研究论文

植物光合CO2响应模型对光下(暗)呼吸速率拟合的探讨

展开
  • 1温州科技职业学院, 浙江温州 325006
    2中国科学院地理科学与资源研究所生态网络观测与模拟重点实验室, 北京 100101
    3中国科学院禹城综合试验站, 北京 100101
    4中国科学院大学, 北京 100049
    5温州大学生命与环境科学学院, 浙江温州 325035
*(E-mail: ouyz@igsnrr.ac.cn)

收稿日期: 2014-03-21

  录用日期: 2014-05-10

  网络出版日期: 2015-04-16

基金资助

国家高技术研究发展计划(863计划)——作物健康生长农艺调控技术(2013AA102903);中国科学院地理科学与资源研究所“一三五”战略科技计划项目(2012ZD004);浙江省教育厅项目(Y201327619)

Fitting mitochondrial respiration rates under light by photosynthetic CO2 response models

Expand
  • 1Wenzhou Vocational & Technical College, Wenzhou, Zhejiang 325026, China;
    2Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3Yucheng Comprehensive Experiment Station, China Academy of Sciences, Beijing 100101, China
    4University of Chinese Academy of Sciences, Beijing 100049, China
    5College of Life & Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China;

Received date: 2014-03-21

  Accepted date: 2014-05-10

  Online published: 2015-04-16

摘要

运用LI-6400便携式光合作用系统测定了不同光强(2000、1500、1000和500 μmol·m-2·s-1)和两种O2浓度(21%和2%的O2)下冬小麦(Triticum aestivum)灌浆期旗叶的CO2响应曲线, 比较了现有CO2响应模型(生化模型、直角双曲线模型和直角双曲线修正模型)拟合给出光下(暗)呼吸与测量值之间的差异。结果显示, 直角双曲线修正模型所给出的光下呼吸速率拟合值与测量值最为接近。植物光合作用对大气CO2响应(A/Ca)的拟合结果优于光合作用对胞间CO2浓度(A/Ci)的拟合。然而, 所有模型基于A/Ca拟合的光下(暗)呼吸在整体上与测量值存在显著差异(p < 0.05), 推测与现有模型没有考虑CO2浓度对光呼吸和光下暗呼吸速率的影响有关。对小麦的试验结果表明, CO2浓度对光呼吸和光下暗呼吸均有显著影响: 随着CO2浓度的增加(0-1400 μmol·mol-1), 不同光强下的表观光呼吸变化范围分别为5.035-11.670、4.222-11.650、4.330-10.999和3.263-9.094 μmol COm-2·s-1; 光下暗呼吸的变化范围分别为0.491-2.987、0.457-2.955、0.545-3.139和0.448-3.139 μmol CO2·m-2·s-1。回归分析发现, 表观光呼吸和光下暗呼吸与CO2浓度之间均存在较好的相关性。然而, 将该回归关系整合到现有模型中, 是否会优化模型, 从而提高模型对相关光合参数估算的准确性尚有待于进一步研究。

本文引用格式

康华靖, 陶月良, 权伟, 王伟, 欧阳竹 . 植物光合CO2响应模型对光下(暗)呼吸速率拟合的探讨[J]. 植物生态学报, 2014 , 38(12) : 1356 -1363 . DOI: 10.3724/SP.J.1258.2014.00130

Abstract

Aims The objective of this study was to compare the values of respiration under light derived by fitting a photosynthetic CO2 response model and measurements, in order to provide information for model optimization.

Methods Using combined gas exchange measurements and a low O2 (2% O2) method, the responses of photosynthetic rate (Pn) to CO2 at different light intensities (2000, 1500, 1000 and 500 μmol·m-2·s-1) in the flag leaves of wheat were measured. The measured data were fitted by a biochemical model, a rectangular hyperbola model and a modified rectangular hyperbola model of the photosynthetic response to intercellular CO2 concentration (A/Ci) and air CO2 concentration (A/Ca), aiming to approach the reasonability of the fitted results obtained from the models.

