石灰岩特有植物海南凤仙花潜在适宜生境分布模拟
收稿日期: 2018-03-28
修回日期: 2018-09-11
网络出版日期: 2018-09-26
基金资助
海南省创新研究团队项目(2018CXTD334);国家自然科学基金(31560229)
Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant
Received date: 2018-03-28
Revised date: 2018-09-11
Online published: 2018-09-26
Supported by
Supported by the Hainan Provincial Innovative Research Team Program.(2018CXTD334);the National Natural Science Foundation of China.(31560229)
模拟物种的潜在分布区是保护管理受威胁物种的重要手段。该研究对海南岛石灰岩特有种、濒危植物——海南凤仙花(Impatiens hainanensis)的潜在适宜生境分布进行预测, 旨在为海南凤仙花的有效保护及重引入工作提供基础的科学依据。研究基于海南凤仙花8个种群分布点和12个环境变量, 利用最大熵模型(MaxEnt)和GIS技术构建海南凤仙花适宜生境预测模型, 模拟了当前时期海南凤仙花在海南岛的潜在分布区; 同时基于5个实际分布数据和5个不存在数据, 采用受试者工作特征曲线下的面积(AUC)、Kappa系数、真实技巧统计值(TSS)及总体精度4个评估指标综合评价模型的预测精度。研究结果表明: 4个评估指标值均在0.9以上, 说明MaxEnt模型能够很好地预测海南凤仙花潜在适宜生境的分布。限制其分布的主要环境因子为坡度、最干季降水量、降水量季节性变异系数。当前, 海南凤仙花的最适宜生境占海南岛总面积的1.8%, 主要分布于白沙西部与南部、昌江中部和南部、东方东部、乐东东北部。海南凤仙花潜在适宜生境分布狭窄, 且破碎化严重, 迫切需要保护。因此建议: 收集海南凤仙花各种群种子, 建立种质资源库; 将东方天安乡、江边乡及乐东东北部(佳西保护区)等可能存在最适宜生境的地区, 作为今后野外深入调查的首选区域和重引入的重点区域。
宁瑶, 雷金睿, 宋希强, 韩淑梅, 钟云芳 . 石灰岩特有植物海南凤仙花潜在适宜生境分布模拟[J]. 植物生态学报, 2018 , 42(9) : 946 -954 . DOI: 10.17521/cjpe.2018.0066
Aims Modelling potential distribution ranges of threatened species is of great significance for their conservation. In this paper, the distribution of potential suitable habitat of Impatiens hainanensis,a limestone-endemic and endangered plant in Hainan Island, was studied to provide scientific basis for their effective in situ conservation and re-introduction of I. hainanensis.
Methods Based on eight occurrence sites and 12 environmental variables, the Maximum Entropy (MaxEnt) algorithm and GIS technology were used to create a model linking the distribution ranges of I. hainanensis with environments. With data on five actual distribution sites and five non-occurrence sites, four model evaluation metrics (area under the receiver operating characteristic curve (AUC), kappa coefficient, true skill statistic (TSS), overall accuracy) were used to evaluate the predictive performance and accuracy of this model.
Important findings The results indicated that the indicative value of all four evaluation metrics were above 0.9, indicating that the MaxEnt model can effectively predict the potential suitable habitats of I. hainanensis.Slope, precipitation of the driest quarter and coefficients of precipitation variation were the three main environmental factors influencing the distribution of I. hainanensis. At present, the most suitable habitat includes western and southern parts of Baisha County, the central and southern parts of Changjiang County, the eastern part of the Dongfang City and northeastern Ledong County, accounting for 1.8% of land area on Hainan Island. Since the potential suitable habitat of I. hainanensis is rare and severely fragmented, the protection of this species is urgent. We suggest to collect the seeds of various geographic populations of I. hainanensis to establish a germplasm resource bank. The most suitable habitat of the species, including Tian’an Village and Jiangbian Village in Dongfang City, northeast of Ledong County (Jiaxi Reserve), should be selected as the priority places for future extensive field surveys and re-introduction.
