植物生态学报 ›› 2008, Vol. 32 ›› Issue (5): 1175-1183.DOI: 10.3773/j.issn.1005-264x.2008.05.022
李亚男1,2, 杨冬梅1,3, 孙书存3, 高贤明2,*()
收稿日期:
2007-12-03
接受日期:
2008-04-22
出版日期:
2008-12-03
发布日期:
2008-09-30
通讯作者:
高贤明
作者简介:
*(xmgao@ibcas.ac.cn)基金资助:
LI Ya-Nan1,2, YANG Dong-Mei1,3, SUN Shu-Cun3, GAO Xian-Ming2,*()
Received:
2007-12-03
Accepted:
2008-04-22
Online:
2008-12-03
Published:
2008-09-30
Contact:
GAO Xian-Ming
摘要:
当年生小枝是多年生植物体上最活跃的部分之一, 其生物量分配是植物生活史对策研究的一个重要内容。该文采用标准化主轴估计(Standardized major axis estimation, SMA)和系统独立比较分析(Phylogenetically independent contrast analysis, PIC)的方法, 研究了杜鹃花属(Rhododendron)植物一年生小枝的大小对小枝叶片、叶柄和茎的生物量分配的影响, 以及对叶面积支持效率(即单位质量小枝支持的叶面积)的影响。结果显示: 1)小枝大小对叶片生物量分配比率的影响不显著, SMA斜率为1.040 (95%的置信区间(CI)=0.998~1.085); 但是, 小枝越大, 叶柄生物量分配比例越高(SMA斜率为1.245, 显著大于1.0, 呈显著的异速生长关系)。2)小枝越小, 单叶面积越小(支持Corner法则), 单位质量小枝所支持的叶面积越大, 即具有较小枝条和较小叶片的物种可能具有较高的叶面积支持效率。这些结果有助于我们更好地理解亲缘关系十分接近的杜鹃花属植物, 在不同生境条件下叶片大小的差异, 以及为什么在胁迫生境条件下小叶物种更为常见。
李亚男, 杨冬梅, 孙书存, 高贤明. 杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响: 异速生长分析. 植物生态学报, 2008, 32(5): 1175-1183. DOI: 10.3773/j.issn.1005-264x.2008.05.022
LI Ya-Nan, YANG Dong-Mei, SUN Shu-Cun, GAO Xian-Ming. EFFECTS OF TWIG SIZE ON BIOMASS ALLOCATION WITHIN TWIGS AND ON LAMINA AREA SUPPORTING EFFICIENCY IN RHODODENDRON: ALLOMETRIC SCALING ANALYSES. Chinese Journal of Plant Ecology, 2008, 32(5): 1175-1183. DOI: 10.3773/j.issn.1005-264x.2008.05.022
物种 Species | 小枝茎干重 TSM (mg) | 总叶面积 TLA (mm2) | 单叶面积 ILA (mm2) | 总叶片干重 TLM (mg) | 总叶柄干重 TPM (mg) |
---|---|---|---|---|---|
长毛杜鹃 R. trichanthum | 428.31 | 4 145.04 | 540.66 | 334.09 | 14.86 |
纯红杜鹃 R. sperabile | 2 234.93 | 10 712.46 | 1 438.99 | 1 775.71 | 122.49 |
大白杜鹃 R. decorum | 2 313.00 | 14 766.36 | 1 703.81 | 1 595.44 | 104.11 |
大王杜鹃 R. rex | 9 305.93 | 38 236.95 | 9 559.24 | 7 484.59 | 752.04 |
杜鹃 R. simisii | 416.98 | 5 181.89 | 370.13 | 303.65 | 15.98 |
多鳞杜鹃 R. polylepis | 660.19 | 6 849.21 | 1 208.68 | 575.97 | 16.64 |
繁花杜鹃 R. floribundum | 1 915.78 | 14 821.07 | 2 615.48 | 1 552.11 | 73.11 |
贵州杜鹃 R. guizhouense | 323.36 | 4 607.29 | 476.62 | 227.36 | 17.02 |
亮鳞杜鹃 R. heliolepis | 1 179.60 | 6 580.64 | 897.36 | 762.05 | 42.38 |
