综述

木本植物水力学结构之导管长度研究进展

展开
  • 1 西北农林科技大学林学院, 陕西杨凌 712100
    2 西北农林科技大学生命学院, 陕西杨凌 712100
    3 陕西秦岭森林生态系统国家野外科学观测研究站,陕西杨凌 712100

收稿日期: 2017-11-11

  修回日期: 2018-03-27

  网络出版日期: 2018-06-01

基金资助

国家自然科学基金(31570588)

Vessel length as a key hydraulic structure in woody plants: A review

Expand
  • 1 College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China;
    2 College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; and 3Qinling National Forest Ecosystem Research Station, Yangling, Shaanxi 712100, China;
    3 Qinling National Forest Ecosystem Research Station, Yangling, Shaanxi 712100, China;

Received date: 2017-11-11

  Revised date: 2018-03-27

  Online published: 2018-06-01

Supported by

Supported by the National natural Science Foundation of China(31570588)

摘要

导管作为多数被子植物木质部水分运输的主要通道, 了解其结构及功能对研究被子植物水力学特性及植物对环境的适应性有着重要的作用。导管长度作为导管解剖特征之一, 对水分运输的安全性及有效性有着重要的影响。该文概述了导管长度测量及计算的方法, 导管长度在种内及种间的分布, 导管长度与导管直径的关系, 导管长度与导水率的关系及导管长度对建立栓塞脆弱曲线的影响, 并对未来导管长度的研究工作重点提出了建议: 1)改进灌注物质, 使灌注更加充分且更利于观察、提高计算精度、发展活体动态测量技术; 2)建立导管在植物不同器官及整体的分布网络以及不同生活型、不同地区的导管长度数据库; 3)对导管直径在导管方向的变化, 导管长度与其他导管特性之间的关系进行研究; 4)光学测量建立栓塞脆弱曲线技术的兴起, 可为解决离心机法建立栓塞脆弱曲线的真实与准确与否的争议提供新的方向。更深入地了解导管长度在植物水力功能中担负的角色, 可以为耐旱、抗旱品种选育提供理论基础。

本文引用格式

程向芬, 马晋, 赵涵, 姜在民, 蔡靖 . 木本植物水力学结构之导管长度研究进展[J]. 植物生态学报, 2018 , 42(6) : 609 -618 . DOI: 10.17521/cjpe.2017.0293

Abstract

Vessels are the conduit for water transport in xylem of most angiosperms. Our knowledge on their structure remains crucial in understanding the hydraulic properties of angiosperms and their adaptability to the changing environment. Vessel length is one of the major anatomical features that play a fundamental role in determining the trade-offs between safety and efficiency of long-distance water transport in xylem. This article provides a review of scholarly research on the structure and function of plant vessels, as well as the corresponding methods, measurements, scientific challenges on the influence on vulnerability curve and the relationships with other features of vessel length, as well as our knowledge gaps. Future efforts should be placed on: 1) improvement of the materials for penetration for their completion, easy-to-use, measurement accuracy, and new technology; 2) sound research on vessel network of different organs, as well as a database on vessels of different functional groups and climate zones; 3) the change in vessel diameter and other structural features with length; 4) optical measurements of xylem vulnerability for additional evidences on the roles of artificial open vessels. Advancing our knowledge on the role of vessel length in hydraulic function of plants will provide us with a theoretical foundation for improvement of drought-tolerant and drought-resistant species.

