研究论文

杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响: 异速生长分析

展开
  • 1 中国科学院研究生院,北京 100049
    2 中国科学院植物研究所植被与环境变化国家重点实验室,北京 100093
    3 中国科学院成都生物研究所,成都 610041

收稿日期: 2007-12-03

  录用日期: 2008-04-22

  网络出版日期: 2008-09-30

基金资助

国家自然科学基金(30670333)

EFFECTS OF TWIG SIZE ON BIOMASS ALLOCATION WITHIN TWIGS AND ON LAMINA AREA SUPPORTING EFFICIENCY IN RHODODENDRON: ALLOMETRIC SCALING ANALYSES

Expand
  • 1Graduate University of Chinese Academy of Sciences, Beijing 100049, China
    2State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    3Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

Received date: 2007-12-03

  Accepted date: 2008-04-22

  Online published: 2008-09-30

摘要

当年生小枝是多年生植物体上最活跃的部分之一, 其生物量分配是植物生活史对策研究的一个重要内容。该文采用标准化主轴估计(Standardized major axis estimation, SMA)和系统独立比较分析(Phylogenetically independent contrast analysis, PIC)的方法, 研究了杜鹃花属(Rhododendron)植物一年生小枝的大小对小枝叶片、叶柄和茎的生物量分配的影响, 以及对叶面积支持效率(即单位质量小枝支持的叶面积)的影响。结果显示: 1)小枝大小对叶片生物量分配比率的影响不显著, SMA斜率为1.040 (95%的置信区间(CI)=0.998~1.085); 但是, 小枝越大, 叶柄生物量分配比例越高(SMA斜率为1.245, 显著大于1.0, 呈显著的异速生长关系)。2)小枝越小, 单叶面积越小(支持Corner法则), 单位质量小枝所支持的叶面积越大, 即具有较小枝条和较小叶片的物种可能具有较高的叶面积支持效率。这些结果有助于我们更好地理解亲缘关系十分接近的杜鹃花属植物, 在不同生境条件下叶片大小的差异, 以及为什么在胁迫生境条件下小叶物种更为常见。

本文引用格式

李亚男, 杨冬梅, 孙书存, 高贤明 . 杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响: 异速生长分析[J]. 植物生态学报, 2008 , 32(5) : 1175 -1183 . DOI: 10.3773/j.issn.1005-264x.2008.05.022

Abstract

Aims Current-year shoots (twigs) are the most active compartment in plants. Biomass allocation within twigs is an important parameter categorizing plant life history strategies. Our objective was to explain variation in leaf size among habitats and why small-leaved species are more likely to be seen in severe habitats than large-leaved species.

Methods Effects of twig size on biomass allocation among lamina, stem, and petiole and on lamina supporting efficiency were estimated using standardized major axis estimation. Correlation between parameters was examined using the phylogenetically independent comparative method.

Important findings Fractional lamina mass was found to be independent of twig size, but allometric relationships were found between stem mass and petiole mass and between lamina area and stem mass. Petiole mass increased disproportionally with stem mass, while lamina area failed to keep pace with the increase in stem mass. Species with smaller twigs and smaller leaves may be advantageous in lamina area supporting efficiency over their counterparts.

参考文献

[1] Ackerly DD (1999). Comparative plant ecology and the role of phylogenetic information. In: Press MC, Scholes JD, Barker MG eds. Physiological Plant Ecology. Blackwell Scientific Publications, Oxford, 391-413.
[2] Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130,449-457.
[3] Ashton PS, Hall P (1992). Comparisons of structure among mixed Dipterocarp forests of Northwestern Borneo. Journal of Ecology, 80,459-481.
[4] Bazzaz FA, Grace J (1997). Plant Resource Allocation. Academic Press, San Diego, 1-37.
[5] Bragg JG, Westoby M (2002). Leaf size and foraging for light in a sclerophyll woodland. Functional Ecology, 16,633-639.
[6] Brouat C, Gibernau M, Amsellem L, McKey D (1998). Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry. New Phytologist, 139,459-470.
[7] Chen CD (陈昌笃), Zhuang P (庄平), Hu JC (胡锦矗) (2000). The Research and Protection of Dujiangyan Biodiversity (都江堰生物多样性研究与保护). Sichuan Science and Technology Press, Chengdu, 3. (in Chinese)
[8] Corner EJH (1949). The durian theory or the origin of the modern tree. Annals of Botany, 13,367-414.
[9] Falster DS, Warton DI, Wright IJ (2006). SMATR: Standardised Major Axis Tests & Routines. Version 2.0, Copyright 2006. http://www.bio.mq.edu.au/ecology/SMATR/index.html. Cited 10 Oct. 2007.
[10] Fang MY, Fang RZ, He MY, Hu LZ, Yang HB, David FC (2005). Rhododendron Linnaeus, Sp. Pl. 1: 392. 1753. Flora of China, 14,260-455.
[11] Gates DM (1980). Biophysical Ecology. Springer-Verlag, New York, 611.
[12] Harper JL (1977). Population Biology of Plants. Academic Press, London, 892.
[13] Harvey PJ, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press,Oxford.
[14] Martins EP (2004). COMPARE, version 4.6b. Computer programs for the statistical analysis of comparative data. http://compare.bio.indiana.edu/. Cited 11. Nov. 2007.
[15] Niinemets U, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171,91-104.
[16] Niinemets U, Kull O (1999). Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees. Tree Physiology, 19,349-358.
[17] Osada N (2006). Crown development in pioneer tree. Rhus trichocarpa, in relation to the structure and growth of individual branches. New Phytologist, 172,667-678.
[18] Pickup M, Westoby M, Basden A (2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19,88-97.
[19] Pitman EJG (1939). A note on normal correlation. Biometrika, 31,9-12.
[20] Preston KA, Ackerly DD (2003). Hydraulic architecture and the evolution of shoot allometry in contrasting climates. American Journal of Botany, 90,1502-1512.
[21] Silvertown JW, Doust JL (1993). Introduction to Plant Population Biology. Blackwell Scientific Publications,London, 5-10.
[22] Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97,7-107.
[23] Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81,259-291.
[24] Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135,621-628.
[25] White PS (1983a). Corner’s rules in eastern deciduous trees: allometry and its implications for the adaptive architecture of trees. Bulletin of the Torrey Botanical Club, 110,203-212.
[26] White PS (1983b). Evidence that temperate east North American evergreen woody plants follow Corner’s rules. New Phytologist, 95,139-145.
[27] Wolfe JA (1995). Paleoclimatic estimates from tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences, 23,119-142.
[28] Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99,1003-1015.
文章导航

/