芒刺杜鹃 R. strigillosum | 1 369.04 | 8 812.61 | 862.10 | 965.82 | 51.93 |
红棕杜鹃 R. rubiginosum | 753.49 | 6 268.57 | 924.87 | 572.71 | 34.94 |
白面杜鹃 R. zaleucum | 485.58 | 5 957.94 | 552.80 | 368.91 | 15.13 |
亮叶杜鹃 R. vernicosum | 1 205.10 | 8 607.69 | 1 156.26 | 763.88 | 34.99 |
秀雅杜鹃 R. concinnum | 494.10 | 5 257.71 | 498.10 | 316.10 | 16.43 |
团叶杜鹃 R. orbiculare | 1 564.11 | 8 553.17 | 2 025.75 | 1 070.78 | 76.67 |
锈叶杜鹃 R. siderophyllum | 373.30 | 4 819.46 | 619.65 | 307.08 | 10.41 |
白花杜鹃 R. mucronatum | 297.61 | 3 955.59 | 378.73 | 228.17 | 7.50 |
亮毛杜鹃 R. microphyton | 707.71 | 6 981.12 | 343.33 | 490.38 | 26.27 |
黄花杜鹃 R. lutescens | 653.87 | 7 554.14 | 607.03 | 488.87 | 20.20 |
基毛杜鹃 R. rigidum | 300.90 | 3 174.57 | 519.48 | 215.46 | 9.90 |
喇叭杜鹃 R. discolor | 3 076.69 | 29 336.45 | 3 826.49 | 2 809.13 | 180.47 |
露珠杜鹃 R. irroratum | 801.50 | 6 888.55 | 984.08 | 662.17 | 31.67 |
卵叶杜鹃 R. callimorphum | 439.11 | 2 650.12 | 795.04 | 289.11 | 20.78 |
毛肋杜鹃 R. augustinii | 499.40 | 4 568.37 | 1 054.24 | 396.29 | 11.63 |
美容杜鹃 R. calophytum | 5 317.67 | 34 026.13 | 4 138.31 | 4 449.56 | 327.22 |
岷江杜鹃 R. hunnewellianum | 919.09 | 6 745.44 | 979.18 | 760.98 | 42.31 |
绒毛杜鹃 R. pachytrichum | 614.34 | 5 893.25 | 1 359.98 | 514.67 | 27.78 |
三花杜鹃 R. triflorum | 317.60 | 3 105.80 | 522.47 | 211.10 | 9.83 |
山光杜鹃 R. oreodoxa | 1 025.89 | 7 300.52 | 1 602.55 | 753.89 | 51.56 |
山育杜鹃 R. oreotrephes | 570.23 | 4 782.49 | 1 049.82 | 405.23 | 20.79 |
问客杜鹃 R. ambiguum | 589.35 | 5 137.93 | 983.86 | 472.46 | 23.57 |
腺果杜鹃 R. davidii | 2 058.29 | 10 605.31 | 1 871.53 | 1 440.96 | 96.18 |
羊踯躅 R. molle | 1 174.23 | 14 161.85 | 1 191.18 | 976.34 | 31.01 |
银叶杜鹃 R. argyrophyllum | 1 481.67 | 8 624.79 | 1 584.15 | 1 215.78 | 54.78 |
云南杜鹃 R. yunnanense | 314.46 | 4 656.43 | 453.06 | 232.52 | 11.85 |
粘毛杜鹃 R. glischrum | 1 991.96 | 20 577.51 | 3 494.29 | 1 729.51 | 123.18 |
紫花杜鹃 R. amesiae | 426.87 | 4 129.78 | 387.17 | 275.98 | 14.76 |
绿点杜鹃 R. searsiae | 929.90 | 7 199.81 | 1 045.13 | 703.46 | 28.24 |
粉白杜鹃 R. hypoglaucum | 1 463.19 | 6 621.11 | 876.32 | 802.30 | 50.86 |
极多花杜鹃 R. pleistanthum | 777.86 | 5 982.46 | 464.16 | 465.86 | 24.64 |
峨眉银叶杜鹃 R. argyrophyllumssp.omeiense | 1 078.39 | 7 058.49 | 1 411.70 | 877.28 | 33.17 |
