大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征
收稿日期: 2018-08-27
修回日期: 2018-12-03
网络出版日期: 2019-04-04
基金资助
国家自然科学基金(41471056);国家自然科学基金(41522301);国家自然科学基金(41730855);国家重点研发计划(2016YFA0600802)
Leaf C, N, and P concentrations and their stoichiometry in peatland plants of Da Hinggan Ling, China
Received date: 2018-08-27
Revised date: 2018-12-03
Online published: 2019-04-04
Supported by
Supported by the National Natural Science Foundation of China(41471056);Supported by the National Natural Science Foundation of China(41522301);Supported by the National Natural Science Foundation of China(41730855);the National Key R & D Program of China(2016YFA0600802)
叶片碳(C)、氮(N)、磷(P)含量及其化学计量特征为植物养分状况和元素限制性提供依据。为了解不同生活型植物叶片C、N、P化学计量特征的变化,该研究测定、分析了大兴安岭地区18个泥炭地常见的3种草本植物——白毛羊胡子草(Eriophorum vaginatum)、玉簪薹草(Carex globularis)、小叶章(Deyeuxia angustifolia), 5种落叶灌木——柴桦(Betula fruticosa)、越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea)和3种常绿灌木——杜香(Ledum palustre)、地桂(Chamaedaphne calyculata)、头花杜鹃(Rhododendron capitatum)的叶片C、N、P含量。结果表明: (1)落叶和常绿灌木叶片C、N、P含量总体高于草本植物而C:N、C:P、N:P低于草本植物, 说明不同生活型植物具有不同的养分利用策略,灌木叶片C、N、P储存高于草本植物而N、P利用效率低于草本植物; (2)小叶章和头花杜鹃叶片N:P小于10, 同时其N含量小于全球植物叶片平均N含量, 相比其他植物来说更易受N限制; (3)采样地点解释了叶片C、N、P指标变异的12.8%-40.8%, 植物种类对叶片C、N、P指标变异的解释量占9.3%-25.5%; (4)草本植物C、N、P指标的地点间变异系数高于落叶和常绿灌木, 草本植物C、N、P指标对地点因素变化的响应较灌木敏感; (5)草本植物N含量种间变异系数高于落叶和常绿灌木, 落叶灌木P含量种间变异系数高于草本植物和常绿灌木, 草本植物和落叶灌木N、P吸收的种间生理分化较常绿灌木高。
李瑞, 胡朝臣, 许士麒, 吴迪, 董玉平, 孙新超, 毛瑢, 王宪伟, 刘学炎 . 大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征[J]. 植物生态学报, 2018 , 42(12) : 1154 -1167 . DOI: 10.17521/cjpe.2018.0214
Aims Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometry can provide a basis for plant nutrient status and element limitation. Our objective was to explore variations of leaf C:N:P stoichiometry in plants of different growth forms.
Methods We analyzed leaf C, N, and P concentrations in three graminoids (Eriophorum vaginatum, Carex globularis, Deyeuxia angustifolia), five deciduous shrubs (Betula fruticosa, Salix myrtilloides, Salix rosmarinifolia, Vaccinium vitis-idaea, Vaccinium uliginosum), and three evergreen shrubs (Ledum palustre, Chamaedaphne calyculata, Rhododendron capitatum) across 18 peatland sites in the Da Hinggan Ling, northeastern China.
Important findings (1) Leaf C, N, and P concentrations were higher, and the leaf C:N, C:P, and N:P values were lower, in deciduous and evergreen shrubs than in graminoids, indicating that plants of different growth forms had different nutrient utilization strategies. Shrubs had higher C, N and P storage and lower N and P use efficiency than graminoids. (2) Leaf N:P values in Deyeuxia angustifolia and R. capitatum were less than 10, and their leaf N concentrations were lower than the global mean leaf N concentration, indicating that those species were limited by N more than other plants. (3) The sampling sites explained 12.8%-40.8% of the variations in leaf C, N, and P stoichiometry, and plant species explained 9.3%-25.5%. (4) Graminoids had greater inter-site coefficient of variance (CV) values in leaf C, N, and P variables than deciduous and evergreen shrubs, indicating greater sensitive to site factors. (4) The inter-species CV values in leaf N were greater in graminoids than in deciduous and evergreen shrubs, and the inter-species CV values in leaf P were greater in deciduous shrubs than in graminoids and evergreen shrubs, indicating greater physiological differentiation in N and P use strategies in graminoids and deciduous shrubs than in evergreen shrubs.
