研究论文

海南霸王岭不同森林类型附生兰科植物的多样性和分布

展开
  • 1中国林业科学研究院森林生态环境与保护研究所, 国家林业局森林生态环境重点实验室, 北京 100091
    2海南省霸王岭国家级自然保护区管理局, 海南昌江 572722
* E-mail: zangrung@caf.ac.cn

收稿日期: 2009-09-23

  录用日期: 2009-11-12

  网络出版日期: 2010-04-01

Diversity and distribution of epiphytic orchids in different types of old-growth tropical forests in Bawangling National Nature Reserve, Hainan Island, China

Expand
  • 1Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
    2Hainan Bawangling National Nature Reserve, Changjiang, Hainan 572722, China

Received date: 2009-09-23

  Accepted date: 2009-11-12

  Online published: 2010-04-01

摘要

附生兰科植物是热带林附生植物的主要类群之一, 对于维持热带林生态系统的物种多样性及生态功能具有重要的作用。以海南岛霸王岭国家级自然保护区内的6种热带原始林类型(热带季雨林、低地雨林、热带针叶林、山地雨林、山地常绿林及山顶矮林)中的附生兰科植物为研究对象, 通过样带调查(每个森林类型设置12个10 m × 50 m的样带, 记录每个样带内胸径(DBH) ≥ 5 cm的树木及藤本上附生兰科植物的物种名称、株数及附生位置)分析了附生兰科植物的物种多样性、附生位置及其在不同森林类型中的分布规律。结果表明: 1) 3.6 hm2森林调查样带内共记录到附生兰科植物9 634株, 分属于26属60种; 2)除趋势对应分析(DCA)结果表明, 6种森林类型中的附生兰科植物可分成5组(其中, 山地常绿林与山顶矮林内的附生兰科植物归为一组); 3)分布海拔范围相临近的森林类型的附生兰科植物具有较高的相似性, 山地常绿林和山顶矮林附生兰科植物的相似性最高(88.9%); 4) 6种森林类型中, 较高海拔的3种森林类型(山地雨林、山地常绿林和山顶矮林)中, 附生兰科植物的丰富度和多度均显著高于其在较低海拔的3种森林类型(热带季雨林、低地雨林和热带针叶林), 其中, 附生兰科植物在山地常绿林内的丰富度和多度均最高; 5)热带季雨林、低地雨林、热带针叶林及山地雨林内, 宿主冠区附生兰科植物的多度均高于干区; 山地常绿林内两者之间无显著差异; 而山顶矮林干区的附生兰科植物的多度高于冠区; 6)调查木上附生兰科植物的发生率在高海拔森林类型均高于其在低海拔森林类型, 各森林类型内附生兰科植物的多度及物种丰富度与宿主胸径均存在显著正相关关系。

本文引用格式

刘广福, 臧润国, 丁易, 王文毅, 李儒财, 陈少伟, 周照骊 . 海南霸王岭不同森林类型附生兰科植物的多样性和分布[J]. 植物生态学报, 2010 , 34(4) : 396 -408 . DOI: 10.3773/j.issn.1005-264x.2010.04.005

Abstract

Aims Epiphytic orchids are a major group of epiphytes and vital to maintaining biodiversity and ecosystem functioning in tropical forests. Our objective was to explore diversity and distribution of epiphytic orchids among six different types of old-growth tropical forests (tropical monsoon forest, SF; tropical lowland rain forest, LF; tropical coniferous forest, CF; tropical montane rain forest, MF; tropical mountain evergreen forest, ME; and tropical elfin forest, EF) in Bawangling National Nature Reserve, Hainan Island, China.

Methods We established twelve 0.05 hm2 (10 m × 50 m) plots in each type of old-growth forest and recorded species, individuals and position of epiphytic orchids on each tree and liana with diameter at breast height (DBH) ≥ 5 cm in each plot.

Important findings We recorded a total of 9 634 epiphytic orchids belonging to 60 species and 26 genera in the total sample of 3.6 hm2. Detrended Correspondence Analysis based on the presence-absence and abundance showed that the epiphytic orchids of the six types of forests were divided into five groups (epiphytic orchids in ME and EF were clustered into one group). There was high similarity between neighboring altitudinal forest types, with the highest value (88.9%) between the ME and EF. Species richness and abundance of epiphytic orchids in the high altitude forest types were greater than in the low altitude forest types, with highest value in the ME. Differences in abundance of epiphytic orchids between in the trunk and the crown were crown > trunk in the SF, LF, CF and MF, no difference in ME and trunk > crown in EF. The ratio of the epiphytic orchids phorophytes to the total investigated plants was higher in the high altitude forest types than in the low altitude forest types. Epiphytic orchid abundance and species richness were both significant positive correlated with phorophyte size (DBH) in each forest type.

