中国北方植被水分利用效率的时间变化特征及其影响因子
网络出版日期: 2018-06-01
基金资助
国家林业公益性行业科研专项(201404201)、国家重点基础研究发展计划(973计划)(2014CB954204)和中央高校基本科研业务费专项 (BLX2015-16);Supported by the Program of Forestry Research for the Public Benefits of Ministry of Finance of China (201404201), the National Basic Research Program of China (2014CB954204), and the Fundamental Research Funds for the Central Universities (BLX2015-16).
Temporal changes of vegetation water use efficiency and its influencing factors in Northern China
Online published: 2018-06-01
水分利用效率(WUE)既是衡量植被生长适应性的重要指标, 也是连接生态系统水碳循环的纽带。认识不同类型植被WUE的时间变化特征及驱动机制有助于增进对生态系统水碳循环过程的理解。已有研究表明, 在不同时间尺度下, WUE呈现不同的时间变化特征, 但现有研究多是集中在单一的时间尺度下开展的, 对不同植被类型在不同时间尺度下的动态变化及影响因子分析开展得较少。该研究选用中国北方地区9个定位观测台站的通量与气象数据, 分析了WUE的日内变化和季节变化特征, 并在0.5 h、1 d、8 d以及月尺度下, 分别分析了气温(Ta)、相对湿度(RH)、饱和水汽压差(VPD)以及光合有效辐射(PAR)等非生物因子对WUE的影响。同时, 该研究也分析了植被叶面积指数(LAI)和降水(P)对WUE的影响。研究发现: (1) WUE的日变化呈现不对称的“U”型特征, 日出时的WUE普遍高于日落时。荒漠地区WUE的季节变化呈“U”型, 而其他站点呈现单峰型。不同站点WUE的季节变化可以分为总初级生产力(GPP)主导型和蒸发散(ET)主导型, 并随着时间尺度的扩大, GPP或ET的主导作用逐渐增强。(2)在较短的时间尺度(0.5 h、1 d)上, Ta、RH、VPD和PAR是影响WUE变化的主要因子, 但随着时间尺度的扩大, Ta和RH成为影响WUE变化的主要因子, 并且与WUE的相关关系受GPP或ET对WUE主导作用的影响, 随着时间尺度增大, Ta和RH与WUE的线性关系更加显著。(3) WUE大体上随LAI的增加而增加, 但当LAI超过一定值时, 在长白山、海北和张掖站, WUE对LAI的敏感性降低。降水与WUE的关系在研究区域内并不显著。(4)不同植被类型的WUE由大到小依次为森林、农田、草地、湿地和荒漠。
冯朝阳, 王鹤松, 孙建新 . 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018 , 42(4) : 453 -465 . DOI: 10.17521/cjpe.2017.0214
Aims Water use efficiency (WUE) is an important variable for evaluating the growth adaptation of vegetation; it links carbon and water cycles of terrestrial ecosystems. Charactering the spatial and temporal variations in WUE and the driving factors not only can help understand the processes and regulations of ecosystem carbon and water cycles, but also provides scientific basis for formulating sustainable regional development policies and guiding water resources management. This study was conducted to determine the patterns of temporal changes for different vegetation types in northern China.
Methods Flux and meteorological data of nine field observation sites in northern China were used to analyze the changes of WUE under different temporal scales, including half-hourly, daily, 8-day intervals, and monthly. The effects of temperature (Ta), relative humidity (RH), vapor pressure deficit (VPD) and photosynthetically active radiation (PAR) on WUE under different time scales were also examined.