Key words: local adaption; habitat suitability; Maximum Entropy; GIS; Hainan; endemic plant
[1] | Aguilar SV, Melgoza CA, Villarreal GF, Wehenkel C, Pinedo AC ( 2015). Modeling the potential distribution of Picea chihuahuana Martínez, an endangered species at the Sierra Madre Occidental, Mexico. Forests, 6, 692-707. |
[2] | Beaumont LJ, Hughes L, Poulsen M ( 2005). Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling, 186, 250-269. |
[3] | Bennington CC, Mcgraw JB ( 1996). Environment-dependence of quantitative genetic parameters in Impatiens pallida. Evolution, 50, 1083-1097. |
[4] | Chu JM, Li YF, Zhang L, Li B, Gao MY, Tang XQ, Ni JW, Xu XQ ( 2017). Potential distribution range and conservation strategies for the endangered species Amygdalus pedunculata. Biodiversity Science, 25, 799-806. |
[4] | [ 褚建民, 李毅夫, 张雷, 李斌, 高明远, 唐晓倩, 倪建伟, 许新桥 ( 2017). 濒危物种长柄扁桃的潜在分布与保护策略. 生物多样性, 25, 799-806.] |
[5] | Deb CR, Jamir NS, Kikon ZP ( 2017). Distribution prediction model of a rare orchid species ( Vanda bicolor Griff.) using small sample size. American Journal of Plant Sciences, 8, 1388-1398. |
[6] | Deng Y, Jiang ZC, Qin XM ( 2012). Water source partitioning among trees growing on carbonate rock in a subtropical region of Guangxi, China. Environmental Earth Sciences, 66, 635-640. |
[7] | Engler R, Guisan A, Rechsteiner L ( 2004). An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263-274. |
[8] | Fois M, Fenu G, Lombra?a AC, Cogoni D, Bacchetta G ( 2015). A practical method to speed up the discovery of unknown populations using species distribution models. Journal for Nature Conservation, 24, 42-48. |
[9] | Francisco-Ortega J, Wang FG, Wang ZS, Xing FW, Liu H, Xu H, Xu WX, Luo YB, Song XQ, Gale S, Boufford DE, Maunder M, An SQ ( 2010). Endemic seed plant species from Hainan Island: A checklist. The Botanical Review, 76, 295-345. |
[10] | Gao FY ( 2012). A Study on Melica przewalskyi Population Spatial Pattern and Response to Soil Moisture in Degraded Alpine Grassland. Master degree dissertation, Northwest Normal University, Lanzhou. |
[10] | [ 高福元 ( 2012). 高寒退化草地甘肃臭草种群空间分布格局对土壤水分的响应. 硕士学位论文, 西北师范大学, 兰州.] |
[11] | Hernandez PA, Graham CH, Master LL, Albert DL ( 2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785. |
[12] | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A ( 2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. |
[13] | Hu QP, Guo ZH, Li CY, Ma L ( 2008). Advance at phenotypic plasticity in plant responses to abiotic factors. Scientia Silvae Cinicae, 44, 135-142. |
[13] | [ 胡启鹏, 郭志华, 李春燕, 马履 ( 2008). 植物表型可塑性对非生物环境因子的响应研究进展. 林业科学, 44, 135-142.] |
[14] | Kumar S, Stohlgren TJ ( 2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology & the Natural Environment, 1, 94-98. |
[15] | Lasky JR, Uriarte M, Muscarella R ( 2016). Synchrony, co-mpensatory dynamics, and the functional trait basis ofphonological diversity in a tropical dry forest tree co-mmunity: Effects of rainfall seasonality. EnvironmentalResearch Letters, 11, 115003. DOI: 10.1088/1748-9326/11/11/115003. |
[16] | Leng X, Wang ZS, An SQ, Feng J, Liu YH, Wang GM ( 2005). ISSR analysis of genetic diversity of Ilex integra, an insular endemic plant. Biodiversity Science, 13, 546-554. |
[16] | [ 冷欣, 王中生, 安树青, 冯珏, 刘玉虹, 王国明 ( 2005). 岛屿特有种全缘冬青遗传多样性的ISSR分析. 生物多样性, 13, 546-554.] |
[17] | Liu QL, Li Y, Fang SZ ( 2017). Identification of potential cultivation region for Cyclocarya paliurus in China based on MaxEnt model. Journal of Nanjing Forestry University (Natural Science), 41, 25-29. |
[17] | [ 刘清亮, 李垚, 方升佐 ( 2017). 基于MaxEnt模型的青钱柳潜在适宜栽培区预测. 南京林业大学学报(自然科学版), 41, 25-29.] |
[18] | Ma SM, Nie YB, Geng QL, Wang RX ( 2014). Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica. Chinese Journal of Plant Ecology, 38, 262-269. |
[18] | [ 马松梅, 聂迎彬, 耿庆龙, 王荣学 ( 2014). 气候变化对蒙古扁桃适宜分布范围和空间格局的影响. 植物生态学报, 38, 262-269.] |