参考文献

[1] Akachuku AE ( 1987). A study of lumen diameter variation along the longitudinal axis of wood vessels in Quercus rubra using cinematography. IAWA Journal, 8, 41-45.
[2] André JP ( 1998). A study of the vascular organization of bamboos (Poaceae-Bambuseae) using a microcasting method. IAWA Journal, 19, 265-278.
[3] Apgaua DMG, Tng DYP, Cernusak LA, Cheesman AW, Santos RM, Edwards WJ, Laurance SGW ( 2017). Plant functional groups within a tropical forest exhibit different wood functional anatomy. Functional Ecology, 31, 582-591.
[4] Baas P, Ewers FW, Davis SD, Wheeler EA ( 2004). Evolution of xylem physiology. In: Hemsley AR, Poole I eds. The Evolution of Plant Physiology. Elsevier Academic Press,London. 273-295.
[5] Barotto AJ, Fernandez ME, Gyenge J, Meyra A, Martinez- Meier AM, Monteoliva S ( 2016). First insights into the functional role of vasicentric tracheids and parenchyma in Eucalyptus species with solitary vessels: Do they contribute to xylem efficiency or safety? Tree Physiology, 36, 1485-1497.
[6] Brodersen CR, Lee EF, Choat B, Jansen S, Phillips RJ, Shackel KA, McElrone AJ, Matthews MA ( 2011). Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. New Phytologist, 191, 1168-1179.
[7] Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA ( 2010). The dynamics of embolism repair in xylem: In vivo visualizations using high resolution computed tomography. Plant Physiology, 154, 1088-1095.
[8] Brodribb TJ, Bienaimé D, Marmottant P ( 2016). Revealing catastrophic failure of leaf networks under stress. Proceedings of the National Academy of Science of United States of America, 113, 4865-4869.
[9] Brodribb TJ, Carriqui M, Delzon S, Lucani C ( 2017). Optical measurement of stem xylem vulnerabilty. Plant Physiology, 174, 2054-2061.
[10] Cai J, Tyree MT ( 2014). Measuring vessel length in vascular plants: Can we divine the truth? History, theory, methods, and contrasting models. Trees, 28, 643-655.
[11] Cai J, Zhang SX, Tyree MT ( 2010). A computational algorithm addressing how vessel length might depend on vessel diameter. Plant, Cell & Environment, 33, 1234-1238.
[12] Choat B, Cobb AR, Jansen S ( 2008). Structure and function of bordered pits: New discoveries and impacts on whole- plant hydraulic function. New Phytologist, 177, 608-625.
[13] Choat B, Drayton WM, Brodersen C, Matthews MA, Shackel KA, Wada H, Mcelrone AJ ( 2010). Measurement of vulnerability to water stress-induced cavitation in grapevine: A comparison of four techniques applied to a long-vesseled species. Plant, Cell & Environment, 33, 1502-1512.
[14] Choat B, Jansen S, Brodribb TJ, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE ( 2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
[15] Christman MA, Sperry JS, Smith DD ( 2012). Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytologist, 193, 713-720.
[16] Cochard H ( 2002). A technique for measuring xylem hydraulic conductance under high negative pressures. Plant, Cell & Environment, 25, 815-819.
[17] Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S ( 2013). Methods for measuring plant vulnerability to cavitation: A critical review. Experimental Botany, 64, 4779-4791.
[18] Cochard H, Cruizat P, Tyree MT ( 1992). Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure- volume analysis. Plant Physiology, 100, 205-209.
[19] Cochard H, Damour G, Bodet C, Tharwat I, Poirier M, Améglio T ( 2005). Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 124, 410-418.
[20] Cochard H, Herbette S, Barigah T, Badel E, Ennajeh M, Vilagrosa A ( 2010). Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique. Plant, Cell & Environment, 33, 1543-1552.
[21] Cohen S, Bennink J, Tyree MT ( 2003). Air method measurements of apple vessel length distributions with improved apparatus and theory. Journal of Experimental Botany, 54, 1889-1897.
[22] Comstock JP, Sperry JS ( 2000). Theoretical considerations of optimal conduit length for water transport in vascular plants. The New Phytologist, 148, 195-218.