Important findings (1) Diurnal change of WUE displayed an asymmetric “U” shape, with greater values at the sunrise than at the sunset. The seasonality of WUE in the Gobi and desert areas displayed a pattern of “U” shape, while it occurred as a single peak in other regions. The seasonal changes of WUE can be further divided into the types of gross primary production (GPP)-driven and the evapotranspiration (ET)-driven; the significance of either driven type increases with time. (2) Ta, RH, VPD and PAR were the main factors influencing the changes of WUE on a shorter temporal scale (half-hourly and daily). With increasing temporal scale, Ta and RH continue to remain the main factors affecting the changes of WUE, and their correlations with WUE were influenced by the prevailing role of GPP or ET. Moreover, the correlation coefficients became more significant with increasing temporal scales. (3) WUE increased with increases in leaf area index (LAI) until a certain value, beyond which the sensitivity of WUE to LAI decreased at the Changbai Mountain, Haibei and Zhangye stations. The relationship between precipitation and WUE was not significant in all the study areas. (4) Among the vegetation types, WUE ranked in order from high to low as forest, cropland, grassland, wetland and desert.
1 | Beer C , Ciais P , Reichstein M , Baldocchi D , Law BE , Papale D , Soussana JF , Ammann C , Buchmann N , Frank D ( 2009). Temporal and among site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 23, GB2018. DOI: 10.1029/2008GB003233. |
2 | Bohn BA , Kershner JL ( 2002). Establishing aquatic restoration priorities using a watershed approach. Journal of Environmental Management, 64, 355- 363. |
3 | Chen SP , Bai YF , Han XG ( 2002). Application of stable carbon isotope techniques to ecological research. Acta Phytoecologica Sinica, 26, 549- 560. |
3 | [ 陈世苹, 白永飞, 韩兴国 ( 2002). 稳定性碳同位素技术在生态学研究中的应用. 植物生态学报, 26, 549- 560.] |
4 | Du JJ , Chen ZW ( 2010). Methods of path analysis using SPSS linear regression. Bulletin of Biology, 45, 4- 6. |
4 | [ 杜家菊, 陈志伟 ( 2010). 使用SPSS线性回归实现通径分析的方法. 生物学通报, 45, 4- 6.] |
5 | Dong G , Guo JX , Chen JQ , Sun G , Gao S , Hu LJ , Wang YL. ( 2011). Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in northeast China. Ecohydrology, 4, 211- 224. |
6 | Farquhar GD , Sharkey TD ( 1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317- 345. |
7 | Guo RP , Lin ZH , Mo XG , Yang CL ( 2010). Responses of crop yield and water use efficiency to climate change in the North China Plain. Agricultural Water Management, 97, 1185- 1194. |
8 | Hu ZM , Yu GR , Fu YL , Sun XM , Li YN , Shi PL , Wang YF , Zheng ZM ( 2008). Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Global Change Biology, 14, 1609- 1619. |
9 | Hu ZM , Yu GR , Wang QF , Zhao FH ( 2009). Ecosystem level water use efficiency: A review. Acta Ecologica Sinica, 29, 1498- 1507. |
9 | [ 胡中民, 于贵瑞, 王秋凤, 赵风华 ( 2009). 生态系统水分利用效率研究进展. 生态学报, 29, 1498- 1507.] |
10 | Huang RH , Zhou DG , Chen W , Zhou LT , Wei ZG , Zhang Q , Gao XQ , Wei GA , Hou XH ( 2013). Recent progress in studies of air-land interaction over the arid area of Northwest China and its impact on climate. Chinese Journal of Atmospheric Sciences, 37, 189- 210. |