[19] | Majid A, Ahmad H, Saqib Z, Ali H ( 2015). Potential distribution of endemic Scutellaria chamaedrifolia geographic information system and statistical model approach. Pakistan Journal of Botany, 47, 51-56. |
[20] | Merow C, Smith MJ, Silander JA ( 2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36, 1058-1069. |
[21] | Nie YP, Chen HS, Wang KL ( 2011). Seasonal variation of water sources for plants growing on continuous rock outcrops in limestone area of Southwest China. Chinese Journal of Plant Ecology, 35, 1029-1037. |
[21] | [ 聂云鹏, 陈洪松, 王克林 ( 2011). 石灰岩地区连片出露石丛生境植物水分来源的季节性差异. 植物生态学报, 35, 1029-1037.] |
[22] | Qin XS, He KS, Liu LW, Sun JM, Qi XM, Shi H ( 2012). Floristic and ecological characteristics of the community with Impatiens hainanensis in exianling limestone moutain, Hainan. Journal of South China Agricultural University, 33, 361-367. |
[22] | [ 秦新生, 何科稣, 刘立武, 孙君梅, 齐旭明, 施浩 ( 2012). 海南俄贤岭石灰岩山地海南凤仙花所在群落植物区系及生态特征. 华南农业大学学报, 33, 361-367.] |
[23] | Qin XS, Zhang RJ, Chen HF, Wang FG, Tian HZ, Xing FW ( 2005). The resource and conservation on the rare and endangered plants in limestone regions in Hainan Island. Acta Scientiarum Naturalium Universitatis Sunyatseni (Natural Science), 44, 291-298. |
[23] | [ 秦新生, 张荣京, 陈红锋, 王发国, 田怀珍, 邢福武 ( 2005). 海南岛石灰岩地区珍稀濒危植物及其保护. 中山大学学报(自然科学版), 44, 291-298.] |
[24] | Qin XS, Zhang RJ, Xing FW ( 2014). Flora of seed plants in the limestone areas of Hainan. Journal of South China Agricultural University, 35, 90-99. |
[24] | [ 秦新生, 张荣京, 邢福武 ( 2014). 海南石灰岩地区的种子植物区系. 华南农业大学学报, 35, 90-99.] |
[25] | Rushton SP, Ormerod SJ, Kerby G ( 2004). New paradigms for modelling species distributions? Journal of Applied Ecology, 41, 193-200. |
[26] | Shi W ( 2013). Effects of Climate Change on Distribution of Larix gmelinii in Northeast China. Master degree dissertation, Beijing Forestry University, Beijing. |
[26] | [ 石慰 ( 2013). 气候变化对中国东北兴安落叶松分布的影响. 硕士学位论文, 北京林业大学, 北京.] |
[27] | Wu J, Qin F, Wang W, Chen P, Gao SH, Xu HJ, Lin Q, Zhu CQ, Yu YC ( 2010). Research progress of soil and peculiar plants in limestone areas of China. Journal of Jiangsu Forestry Science & Technology, 37, 50-54. |
[27] | [ 吴静, 秦飞, 王维, 陈平, 高世虎, 徐辉筠, 林琴, 朱朝芹, 俞元春 ( 2010). 我国石灰岩地区特有植物研究进展. 江苏林业科技, 37, 50-54.] |
[28] | Wu JG, Lü JJ, Zhou QF ( 2010). Potential effects of climate change on the distribution of six desert plants in China. Chinese Bulletin of Botany, 45, 723-738. |
[28] | [ 吴建国, 吕佳佳, 周巧富 ( 2010). 气候变化对6种荒漠植物分布的潜在影响. 植物学通报, 45, 723-738.] |
[29] | Xu ZL, Peng HH, Peng SZ ( 2015). The development and evaluation of species distribution models. Acta Ecologica Sinica, 35, 557-567. |
[29] | [ 许仲林, 彭焕华, 彭守璋 ( 2015). 物种分布模型的发展及评价方法. 生态学报, 35, 557-567.] |
[30] | Ying LX, Liu Y, Chen ST, Shen ZH ( 2016). Simulation of the potential range of Pistacia weinmannifolia in Southwest China with climate change based on the maximum-entropy (Maxent) model. Biodiversity Science, 24, 453-461. |
[30] | [ 应凌霄, 刘晔, 陈绍田, 沈泽昊 ( 2016). 气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟. 生物多样性, 24, 453-461.] |
[31] | Yuan TX, Zhang HP, Ou ZY, Tan YB ( 2014). Effects of topography on the diversity and distribution pattern of ground plants in karst montane forests in Southwest Guangxi, China. Chinese Journal of Applied Ecology, 25, 2803-2810. |
[31] | [ 袁铁象, 张合平, 欧芷阳, 谭一波 ( 2014). 地形对桂西南喀斯特山地森林地表植物多样性及分布格局的影响. 应用生态学报, 25, 2803-2810.] |
[32] | Zhen JH ( 2008). Landscape Dynamics and Suitability Assessment of Endangered Plant Tetraena Mongolica’s Habitats. PhD dissertation, Inner Mongolian Agricultural University, Huhhot. |
[32] | [ 甄江红 ( 2008). 濒危植物四合木生境的景观动态与适宜性评价研究. 博士学位论文, 内蒙古农业大学, 呼和浩特.] |
[33] | Zhong YF ( 2014). Conservation Ecology of Impatiens hainanensis (Balsaminaceae), Endemic Species in Hainan Island. PhD dissertation, Hainan University, Haikou. |
[33] | [ 钟云芳 ( 2014). 海南凤仙花保育生态学研究. 博士学位论文, 海南大学, 海口.] |
/
〈 |
|
〉 |