[23] Ellmore GS, Ewers FW ( 1986). Fluid flow in the outermost xylem increment of a ring-porous tree, Ulmus americana. American Journal of Botany, 73, 1771-1774.
[24] Ennajeh M, Simoes F, Khemira H, Cochard H ( 2011). How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms? Physiologia Plantarum, 142, 205-210.
[25] Espino S, Schenk HJ ( 2009). Hydraulically integrated or modular? Comparing whole-plant-level hydraulic systems between two desert shrub species with different growth forms. New Phytologist, 183, 142-152.
[26] Ewers FW, Fisher JB ( 1989a). Techniques for measuring vessel lengths and diameters in stems of woody plants. American Journal of Botany, 76, 645-656.
[27] Ewers FW, Fisher JB ( 1989b ). Variation in vessel length and diameter in stems of six tropical and subtropical lianas. American Journal of Botany, 76, 1452-1459.
[28] Ewers FW, Fisher JB, Chiu S ( 1990). A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia, 84, 544-552.
[29] Frost FH ( 1930). Specialization in secondary xylem of dicotyledons. I. Origin of vessel. Botanical Gazette, 89, 67-94.
[30] Gleason SM, Butler DW, Zieminska K, Waryszak P, Westoby M ( 2012). Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Functional Ecology, 26, 343-352.
[31] Gleason SM, Westoby M, Jansen S, Choat B, Hacke HG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF, Chchard H, Delzon S, Domec JC, Fan ZX, Feild TS, Jacobsen AL, Johnson DM, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, McCulloh KA, Mencuccini M, Mitchell PJ, Morris H, Nardini A, Pittermann J, Plavcová L, Schreiber SG, Sperry JS, Wright IJ, Zanne AE ( 2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209, 123-136.
[32] Hacke UG, Jansen S ( 2009). Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist, 182, 675-686.
[33] Hacke UG, Sperry JS, Field TS, Sano Y, Skkema EH, Pittermann J ( 2007). Water transport in vesselless angiosperms: Conducting efficiency and cavitation safety. International Journal of Plant Sciences, 168, 1113-1126.
[34] Hacke UG, Sperry JS, Wheeler JK, Castro L ( 2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26, 689-701.
[35] Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB ( 2015). The standard centrifuge method accurately measures vulnerability curves of long- vesselled olive stems. New Phytologist, 205, 116-127.
[36] Jacobsen AL, Pratt RB ( 2012). No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long- vesselled liana ( Vitis vinifera). New Phytologist, 194, 982-990.
[37] Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW ( 2012). A global analysis of xylem vessel length in woody plants. American Journal of Botany, 99, 1583-1591.
[38] Jacobsen AL, Tobin MF, Toschi HS, Percolla MI, Pratt RB ( 2016). Structural determinants of increased susceptibility to dehydration-induced cavitation in post-fire resprouting chaparral shrubs. Plant, Cell & Environment, 39, 2473-2485.
[39] Jansen S, Choat B, Pletsers A ( 2009). Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 96, 409-419.
[40] Kolb KJ, Sperry JS ( 1999). Transport constraints on water use by the Great Basin shrub, Artemisia tridentata. Plant, Cell & Environment, 22, 925-936.
[41] Lens F, Sperry JS, Christamn MA, Choat B, Rabaey D, Jansen S ( 2011). Testing the hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723.
[42] Li HF, Tian XH, Ren Y ( 2005). Research progress in vessel and perforation plate of vascular plants and some considerations for future research. Acta Botanica Boreali-?Occidentalia Sinica, 25, 419-424.
[42] [ 李红芳, 田先华, 任毅 ( 2005). 维管植物导管及其穿孔板的研究进展. 西北植物学报, 25, 419-424.]
[43] Li R, Jiang ZM, Zhang SX, Cai J ( 2015). A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 39, 838-848.
[43] [ 李荣, 姜在民, 张硕新, 蔡靖 ( 2015). 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 39, 838-848.]
[44] Limousin J, Longepierre MD, Rambal S ( 2010). Change in hydraulic traits of Mediterranean Quercus ilex subjected to longterm throughfall exclusion. Tree Physiology, 30, 1026-1036.
[45] Loepfe L, Vilalta JM, Ponol J, Mencuccini M ( 2007). The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 247, 788-803.