10 | [ 黄荣辉, 周德刚, 陈文, 周连童, 韦志刚, 张强, 高晓清, 卫国安, 候旭宏 ( 2013). 关于中国西北干旱区陆—气相互作用及其对气候影响研究的最近进展. 大气科学, 37, 189- 210.] |
11 | Jaleel CA , Gopi R , Sankar B , Gomathinayagam M , Panneerselvam R ( 2008). Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comptes Rendus Biologies, 331, 42- 47. |
12 | Jia X , Zha TS , Gong JN , Wang B , Zhang YQ , Wu B , Qin SG , Peltola H ( 2016). Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agricultural and Forest Meteorology, 228, 120- 129. |
13 | Law BE , Falge E , Gu LV , Baldocchi DD , Bakwin P , Berbigier P , Davis K , Dolman AJ , Falk M , Fuentes JD ( 2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97- 120. |
14 | Li HD , Guan DX , Yuan FH , Wang AZ , Jin CJ , Wu JB , Li Z , Jing YL ( 2015). Water use efficiency and its influential factor over Horqin Meadow. Acta Ecologica Sinica, 35, 478- 488. |
14 | [ 李辉东, 关德新, 袁凤辉, 王安志, 金昌杰, 吴家兵, 李峥, 井艳丽 ( 2015). 科尔沁草甸生态系统水分利用效率及影响因素. 生态学报, 35, 478- 488.] |
15 | Li XZ , Liu XD , Ma ZG ( 2004). Analysis on the characteristics of aridification in the main arid areas of the world in recent 100 years. Arid Zone Research, 21, 97- 103. |
15 | [ 李新周, 刘晓东, 马柱国 ( 2004). 近百年来全球主要干旱区的干旱化特征分析. 干旱区研究, 21, 97- 103.] |
16 | Liu SM , Xu ZW , Song LS , Zhao QY , Ge Y , Xu TR , Ma YF , Zhu ZL , Jia ZZ , Zhang F ( 2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230, 97- 113. |
17 | Liu XD , Chen XZ , Li RH , Long FL , Zhang L , Zhang QM , Li JY ( 2017). Water-use efficiency of an old-growth forest in lower subtropical China. Scientific Reports, 7, 42761. DOI: 10.1038/srep42761. |
18 | Lu XL , Zhuang QL ( 2010). Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sensing of Environment, 114, 1924- 1939. |
19 | Muraoka H , Saigusa N , Nasahara KN , Noda H , Yoshino J , Saitoh TM , Nagai S , Murayama S , Koizumi H ( 2010). Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan. Journal of Plant Research, 123, 563- 576. |
20 | Munns R ( 2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645- 663. |
21 | Ponton S , Flanagan LB , Alstad KP , Johnson BG , Morgenstern K , Kljun N , Black TA , Barr AG ( 2006). Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology, 12, 294- 310. |
22 | Reichstein M , Ciais P , Papale D , Valentini R , Running S , Viovy N , Cramer W , Granier A , Ogee J , Allard V ( 2007). Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13, 634- 651. |
23 | Sala OE , Gherardi LA , Reichmann L , Jobbagy E , Peters D ( 2012). Legacies of precipitation fluctuations on primary production: Theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3135- 3144. |
24 | Song QH , Fei XH , Zhang YP , Sha LQ , Liu YT , Zhou WJ , Wu CS , Lu ZY , Luo K , Gao JB ( 2017). Water use efficiency in a primary subtropical evergreen forest in Southwest China. Scientific Reports, 7, 43031. DOI: 10.1038/srep43031. |
25 | Sun XK , Fan ZP , Wang H , Jie B , Zhang Y , Deng DZ ( 2008). Photosynthetic characteristics and water use efficiency of three broad-leaved tree species in the Horqin Sandland. Journal of Arid Land Resources and Environment, 10, 188- 194. |
25 | [ 孙学凯, 范志平, 王红, 白洁, 张营, 邓东周 ( 2008). 科尔沁沙地复叶槭等3个阔叶树种的光合特性及其水分利用效率. 干旱区资源与环境, 10, 188- 194.] |
