收稿日期: 2007-01-05
录用日期: 2007-09-24
网络出版日期: 2008-01-30
基金资助
中国科学院知识创新工程重点项目(KZCX3-SW-356);中国科学院长春净月潭遥感站网络台站基金项目
SOYBEAN CHLOROPHYLL A CONCENTRATION ESTIMATION MODELS BASED ON WAVELET-TRANSFORMED, IN SITU COLLECTED, CANOPY HYPERSPECTRAL DATA
Received date: 2007-01-05
Accepted date: 2007-09-24
Online published: 2008-01-30
2003和2004年分别在长春市良种场和中国科学院海伦黑土生态实验站实测了大田耕作与水肥耦合作用下大豆(Glycine max)冠层高光谱反射率与叶绿素a含量数据,对光谱反射率、微分光谱与叶绿素a含量进行了相关分析;采用归一化植被指数(Normalized difference vegetation index, NDVI)、土壤调和植被指数(Soil-adjusted vegetation index, SAVI)、再归一植被指数(Renormalized difference vegetation index, RDVI)、第二修正比值植被指数(Modified second ratio index, MSRI)等建立了大豆叶绿素a反演模型;应用小波分析对采集的光谱反射率数据进行了能量系数提取,并以小波能量系数作为自变量进行了单变量与多变量回归分析,对大豆叶绿素a进行了估算。研究结果表明,大豆叶绿素a与可见光光谱反射率相关性较好,并在红光波段取得最大值(R2>0.70),但在红边处,微分光谱与大豆叶绿素a的相关性较反射率好得多,在其它波段则相反;由NDVI、SAVI、RDVI、MSR等植被指数建立的估算模型可以提高大豆叶绿素a的估算精度(R2>0.75);小波能量系数回归模型可以进一步提高大豆叶绿素a含量的估算水平,以一个特定小波能量系数作为自变量的回归模型,大豆叶绿素a回归决定系数R2高达0.78;多变量回归分析结果表明,大豆叶绿素a实测值与预测值的线性回归决定系数R2均高达0.85。以上结果表明,小波分析可以对高光谱进行特征变量提取,并可在一定程度上提高大豆生理参数反演精度。
宋开山, 张柏, 王宗明, 刘殿伟, 刘焕军 . 基于小波分析的大豆叶绿素a含量高光谱反演模型[J]. 植物生态学报, 2008 , 32(1) : 152 -160 . DOI: 10.3773/j.issn.1005-264x.2008.01.017
Aims A growing number of studies have focused on evaluating spectral indices in terms of their sensitivity to vegetation biophysical parameters. We use a regression model, based on wavelet-transformed reflectance, and vegetation indices (VI) to estimate a wide range of soybean (Glycine max) canopy reflectances to study the sensitivity of wavelet-transformed reflectance and vegetation indices to soybean chlorophyll a concentration. We modify some VI to enhance their sensitivity to variations in chlorophyll a concentration.
Methods We collected soybean canopy hyperspectral reflectance and chlorophyll a concentration data in 2003 and 2004 at two sites in the black soil belt of China. We correlated reflectance, derivative reflectance and soybean chlorophyll a concentration and regressed vegetation indices (NDVI, SAVI, RDVI and MSRI) and soybean chlorophyll a concentration. We transformed soybean canopy reflectance with wavelet analysis and applied extracted wavelet energy coefficient in a regression model for estimation of chlorophyll a concentration.
Important findings Soybean canopy reflectance shows a negative correlation with chlorophyll a concentration in the visible spectral region, while it shows a positive correlation with soybean chlorophyll a concentration in the near-infrared region. Reflectance derivative has a strong relationship with soybean chlorophyll a concentration in the blue, green and red edge spectral region, with maximum correlation coefficient in the red-edge region. Four vegetation indices have strong correlations with soybean chlorophyll a concentration, with R2 >0.75. The single variable regression model based upon wavelet-extracted reflectance energy can accurately estimate soybean chlorophyll a concentration, with R 2 about 0.75, while R 2 was 0.85 with the multivariate regression model. Our study indicated that wavelet analysis can be applied to in-situ collected hyperspectral data for soybean chlorophyll a concentration estimation with accurate prediction and in the future wavelet analysis methods should be applied to hyperspectral data for estimation of other vegetation biophysical and biochemical parameters.