参考文献

[1] Annaselvam J, Parthasarathy N (2001). Diversity and distribution of the herbaceous vascular epiphytes in a tropical evergreen forest at Varagalaiar, Western Ghats, India. Biodiversity and Conservation, 10, 317-329.
[2] Atwood JT (1986). The size of the Orchidaceae and the systematic distribution of epiphytic orchids. Selbyana, 9, 171-186.
[3] Benavides AM, Duque AJ, Duivenvoorden JF, Vasco GA, Callejas R (2005). A first quantitative census of vascular epiphytes in rain forests of Colombian Amazonia. Biodiversity and Conservation, 14, 739-758.
[4] Benzing DH (1998). Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Climatic Change, 39, 519-540.
[5] Benzing DH (1990). Vascular Epiphytes: General Biology and Related Biota. Cambridge University Press, Cambridge, UK. 31-42.
[6] Brodmann J, Twele R, Francke W, Luo YB, Song XQ, Ayasse M (2009). Orchid mimics honey bee alarm pheromone in order to attract hornets for pollination. Current Biology, 19, 1368-1372.
[7] Burns KC, Dawson AJ (2005). Patterns in the diversity and distribution of epiphytes and vines in a New Zealand forest. Austral Ecology, 30, 883-891.
[8] Cao T (曹同), Guo SL (郭水良) (2000). A study on bryophytes diversity in the main ecosystem in Changbai Mountain. Chinese Biodiverstiy (生物多样性), 8, 50-59. (in Chinese with English abstract)
[9] Cardelús CL, Colwell RK, Watkins JE (2006). Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. Journal of Ecology, 94, 144-156.
[10] Cheng J, Shi J, Shangguan FZ, Dafni A, Deng ZH, Luo YB (2009). The pollination of a self-incompatible, food-mimic orchid, Coelogyne fimbriata (Orchidaceae), by female Vespula wasps. Annals of Botany, 104, 565-571.
[11] Chinese Virtual Herbarium (中国数字植物标本馆) (2009). Flora Reipubilcae Popularis Sinicae (中国植物志), http://www.cvh.org.cn/zhiwuzhi/list.asp. Cited 10 Sept. 2009.
[12] Dressler RL (1993). Phylogeny and Classification of the Orchid Family. Cambridge University Press, Cambridge, UK. 7-12.
[13] Flores-Palacios A, Gar?ia-Franco JG (2006). The relationship between tree size and epiphyte species richness: testing four different hypotheses. Journal of Biogeography, 33, 323-330.
[14] Gentry AH, Dodson CH (1987). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74, 205-233.
[15] Hill MO (1979). DECORANA―a FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging. PhD dissertation, Cornell University, New York. 52.
[16] H?fstede R, Dickinson K, Mark A (2001). Distribution, abundance and biomass of epiphyte-lianoid communities in a New Zealand lowland Nothofagus-Podoearp temperate rain forest: tropical comparisons. Journd of Biogeography, 28, 1033-1049.
[17] H?ilscher D, K?hlera L, van Dijk A, Bruijnzeel L (2004). The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology, 292, 308-322.
[18] Hsu CC, Horng FW, Kuo CM (2002). Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology, 18, 659-670.
[19] Hsu R, Wolf JHD (2009). Diversity and phytogeography of vascular epiphytes in a tropical-subtropical transition island, Taiwan. Flora, 204, 612-627.
[20] Huang QL (黄清麟), Chen YF (陈永富), Yang XS (杨秀森) (2002). Study on the characters of tree stratum of Pinus latteri forest in Bawangling forest area of Hainan Province. Forest Research (林业科学研究), 15, 741-745. (in Chinese with English abstract)
[21] Jiang YX (蒋有绪), Wang BS (王伯荪), Zang RG (臧润国), Jin JH (金建华), Liao WB (廖文波) (2002). The Biodiversity and Its Formation Mechanism of the Tropical Forest in Hainan Island (海南岛热带林生物多样性及其形成机制). Science Press, Beijing. 219-324. (in Chinese)
[22] Johansson D (1974). Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica, 59, 1-123.