疏花美容杜鹃 R. calophytumvar. pauciflorum | 967.02 | 5 518.63 | 814.22 | 731.35 | 49.02 |
表1 42个杜鹃物种小枝水平功能性状数据的平均值(采于四川省都江堰中国杜鹃园)
Table 1 Traits (means) for the investigated 42 Rhododendron species from ChinaRhododendron Garden of Dujiangyan, Sichuan Province of China at twig level
物种 Species | 小枝茎干重 TSM (mg) | 总叶面积 TLA (mm2) | 单叶面积 ILA (mm2) | 总叶片干重 TLM (mg) | 总叶柄干重 TPM (mg) |
---|---|---|---|---|---|
长毛杜鹃 R. trichanthum | 428.31 | 4 145.04 | 540.66 | 334.09 | 14.86 |
纯红杜鹃 R. sperabile | 2 234.93 | 10 712.46 | 1 438.99 | 1 775.71 | 122.49 |
大白杜鹃 R. decorum | 2 313.00 | 14 766.36 | 1 703.81 | 1 595.44 | 104.11 |
大王杜鹃 R. rex | 9 305.93 | 38 236.95 | 9 559.24 | 7 484.59 | 752.04 |
杜鹃 R. simisii | 416.98 | 5 181.89 | 370.13 | 303.65 | 15.98 |
多鳞杜鹃 R. polylepis | 660.19 | 6 849.21 | 1 208.68 | 575.97 | 16.64 |
繁花杜鹃 R. floribundum | 1 915.78 | 14 821.07 | 2 615.48 | 1 552.11 | 73.11 |
贵州杜鹃 R. guizhouense | 323.36 | 4 607.29 | 476.62 | 227.36 | 17.02 |
亮鳞杜鹃 R. heliolepis | 1 179.60 | 6 580.64 | 897.36 | 762.05 | 42.38 |
芒刺杜鹃 R. strigillosum | 1 369.04 | 8 812.61 | 862.10 | 965.82 | 51.93 |
红棕杜鹃 R. rubiginosum | 753.49 | 6 268.57 | 924.87 | 572.71 | 34.94 |
白面杜鹃 R. zaleucum | 485.58 | 5 957.94 | 552.80 | 368.91 | 15.13 |
亮叶杜鹃 R. vernicosum | 1 205.10 | 8 607.69 | 1 156.26 | 763.88 | 34.99 |
秀雅杜鹃 R. concinnum | 494.10 | 5 257.71 | 498.10 | 316.10 | 16.43 |
团叶杜鹃 R. orbiculare | 1 564.11 | 8 553.17 | 2 025.75 | 1 070.78 | 76.67 |
锈叶杜鹃 R. siderophyllum | 373.30 | 4 819.46 | 619.65 | 307.08 | 10.41 |
白花杜鹃 R. mucronatum | 297.61 | 3 955.59 | 378.73 | 228.17 | 7.50 |
亮毛杜鹃 R. microphyton | 707.71 | 6 981.12 | 343.33 | 490.38 | 26.27 |
黄花杜鹃 R. lutescens | 653.87 | 7 554.14 | 607.03 | 488.87 | 20.20 |
基毛杜鹃 R. rigidum | 300.90 | 3 174.57 | 519.48 | 215.46 | 9.90 |
喇叭杜鹃 R. discolor | 3 076.69 | 29 336.45 | 3 826.49 | 2 809.13 | 180.47 |
露珠杜鹃 R. irroratum | 801.50 | 6 888.55 | 984.08 | 662.17 | 31.67 |
卵叶杜鹃 R. callimorphum | 439.11 | 2 650.12 | 795.04 | 289.11 | 20.78 |
毛肋杜鹃 R. augustinii | 499.40 | 4 568.37 | 1 054.24 | 396.29 | 11.63 |
美容杜鹃 R. calophytum | 5 317.67 | 34 026.13 | 4 138.31 | 4 449.56 | 327.22 |