[1] | Adams ML, Norvell WA, Peverly JH, Philpot WD (1993). Fluorescence and reflectance characteristics of Manganese deficient soybean leaves:effects of leaf age and choice of leaflet. Plant and Soil, 155/156, 235-238. |
[2] | Bannari A, Morin D, Bonn F, Huete AR (1995). A review of vegetation indices. Remote Sensing Review, 13, 95-120. |
[3] | Blackburn GA (1998). Spectral indices for estimating photosynthetic pigment concentrations:a test using senescent tree leaves. International Journal of Remote Sensing, 19, 657-675. |
[4] | Bruce LM, Li J (2001). Wavelet for computationally efficient hyperspectral derivative analysis. IEEE Transactions on Geosciences and Remote Sensing, 39, 1540-1546. |
[5] | Bruce LM, Koger CH, Li J (2002). Dimensionality reduction of hyperspectral data using discrete transform feature extraction. IEEE Transactions on Geosciences and Remote Sensing, 40, 2331-2338. |
[6] | Chen J, Cihlar J (1996). Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment, 55, 153-162. |
[7] | Gupta RK, Woolley JT (1971). Spectral properties of soybean leaves. Agronomy Journal, 63, 123-126. |
[8] | Huang WJ (黄文江), Wang JH (王纪华), Liu LY (刘良云), Zhao CJ (赵春江), Song XY (宋晓宇), Ma ZH (马智宏) (2004). Correlation between grain quality indicators and spectral reflectance properties of wheat canopies by using hyperspectral data from winter wheat. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 20, 203-207. (in Chinese with English abstract) |
[9] | Huete AR (1988). A soil vegetation adjusted index (SAVI). Remote Sensing of Environment, 25, 295-309. |
[10] | Jacquemoud S, Bacour C, Poilve H, Frangi JP (2000). Comparison of four radiative transfer models to simulate plant canopies reflectance:direct and inverse mode. Remote Sensing of Environment, 74, 417-481. |
[11] | Lichtenthaler HK (1998). The stress concept in plants:an introduction. Annals of the New York Academy of Sciences, 851, 187-198. |
[12] | Milton NM, Ager CM, Eiswerth BA, Power MS (1989). Arsenic- and Selenium-induced changes in spectral reflectance and morphology of soybean plants. Remote Sensing of Environment, 30, 263-269. |
[13] | Myneni RB, Hall FG, Sellers PJ (1995). The interpretation of special vegetation indexes. IEEE Transactions on Geosciences and Remote Sensing, 33, 481-486. |
[14] | Pu RL, Gong P (2004). Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping. Remote Sensing of Environment, 91, 212-224. |
[15] | Roujean JL, Breon FM (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51, 375-384. |
[16] | Rouse JW, Haas RH, Schell JA, Deering DW (1974). Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation. NASA/GSFC, Final Report, Greenbelt, MD, USA, 1-137. |
[17] | Song KS (宋开山), Zhang B (张柏), Li F (李方), Duan HT (段洪涛), Wang ZM (王宗明) (2005). Correlative analyses of hyperspectral reflectance, soybean LAI and aboveground biomass. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 21, 36-40. (in Chinese with English abstract) |
[18] | Wang D, Wilson C, Shannon M (2002). Interpretation of salinity and irrigation effects on soybean canopy reflectance in visible and near-infrared spectrum domain. International Journal of Remote Sensing, 23, 811-824. |
[19] | Wang XZ (王秀珍), Huang JF (黄敬峰), Li YM (李云梅), Shen ZQ (沈掌泉), Wang RC (王人潮) (2002). Relationships between rice agricultural parameter and hyperspectral data. Journal of Zhejiang University (Agriculture & Life Sciences Edition) (浙江大学学报 (农业与生命科学版)), 28, 283-288. (in Chinese with English abstract) |
[20] | Zhang XY (张兴义), Meng K (孟凯), Sui YY (隋跃宇) (1999). Change of stomatal resistance in soybean canopy at different nutritional level. System Sceinces and Comprehensive Studies in Agriculture (农业系统科学与综合研究), 15, 302-305. (in Chinese with English abstract) |
[21] | Zhao CJ (赵春江), Huang WJ (黄文江), Wang JH (王纪华), Yang MH (杨敏华), Xue XZ (薛绪掌) (2002). Studies on the red edge parameters of spectrum in winter wheat under different varieties, fertilizer and water treatments. Scientia Agricultura Sinica (中国农业科学), 35, 980-987. (in Chinese with English abstract) |
/
〈 |
|
〉 |