26 | Tan ZH , Zhang YP , Deng XB , Song QH , Liu WJ , Deng Y , Tang JW , Liao ZY , Zhao JF , Song L ( 2015). Interannual and seasonal variability of water use efficiency in a tropical rainforest: Results from a 9 year eddy flux time series. Journal of Geophysical Research: Atmospheres, 120, 464- 479. |
27 | Tang XG , Li HP , Griffis TJ , Xu XB , Ding Z , Liu GH ( 2015). Tracking ecosystem water use efficiency of cropland by exclusive use of MODIS EVI data. Remote Sensing, 7, 11016- 11035. |
28 | Thomey ML , Collins SL , Vargas R , Johnson JE , Brown RF , Natvig DO , Friggens MT ( 2011). Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Global Change Biology, 17, 1505- 1515. |
29 | Tong XJ , Li J , Yu Q , Qin Z ( 2009). Ecosystem water use efficiency in an irrigated cropland in the North China Plain. Journal of Hydrology, 374, 329- 337. |
30 | Wang F , Jiang FL , Chen XF , Niu XD ( 2016). Bamboo forest water use efficiency in the Yangtze River Delta Region, China. Terrestrial, Atmospheric & Oceanic Sciences, 27, 981- 989. |
31 | Wang QW , Yu DP , Dai LM , Zhou L , Zhou WM , Qi G , Qi L , Ye YJ ( 2010). Research progress in water use efficiency of plants under global climate change. Chinese Journal of Applied Ecology, 21, 3255- 3265. |
31 | [ 王庆伟, 于大炮, 代力民, 周莉, 周旺明, 齐光, 齐麟, 叶雨静 ( 2010). 全球气候变化下植物水分利用效率研究进展. 应用生态学报, 21, 3255- 3265.] |
32 | Xu ZW , Liu SM , Li X , Shi SJ , Wang JM , Zhu ZL , Xu TR , Wang WZ , Ma MG ( 2013). Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research: Atmospheres, 118, 13140- 13157. |
33 | Yu GR , Song X , Wang QF , Liu YF , Guan DX , Yan JH , Sun XM , Zhang LM , Wen XF ( 2008). Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist, 177, 927- 937. |
34 | Yu GR , Fu YL , Sun XM , Wen XF , Zhang LM ( 2006). Research progress and development of China’s Terrestrial Ecosystem Fluorescence Observation Network (ChinaFLUX). Science in China Series D Earth Science, S1, 1- 21. |
34 | [ 于贵瑞, 伏玉玲, 孙晓敏, 温学发, 张雷明 ( 2006). 中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路. 中国科学. D辑: 地球科学, S1, 1- 21.] |
35 | Zhang FM , Ju WM , Shen SH , Wang SQ , Yu GR , Han SJ ( 2014). How recent climate change influences water use efficiency in East Asia. Theoretical and Applied Climatology, 116, 359- 370. |
36 | Zhang L , Tian J , He HL , Ren XL , Sun XM , Yu GR , Lu QQ , Lü LY ( 2015). Evaluation of water use efficiency derived from MODIS products against eddy variance measurements in China. Remote Sensing, 7, 11183- 11201. |
37 | Zhang LX , Hu ZM , Fan JW , Shao QQ , Tang FP ( 2014). Advances in the spatiotemporal dynamics in ecosystem water use efficiency at regional scale. Advances in Earth Science, 29, 691- 699. |
37 | [ 张良侠, 胡中民, 樊江文, 邵全琴, 唐风沛 ( 2014). 区域尺度生态系统水分利用效率的时空变异特征研究进展. 地球科学进展, 29, 691- 699.] |
38 | Zhao LW , Zhao WZ , Ji XB ( 2015). Division between transpiration and evaporation, and crop water consumption over farmland within oases of the middlestream of Heihe River basin, Northwestern China. Acta Ecologica Sinica, 35, 1114- 1123. |
38 | [ 赵丽雯, 赵文智, 吉喜斌 ( 2015). 西北黑河中游荒漠绿洲农田作物蒸腾与土壤蒸发区分及作物耗水规律. 生态学报, 35, 1114- 1123.] |
39 | Zhou S , Yu B , Huang YF , Wang GQ ( 2015). Daily underlying water use efficiency for AmeriFlux sites. Journal of Geophysical Research: Biogeosciences, 120, 887- 902. |
/
〈 |
|
〉 |