岷江杜鹃 R. hunnewellianum | 919.09 | 6 745.44 | 979.18 | 760.98 | 42.31 |
绒毛杜鹃 R. pachytrichum | 614.34 | 5 893.25 | 1 359.98 | 514.67 | 27.78 |
三花杜鹃 R. triflorum | 317.60 | 3 105.80 | 522.47 | 211.10 | 9.83 |
山光杜鹃 R. oreodoxa | 1 025.89 | 7 300.52 | 1 602.55 | 753.89 | 51.56 |
山育杜鹃 R. oreotrephes | 570.23 | 4 782.49 | 1 049.82 | 405.23 | 20.79 |
问客杜鹃 R. ambiguum | 589.35 | 5 137.93 | 983.86 | 472.46 | 23.57 |
腺果杜鹃 R. davidii | 2 058.29 | 10 605.31 | 1 871.53 | 1 440.96 | 96.18 |
羊踯躅 R. molle | 1 174.23 | 14 161.85 | 1 191.18 | 976.34 | 31.01 |
银叶杜鹃 R. argyrophyllum | 1 481.67 | 8 624.79 | 1 584.15 | 1 215.78 | 54.78 |
云南杜鹃 R. yunnanense | 314.46 | 4 656.43 | 453.06 | 232.52 | 11.85 |
粘毛杜鹃 R. glischrum | 1 991.96 | 20 577.51 | 3 494.29 | 1 729.51 | 123.18 |
紫花杜鹃 R. amesiae | 426.87 | 4 129.78 | 387.17 | 275.98 | 14.76 |
绿点杜鹃 R. searsiae | 929.90 | 7 199.81 | 1 045.13 | 703.46 | 28.24 |
粉白杜鹃 R. hypoglaucum | 1 463.19 | 6 621.11 | 876.32 | 802.30 | 50.86 |
极多花杜鹃 R. pleistanthum | 777.86 | 5 982.46 | 464.16 | 465.86 | 24.64 |
峨眉银叶杜鹃 R. argyrophyllumssp.omeiense | 1 078.39 | 7 058.49 | 1 411.70 | 877.28 | 33.17 |
疏花美容杜鹃 R. calophytumvar. pauciflorum | 967.02 | 5 518.63 | 814.22 | 731.35 | 49.02 |
图1 小枝茎干重与其它功能性状的种间关系 A: 茎干重与小枝上总叶面积的相关关系 Correlation between twig stem mass and total lamina area B: 茎干重与小枝上总叶片干重的相关关系 Correlation between twig stem mass and total lamina mass C: 茎干重与小枝上总叶柄干重的相关关系 Correlation between twig stem mass and total petiole mass
Fig. 1 Cross-species relationships between twig stem mass and other traits
图2 不同功能特征间的进化分歧相关关系 A: 茎干重与小枝上总叶面积的相关关系 Correlation between twig stem mass and total lamina area B: 茎干重与小枝上总叶片干重的相关关系 Correlation between twig stem mass and total lamina mass C: 茎干重与小枝上总叶柄干重的相关关系 Correlation between twig stem mass and total petiole mass
Fig. 2 Correlation of evolutionary divergences between twig stem mass and other traits
[1] | Ackerly DD (1999). Comparative plant ecology and the role of phylogenetic information. In: Press MC, Scholes JD, Barker MG eds. Physiological Plant Ecology. Blackwell Scientific Publications, Oxford, 391-413. |
[2] |
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130,449-457.