Important findings The sequence of fitting effect of the three CO2 response models in descending order was as follows: modified rectangular hyperbola model > rectangular hyperbola model > biochemical model. Fitted values of A/Ca curve was more reasonable than A/Ci curve, because the photorespiration and mitochondrial respiration under light (Rd) estimated by the former better matched the measured values. However, there were significant differences in the whole between the fitted and measured values. The reason could be that the effect of CO2 concentrations on Rd and apparent photorespiration (Rpa) is neglected in all the current CO2 response models. Our results showed that CO2 concentration had a marked effect on Rpa and Rd. With increasing CO2 concentration, Rpa and Rd increased first, and then decreased sharply. Take 2000 μmol·m-2·s-1 for example, Rpa varied between 5.035 and 11.670 μmol CO2·m-2·s-1, and Rd varied between 0.491 and 2.987 μmol CO2·m-2·s-1. Regression analyses indicated that Rpa and Rd were well related to CO2 concentrations at different light intensities.

参考文献

1 Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell & Environment, 24, 253-259.
2 Berry JA, Downton WJ (1982). Environmental regulation of photosynthesis. In: Govindjee ed. Photosynthesis. Academic Press, New York.
3 Cai SQ, Xu DQ (2000). Relationship between the CO2 compensation point and photorespiration in soybean leaves. Acta Phytophysiol Sinica, 26, 545-550.(in Chinese with English abstract)
3 [蔡时青, 许大全 (2000). 大豆叶片CO2补偿点和光呼吸的关系. 植物生理学报, 26, 545-550.]
4 Ethier GJ, Livingston NJ (2004). On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar- von Caemmerer-Berry leaf photosynthesis model. Plant, Cell & Environment, 27, 137-153.
5 Farquhar GD, Caemmerers S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
6 Guan XQ, Zhao SJ, Li DQ, Zhao XJ (2003). Photorespiration of C3 plant and its physiological function. Acta Botanica Boreali-Occidentalia Sinica, 23, 1849-1854.(in Chinese with English abstract)
6 [管雪强, 赵世杰, 李德全, 赵新节 (2003). C3植物光呼吸及其生理功能. 西北植物学报,23, 1849-1854.]
7 Harley PC, Sharkey TD (1991). An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynthesis Research, 27, 169-178.
8 Harley PC, Thomas RB, Reynolds JF, Strain BR (1992). Modelling photosynthesis of cotton grown in elevated CO2 . Plant,Cell & Environment, 15, 271-282.
9 Kang HJ, Tao YL, Quan W, Ouyang Z (2013). Response of photorespiration of wheat flag leaf to light intensities and CO2 concentrations. Journal of Triticeae Crops, 33, 1252-1257.(in Chinese with English abstract)
9 [康华靖, 陶月良, 权伟, 王伟, 欧阳竹 (2013). 小麦旗叶光呼吸对光强和CO2浓度的响应. 麦类作物学报,33, 1252-1257.]
10 Long SP, Bernacchi CJ (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54, 2393-2401.
11 Loreto F, Delfine S, Di-marco G (1999). Estimation of photorespiratory carbon dioxide recycling during photosynthesis. Australian Journal of Plant Physiology, 26, 733-736.
12 Loreto F, Velikova VB, Marco GDA (2001). Respiration in the light measured by 12CO2 emission in 13CO2 atmosphere in maize leaves. Australian Journal of Plant Physiology, 28, 1103-1108.
13 Peng CL, Lin ZF, Sun ZJ, Lin GZ, Chen YZ (1998). Response of rice photosynthesis to CO2 enrichment. Acta Photophysiologica Sinica, 24, 272-278.(in Chinese with English abstract)
13 [彭长连, 林植芳, 孙梓健, 林桂珠, 陈贻竹 (1998). 水稻光合作用对加富CO2的响应. 植物生理学报, 24, 272-278.]
14 von Caemmerer S, Farquhar GD (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376-387.
15 Ye ZP (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34, 727-740.(in Chinese with English abstract)
15 [叶子飘 (2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34, 727-740.]
16 Ye ZP, Yu Q (2009). A comparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2 concentrations. Chinese Journal of Ecology, 28, 2233-2238.(in Chinese with English abstract)
16 [叶子飘, 于强 (2009). 光合作用对胞间和大气CO2响应曲线的比较. 生态学杂志, 28, 2233-2238.]
17 Yin XY, Sun ZP, Struik PC, Gu JF (2011). Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. Journal of Experimental Botany, 62, 3489-3499.
文章导航

/