LX, Zhao J, Zhang J (2015). Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Applied Soil Ecology, 88, 41-49.
[56] Zhu SG, Duan HX, Tao HY, Zhu L, Zhou R, Yang YM, Zhang XL, Wang WY, Zhu H, Zhang W (2023). Arbuscular mycorrhiza changes plant facilitation patterns and increases resource use efficiency in intercropped annual plants. Applied Soil Ecology, 191, 105030. DOI: 10.1016/j.apsoil.2023.105030.
[57] Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012). Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant, Soil and Environment, 58, 186-191.
文章导航

/