DOI URL PMID |
[3] | Ashton PS, Hall P (1992). Comparisons of structure among mixed Dipterocarp forests of Northwestern Borneo. Journal of Ecology, 80,459-481. |
[4] | Bazzaz FA, Grace J (1997). Plant Resource Allocation. Academic Press, San Diego, 1-37. |
[5] | Bragg JG, Westoby M (2002). Leaf size and foraging for light in a sclerophyll woodland. Functional Ecology, 16,633-639. |
[6] | Brouat C, Gibernau M, Amsellem L, McKey D (1998). Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry. New Phytologist, 139,459-470. |
[7] | Chen CD (陈昌笃), Zhuang P (庄平), Hu JC (胡锦矗) (2000). The Research and Protection of Dujiangyan Biodiversity (都江堰生物多样性研究与保护). Sichuan Science and Technology Press, Chengdu, 3. (in Chinese) |
[8] | Corner EJH (1949). The durian theory or the origin of the modern tree. Annals of Botany, 13,367-414. |
[9] | Falster DS, Warton DI, Wright IJ (2006). SMATR: Standardised Major Axis Tests & Routines. Version 2.0, Copyright 2006. http://www.bio.mq.edu.au/ecology/SMATR/index.html. Cited 10 Oct. 2007. |
[10] | Fang MY, Fang RZ, He MY, Hu LZ, Yang HB, David FC (2005). Rhododendron Linnaeus, Sp. Pl. 1: 392. 1753. Flora of China, 14,260-455. |
[11] | Gates DM (1980). Biophysical Ecology. Springer-Verlag, New York, 611. |
[12] | Harper JL (1977). Population Biology of Plants. Academic Press, London, 892. |
[13] | Harvey PJ, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press,Oxford. |
[14] | Martins EP (2004). COMPARE, version 4.6b. Computer programs for the statistical analysis of comparative data. http://compare.bio.indiana.edu/. Cited 11. Nov. 2007. |
[15] |
Niinemets U, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171,91-104.
DOI URL |
[16] |
Niinemets U, Kull O (1999). Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees. Tree Physiology, 19,349-358.
DOI URL PMID |
[17] | Osada N (2006). Crown development in pioneer tree. Rhus trichocarpa, in relation to the structure and growth of individual branches. New Phytologist, 172,667-678. |
[18] | Pickup M, Westoby M, Basden A (2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19,88-97. |
[19] | Pitman EJG (1939). A note on normal correlation. Biometrika, 31,9-12. |
[20] |
Preston KA, Ackerly DD (2003). Hydraulic architecture and the evolution of shoot allometry in contrasting climates. American Journal of Botany, 90,1502-1512.
DOI URL PMID |
[21] | Silvertown JW, Doust JL (1993). Introduction to Plant Population Biology. Blackwell Scientific Publications,London, 5-10. |
[22] | Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97,7-107. |
[23] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81,259-291.
DOI URL PMID |
[24] |
Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135,621-628.
URL PMID |
[25] | White PS (1983a). Corner’s rules in eastern deciduous trees: allometry and its implications for the adaptive architecture of trees. Bulletin of the Torrey Botanical Club, 110,203-212. |
[26] | White PS (1983b). Evidence that temperate east North American evergreen woody plants follow Corner’s rules. New Phytologist, 95,139-145. |
[27] | Wolfe JA (1995). Paleoclimatic estimates from tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences, 23,119-142. |
[28] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99,1003-1015.
DOI URL PMID |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[4] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[5] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[6] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[7] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[8] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[9] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[10] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[11] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[12] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[13] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[14] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[15] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19