[46] Maherali H, Pockman WT, Jackson RB ( 2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184-2199.
[47] Martín JA, Solla A, Ruiz-Villar M, Gil L ( 2013). Vessel length and conductivity of Ulmus branches: Ontogenetic changes and relation to resistance to Dutch elm disease. Tree, 27, 1239-1248.
[48] Martínez-Cabrera HI, Schenk HJ, Cevallos-Ferriz SR, Jones CS ( 2011). Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. American Journal of Botany, 98, 915-922.
[49] McCulloh KA, Johnson DM, Petitmermet J, McNellis B, Meinzer FC, Lachenbruch B ( 2015). A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height. Tree Physiology, 35, 723-731.
[50] Pan RH, Geng J, Cai J, Tyree MT ( 2015). A comparison of two methods for measuring vessel length in woody plants. Plant, Cell & Environment, 38, 2519-2526.
[51] Pockman WT, Sperry JS, O’Leary JW ( 1995). Sustained and significant negative water pressure in xylem. Nature, 378, 715-716.
[52] Salleo S, Hinckley TM, Kikuta SB, Lo Gullo MA, Weilgony P, Yoon TM, Richter H ( 1992). A method for inducing xylem emboli in situ: Experiments with a field-grown tree. Plant, Cell & Environment, 15, 491-497.
[53] Schreiber SG, Hacke UG, Hamann A ( 2011). Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen. New Phytologist, 190, 150-160.
[54] Skene DS, Balodis V ( 1968). A study of vessel length in Eucalyptus oblique L’Hérit. Journal of Experimental Botany, 19, 825-830.
[55] Sperry JS, Christman MA, Torres-Ruiz JM, Taneda H, Smith DD ( 2012). Vulnerability curves by centrifugation: Is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid? Plant, Cell & Environment, 35, 601-610.
[56] Sperry JS, Donnelly JR, Tyree MT ( 2010). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 11, 35-40.
[57] Sperry JS, Hacke UG, Field TS, Sano Y, Sikkema EH ( 2007). Hydraulic consequences of vessel evolution in angiosperms. International Journal of Plant Sciences, 168, 1127-1139.
[58] Sperry JS, Hacke UG, Wheeler JK ( 2005). Comparative analysis of end wall resistivity in xylem conduits. Plant, Cell & Environment, 28, 456-465.
[59] Sperry JS, Saliendra NZ ( 1994). Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell & Environment, 17, 1233-1241.
[60] Sperry JS, Tyree MT ( 1988). Mechanism of water stress-?induced xylem embolism. Plant Physiology, 88, 581-587.
[61] Tyree MT ( 1993). Theory of vessel-length determination: The problem of nonrandom vessel ends. American Journal of Botany, 71, 297-302.
[62] Tyree MT, Dixon MA ( 1986). Water stress induced cavitation and embolism in some woody plants. Physiologia Plantarum, 66, 397-405.
[63] Tyree MT, Sperry JS ( 1989). Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-38.
[64] Tyree MT, Zimmermann MH ( 2002). Xylem Structure and the Ascent of Sap. 2nd edn. Springer, Berlin.
[65] Venturas MD, Rodriguez-Zaccaro FD, Percolla MI, Crous CJ, Jacobsen AL, Pratt RB ( 2016). Single vessel air injection estimites of xylem resistance to cavitation are affected by vessel network characteristics and sample length. Tree physiology, 36, 1247-1259.
[66] Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM ( 2013). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell & Environment, 36, 1938-1949.
[67] Wheeler JK, Sperry JS, Hacke UG, Hoang N ( 2005). Inter-?vessel pitting and cavitation in woody Rosaceae and other vesselled plants: A basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 28, 800-812.
[68] Zhang FP, Brodribb TJ ( 2017). Are flowers vulnerable to xylem cavitation during drought? Proceedings Biological Science, 284, 20162642. DOI: 10.1098/rspb.2016.2642.
[69] Zhu SD, Cao KF ( 2009). Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecology, 204, 295-304.
[70] Zimmermann MH, Jeje AA ( 1981). Vessel-length distribution in stems of some American woody plants. American Journal of Botany, 59, 1882-1892.
[71] Zimmermann MH, Potter D ( 1982). Vessel-length distribution in branches, stem and roots of Acer rubrum L. International Association of Wood Anatomists Bulletin, 3, 103-109.
文章导航

/

005-264X/bottom_cn.htm"-->