研究论文

模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响

展开
  • 1中国林业科学研究院亚热带林业研究所, 浙江富阳 311400
    2安顺学院, 贵州安顺 561000
    3浙江省淳安县姥山林场, 浙江淳安 311700

收稿日期: 2013-08-19

  录用日期: 2013-12-16

  网络出版日期: 2014-01-15

Effects of simulated nitrogen deposition on root exudates and phosphorus efficiency in Pinus massoniana families under low phosphorus stress

Expand
  • 1Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
    2Anshun College, Anshun, Guizhou 561000, China
    3Laoshan Forest Farm of Chun’an County of Zhejiang Province, Chun’an, Zhejiang 311700, China

Received date: 2013-08-19

  Accepted date: 2013-12-16

  Online published: 2014-01-15

摘要

近年来大气氮(N)沉降的增加, 导致森林土壤中有效N含量增加、N:P发生改变, 研究N沉降对低磷(P)胁迫下林木根系分泌和P效率的影响具有重要意义。该文以马尾松(Pinus massoniana)家系作为试验材料, 设置模拟N沉降与同质低P (介质表层与深层均缺P)、异质低P (介质表层P丰富、深层缺P)耦合的二年生盆栽实验, 系统研究了模拟N沉降对低P胁迫下马尾松根系分泌性酸性磷酸酶(APase)活性、有机酸分泌以及P效率的影响。结果表明: (1)同质低P和异质低P下, 模拟N沉降均显著提高了植株N:P化学计量比、增加了P素的相对匮乏程度, 从而诱导根系增加了APase和有机酸的分泌, 而同质低P比异质低P下增加幅度更大, 其中有机酸分泌均与马尾松生长呈正相关关系, 而APase活性与P效率相关性较小; (2)同质低P下, N沉降虽然增加了根系分泌, 但未提高马尾松P素吸收和生长量, 其原因在于, 同质低P下植株N:P过高, 因而植株对N沉降敏感性低; 在异质低P下, 植株表现为N、P共同限制, 因而对N敏感性较高, N沉降增加了根系分泌, 同时提高了N和P吸收效率、增加了生物量; (3)马尾松根系分泌对模拟N沉降的响应存在较大的家系差异。同质低P下, 家系71×20的有机酸分泌和生物量对N沉降的响应幅度较大; 异质低P下, 家系36×29、71×20和73×23对N沉降的响应幅度较大。

本文引用格式

庞丽, 张一, 周志春, 丰忠平, 储德裕 . 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J]. 植物生态学报, 2014 , 38(1) : 27 -35 . DOI: 10.3724/SP.J.1258.2014.00003

Abstract

Aims Atmospheric nitrogen (N) deposition largely increased in recent years, resulting in an increased N availability and N:P ratio in forest soils. The objective of this study was to determine the effects of simulated N deposition on P efficiency and root secreted acid phosphatase and organic acids in Pinus massoniana under low P stress.
Methods Treatments included two P conditions, i.e. homogeneous low P availability vs. heterogeneous low P availability among soil layers, in combination with two N deposition levels in a two-year pot experiment. Four full-sib progenies collected from the second-generation breeding population of P. massoniana were used.
Important findings Under both the homogeneous and heterogeneous low P conditions, N:P stoichiometric ratio in P. massonianaseedlings was significantly increased by simulated nitrogen deposition, which stimulated the amount of root acid phosphatase and organic acid secretion. The amount of root exudates was higher under the homogeneous low P condition than under the heterogeneous low P condition. The level of root secreted organic acids was significantly correlated with the growth in P. massonianaseedlings. Under the homogeneous low P condition, P acquisition efficiency and biomass in P. massonianaseedlings were not affected by simulated N deposition, mainly due to the high N:P ratios and low sensitivity to N addition; whereas under the heterogeneous low P condition, greater growth response to N addition was observed due to the higher N:P ratio. An increased root secretion of organic acids contributed to enhancement of P acquisition efficiency and growth under the high N deposition level. Significant variations among families in growth response to the simulated N deposition were observed. Under the homogeneous low P condition, seedlings in the family 71 × 20 were found to respond to the simulated N deposition with increased root organic acids and biomass. Under the heterogeneous low P condition, seedlings in the families of 36 × 29, 71 × 20, and 73 × 23 responded to the simulated N addition with increased biomass and root secretion.