[23] Kelly DL, O’Donovan G, Feehan J, Murphy S, Drangeid SO, Marcano-Berti L (2004). The epiphyte communities of a montane rain forest in the Andes of Venezuela: patterns in the distribution of the flora. Journal of Tropical Forest, 20, 643-666.
[24] Kreft H, K?ster N, Küper W, Nieder J, Barthlott W (2004). Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. Journal of Biogeography, 31, 1463-1476.
[25] Küper W, Kreft H, Nieder J, K?ster N, Barthlott W (2004). Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography, 31, 1477-1487.
[26] Li H (李恒), Bartholomew B (1999). The diversity of Orchidaceae in Gaoligong Mountains, Yunnan. Acta Botanica Yunnanica (云南植物研究), 21, 65-78. (in Chinese with English abstract)
[27] Li L (李琳), Ye DP (叶德平), Xing FW (邢福武) (2009). Chrysoglossum Bl., a newly recorded genus of Orchidaceae from Hainan Province. Guihaia (广西植物), 29, 48-50. (in Chinese with English abstract)
[28] Li P (李鹏), Tang SY (唐思远), Dong L (董立), Luo YB (罗毅波), Kou Y (寇勇), Yang XQ (杨小琴), Perner H (2005). Species diversity and flowering phenology of Orchidaceae in Huanglong valley, Sichuan. Biodiversity Science (生物多样性), 13, 255-261. (in Chinese with English abstract)
[29] Li S (李苏), Liu WY (刘文耀), Wang LS (王立松), Yang GP (杨国平), Li DW (李达文) (2007). Species diversity and distribution of epiphytic lichens in the primary and second forests in Ailao Mountain, Yunnan. Biodiversity Science (生物多样性), 15, 445-455. (in Chinese with English abstract)
[30] Liu K, Liu Z, Huang L, Li L, Chen L, Tang G (2006). Pollination: self-fertilization strategy in an orchid. Nature, 441, 945-946.
[31] Liu WD (刘万德), Zang RG (臧润国), Ding Y (丁易) (2009). Community features of two types of typical tropical monsoon forests in Bawangling Nature Reserve, Hainan Island. Acta Ecologica Sinica (生态学报), 29, 3465-3476. (in Chinese with English abstract)
[32] Liu WY (刘文耀) (2000). The role of epiphytic material in nutrient cycling of forest ecosystem. Chinese Journal of Ecology (生态学杂志), 19(2), 30-35. (in Chinese with English abstract)
[33] Liu WY (刘文耀), Ma WZ (马文章), Yang LP (杨礼攀) (2006). Advances in ecological studies on epiphytes in forest canopies. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 522-533. (in Chinese with English abstract)
[34] Lowman MD, Rinker HB (2004). Forest Canopies 2nd edn. Elsevier Academic Press, California. 30, 76, 270-296.
[35] Ma WZ (马文章), Liu WY (刘文耀), Yang LP (杨礼攀), Yang GP (杨国平) (2008). Edge effects on epiphytes in montane moist evergreen broad-leaved forest. Biodiversity Science (生物多样性), 16, 245-254. (in Chinese with English abstract)
[36] Perry GR (1978). A method of access into the crowns of emergent and canopy trees. Biotropica, 10, 155-157.
[37] Richards PW (1996). The Tropical Rain Forest―an Ecological Study. Cambidge University Press, Cambridge, UK. 135-150.
[38] Sanford WW (1968). Distribution of epiphytic orchids in semideciduous tropical forest in southern Nigeria. Journal of Ecology, 56, 697-705.
[39] Schaijes M, Malaisse F (2001). Diversity of Upper Katanga epiphytes (mainly orchids) and distribution in different vegetation units. Systematics and Geography of Plants, 71, 575-584.
[40] Schmidt G, Zotz G (2002). Inherently slow growth in two Caribbean epiphytic species: a demographic approach. Journal of Vegetation Science, 13, 527-534.
[41] Shangguan FZ (上官法智), Cheng J (程瑾), Xiong YX (熊源新), Luo YB (罗毅波) (2008). Deceptive pollination of an autumn flowering orchid Eria coronaria (Orchidaceae). Biodiversity Science (生物多样性), 16, 477-483. (in Chinese with English abstract)
[42] Shi J, Cheng J, Shangguan FZ, Luo YB, Deng ZH (2008). Study of pollination of Paphiopedilum dianthum in China. Orchideen Journal, 3, 100-105.