[an error occurred while processing this directive]

参考文献

[1] Cao J, Zhang FS (2000). Phosphorus uptake and utilization efficiency in seedlings of different wheat genotypes as influenced by water supply at low soil phosphorus availability. Acta Phytoecologica Sinica, 24,731-735. (in Chinese with English abstract)
[1] [ 曹靖, 张福锁 (2000). 低磷条件下不同基因型小麦幼苗对磷的吸收和利用效率及水分的影响. 植物生态学报, 24,731-735.]
[2] Di CP, Yan XY (2010). Estimation of atmospheric nitrogen wet deposition in China mainland from based on N emission data. Journal of Agro-Environment Science, 29,1606-1611. (in Chinese with English abstract)
[2] [ 遆超普, 颜晓元 (2010). 基于氮排放数据的中国大陆大气氮素湿沉降量估算. 农业环境科学学报, 29,1606-1611.]
[3] Duan HY, Xu FS, Wang YH (2002). The difference of root system growth and P nutrition in the seedlings of rape cultivars with different P-efficiency. Plant Nutrition and Fertilizer Science, 8,65-69. (in Chinese with English abstract)
[3] [ 段海燕, 徐芳森, 王运华 (2002). 甘蓝型油菜不同磷效率品种苗期根系生长及磷营养的差异. 植物营养与肥料学报, 8,65-69.]
[4] Fujita Y, Robroek BJM, de Ruiter PC, Heil GW, Wassen MJ (2010). Increased N affects P uptake of eight grassland species, the role of root surface phosphatase activity. Oikos, 119,1665-1673.
[5] He JS, Wang L, Flynn DFB, Wang us stoichiometry across Chinese grassland biomes. Oecologia, 155,301-310.
[6] Li DJ, Mo JM, Fang YT (2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica, 24,876-882. (in Chinese with English abstract)
[6] [ 李德军, 莫江明, 方运霆 (2004). 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 24,876-882.]
[7] Li DJ, Mo JM, Fang YT (2005). Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Phytoecologica Sinica, 29,543-549.
[7] [ 李德军, 莫江明, 方运霆 (2005). 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响. 植物生态学报, 29,543-549.]
[8] Li QK (1985). China Red Soil. Science Press, Beijing.145-146. (in Chinese)
[8] [ 李庆逵 (1985). 中国红壤. 科学出版社, 北京.145-146.]
[9] Liang X, Liu AQ, Ma XQ, Feng LZ, Chen YL (2005). The effect of phosphorus deficiency stress on activities of acid phosphatase in different clones of Chinese fir. Acta Phytoecologica Sinica, 29,54-59. (in Chinese with English abstract)
[9] [ 梁霞, 刘爱琴, 马祥庆, 冯丽贞, 陈友力 (2005). 磷胁迫对不同杉木无性系酸性磷酸酶活性的影响. 植物生态学报, 29,54-59.]
[10] Liao H, Yan XL (2000). Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Botanica Sinica, 42,158-163. (in Chinese with English abstract)
[10] [ 廖红, 严小龙 (2000). 菜豆根构型对低磷胁迫的适应性变化及基因型差异. 植物学报, 42,158-163.]
[11] Mclachlan KD (1980). Acid phosphatase activity of intact roots and phosphorus nutrition in plants. II. Variations among wheat roots. Australian Journal of Agricultural Research, 31,441-448.
[12] Neumann G, R?mhei DV (1999). Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant and Soil, 211,121-130.
[13] Shen H, Shi WM, Wang JC, Cao ZH (2001). Study on adapta- tion mechanisms of different crops to low phosphorus stress. Plant Natrition and Fertilizen Science, 7,172-177. (in Chinese with English abstract)
[13] [ 沈宏, 施卫明, 王校常, 曹志洪 (2001). 不同作物对低磷胁迫的适应机理研究. 植物营养与肥料学报, 7,172-177.]
[14] Sun HG, Zhang FS (2002). Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots. Chinese Journal of Applied Ecology, 13,379-381. (in Chinese with English abstract)
[14] [ 孙海国, 张福锁 (2002). 缺磷条件下的小麦根系酸性磷酸酶活性研究. 应用生态学报, 13,379-381.]
[15] Wang Z, Shen J, Zhang F (2006). Cluster-root formation, carboxylate exudation and proton release of Lupinus pilosus Murr. as affected by medium pH and P deficiency. Plant and Soil, 287,247-256.
[16] Wissuwa M (2003). How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiology, 133,1947-1958.
[17] Xie YR, Zhou ZC, Liao GH, Jin GQ, Chen Y (2005). Difference of induced acid phosphate activity under low phosphorus stress of Pinus massoniana provenances. Scientia Silvae Sinicae, 41(3),58-62. (in Chinese with English abstract)
[17] [ 谢钰容, 周志春, 廖国华, 金国庆, 陈跃 (2005). 低磷胁迫下马尾松种源酸性磷酸酶活性差异. 林业科学, 41(3),58-62.]
[18] Yang Q, Zhang Y, Zhou ZC, Feng ZP (2012). Root architecture and phosphorus efficiency of different provenance Pinus massoniana under low phosphorous stress. Chinese Journal of Applied Ecology, 23,2339-2345. (in Chinese with English abstract)
[18] [ 杨青, 张一, 周志春, 丰忠平 (2012). 低磷胁迫下不同种源马尾松的根构型与磷效率. 应用生态学报, 23,2339-2345.]
[19] Yang Q, Zhang Y, Zhou ZC, Ma XH, Liu WH, Feng ZP (2011). Genetic variation in root architecture and phosphorus efficiency in response to heterogeneous phosphorus deficiency in Pinus massoniana families. Chinese Journal of Plant Ecology, 35,1226-1235. (in Chinese with English abstract)
[19] [ 杨青, 张一, 周志春, 马雪红, 刘伟宏, 丰忠平 (2011). 异质低磷胁迫下马尾松家系根构型和磷效率的遗传变异. 植物生态学报, 35,1226-1235.]
[20] Yan XL, Liao H (2007). Root Biology: Principle and Application. Science Press, Beijing. 128. (in Chinese)
[20] [ 严小龙, 廖红 (2007). 科学出版社,根系生物学: 原理与应用. 北京. 128.]
[21] Yu L, Peng XX, Yang C, Liu YH, Fan YP (2002). Determina- tion of oxalic acid in plant tissue and root exudate by reversed phase high performance liguid chromatography. Chinese Journal of Analytical Chemistry, 30,1119-1122. (in Chinese)
[21] [ 俞乐, 彭新湘, 杨崇, 刘拥海, 范燕萍 (2002). 反相高效液相色谱法测定植物组织及根分泌物中草酸. 分析化学研究简报, 30,1119-1122.]
[22] Zhao X, Yan XY, Xiong ZQ (2009). Spatial and temporal variation of inorganic nitrogen wet deposition to the Yangtze River Delta Region, China. Water, Air, and Soil Pollution, 203,277-289.
[23] Zhang Y, Zhou ZC, Yang Q (2013a). Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant and Soil, 364,93-104.
[24] Zhang Y, Zhou ZC, Yang Q (2013b). Nitrogen (N) deposition impacts seedling growth of Pinus massoniana via N, P ratio effects and the modulation of adaptive responses to low P (phosphorus). PLoS ONE, 8,e79229, doi: 10.1371/journal.pone.0079229.
[25] Zhou ZC, Xie YR, Jin GQ, Wu JF, Wu JF, Chen Y (2003). Genetic response of Pinus massoniana provenances to phosphorus supply and nutrient characteristics of their rhizosphere soil. Scientia Silvae Sinicae, 39(6),62-67. (in Chinese with English abstract)
[25] [ 周志春, 谢钰容, 金国庆, 吴吉富, 陈跃 (2003). 马尾松种源对磷肥的遗传反应及根际土壤营养差异. 林业科学, 39(6),62-67.]
文章导航

/

005-264X/bottom_cn.htm"-->