[43] Song XQ, Meng QW, Luo YB (2009). New records of orchids from Hainnan, China (II). Acta Botanica Yunnanica, 31, 32-34.
[44] ter Steege H, Cornelissen JHC (1989). Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica, 21, 331-339.
[45] Théry M (2001). Forest light and its influence on habitat selection. Plant Ecology, 153, 251-261.
[46] Tian HZ (田怀珍), Xing FW (邢福武) (2008). Elevational diversity patterns of orchids in Nanling National Nature Reserve, northern Guangdong Province. Biodiversity Science (生物多样性), 16, 75-82. (in Chinese with English abstract)
[47] van Pelt R (1995). Understory Tree Response to Canopy Gaps in Old-Growth Douglas-fir Forests of the Pacific Northwest. PhD dissertation, University of Washington, Seattle. 10-30.
[48] Wang BS (王伯荪) (1987). Approach to the horizontal zonation of monsoon forests. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 11, 154-157. (in Chinese with English abstract)
[49] Wang Q (汪庆), He SA (贺善安), Wu PC (吴鹏程) (1999). The role of bryophytes in biodiversity. Chinese Biodiversity (生物多样性), 7, 332-339. (in Chinese with English abstract)
[50] Well TCE, Willems JH (1991). Population Ecology of Terrestrial Orchids. SPB Academic Press, Hague. 1-15.
[51] Whittaker RH (1972). Evolution of measurement of species diversity. Taxon, 21, 213-251.
[52] Winkler M, Hietz P (2001). Population structure of three epiphytic orchids ( Lycaste aromatica, Jacquiniella leucomelana and J. teretifolia) in a Mexican humid montane forest. Selbyana, 22, 27-33.
[53] Wolf J, Gradstein S, Nadkarni N (2009). A protocol for sampling vascular epiphyte richness and abundance. Journal of Tropical Ecology, 25, 107-121.
[54] Wolf JHD, Flamenco-S A (2003). Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal of Biogeography, 30, 1689-1707.
[55] Xu HQ (徐海清), Liu WY (刘文耀) (2005). Species diversity and distribution of epiphytes in the montane moist evergreen broad-leaved forest in Ailao Mountain, Yunnan. Biodiversity Science (生物多样性), 13, 137-147. (in Chinese with English abstract)
[56] Yu SX (余世孝), Zang RG (臧润国), Jiang YX (蒋有绪) (2001). Spatial analysis species diversity in the tropical vegetations along the vertical belt at Bawangling Nature Reserve, Hainan Island. Acta Ecologica Sinica (生态学报), 21, 1438-1443. (in Chinese with English abstract)
[57] Yu WG (余文刚), Luo YB (罗毅波), Jin ZQ (金志强) (2006). Study on species diversity and priority area of wild orchids in Hainan Island. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 911-918. (in Chinese with English abstract)
[58] Zang RG (臧润国), An SQ (安树青), Tao JP (陶建平), Jiang YX (蒋有绪), Wang BS (王伯荪) (2004). Mechanism of Biodiversity Maintenance of the Tropical Forest in Hainan Island (海南岛热带林生物多样性维持机制). Science Press, Beijing. 15-41. (in Chinese)
[59] Zapfack L, Nkongmeneck A, Villiers J, Lowman M (1996). The importance of pteridophytes in the epiphytic flora of some phorophytes of the Cameroonian semi -deciduous rain forest. Selbyana, 17, 76-81.
[60] Zotz G (1998). Demography of the epiphyte orchid, Dimerandra emarginata. Journal of Tropical Ecology, 14, 725-741.
[61] Zotz G (2007). The population structure of the vascular epiphytes in a lowland forest in Panama correlates with species abundance. Journal of Tropical Ecology, 23, 337-342.
[62] Zotz G, Schultz S (2008). The vascular epiphytes of a lowland forest in Panama―species composition and spatial structure. Plant Ecology, 195, 131-141.
[63] Zotz G, Vollrath B (2003). The epiphyte vegetation of the palm Socratea exorrhiza―correlations with tree size, tree age and bryophyte cover. Journal of Tropical Ecology, 19, 81-90.
文章导航

/