Key words: Da Hinggan Ling; northern peatland; plant nutrition; stoichiometry
[1] | Aerts R ( 1995). The advantages of being evergreen. Trends in Ecology & Evolution, 10, 402-407. |
[2] | Aerts R, Chapin III FS ( 2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] | Aerts R, Wallen B, Malmer N ( 1992). Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology, 80, 131-140. |
[4] | ?gren GI ( 2004). The C:N:P stoichiometry of autotrophs—?Theory and observations. Ecology Letters, 7, 185-191. |
[5] | ?gren GI, Wetterstedt J?M, Billberger MFK ( 2012). Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus. New Phytologist, 194, 953-960. |
[6] | Bai KD, Jiang DB, Wan XC ( 2013). Photosynthesis-nitrogen relationship in evergreen and deciduous tree species at different altitudes on Mao’er Mountain, Guangxi. Acta Ecologica Sinica, 33, 4930-4938. |
[6] | [ 白坤栋, 蒋得斌, 万贤崇 ( 2013). 广西猫儿山不同海拔常绿树种和落叶树种光合速率与氮的关系. 生态学报, 33, 4930-4938.] |
[7] | Bradshaw C, Kautsky U, Kumblad L ( 2012). Ecological stoichiometry and multi-element transfer in a coastal ecosystem. Ecosystems, 15, 591-603. |
[8] | Bragazza L, Parisod J, Buttler A, Bardgett RD ( 2013). Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 3, 273-277. |
[9] | Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R ( 2004). Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163, 609-616. |
[10] | Chapin III FS, Shaver GR, Kedrowski RA ( 1986). Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra. Journal of Ecology, 74, 167-195. |
[11] | Chen HM, Song CC, Shi FX, Zhang XH, Mao R ( 2017). Effects of alder expansion on plant community composition and biomass in the peatland in the Da’xingan Mountain. Chinese Journal of Applied & Environmental Biology, 23, 778-784. |
[11] | [ 陈慧敏, 宋长春, 石福习, 张新厚, 毛瑢 ( 2017). 辽东桤木扩张对大兴安岭泥炭地植物群落组成和生物量的影响. 应用与环境生物学报, 23, 778-784.] |
[12] | Du XM, Zhou ZQ, Zhang Y, Zhou L ( 2002). Discussion about rules of vegetation’s succession in north of Great Xingan mountains. Territory & Natural Resources Study, ( 2), 67-68. |
[12] | [ 杜晓明, 周志强, 张悦, 周琳 ( 2002). 大兴安岭北部植被演替规律探讨. 国土与自然资源研究, ( 2), 67-68.] |
[13] | Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH ( 1996). Organism size, life history, and N:P stoichiometry. BioScience, 46, 674-684. |
[14] | Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW ( 2000a ). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580. |
[15] | Elser JJ, Stemer RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ ( 2000b ). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550. |
[16] | Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES ( 2016). Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. Journal of Ecology, 104, 1542-1554. |
[17] | Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH ( 2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia, 172, 889-902. |
[18] | Guo DX, Wang SL, Lu GW, Dai JB, Li EY ( 1981). Division of permafrost regions in Daxiao Hinggan Ling northeast China. Journal of Glaciology & Geocryology, 3(3), 1-9. |
[18] | [ 郭东信, 王绍令, 鲁国威, 戴竞波, 李恩英 ( 1981). 东北大小兴安岭多年冻土分区. 冰川冻土, 3(3), 1-9.] |
[19] | Güsewell S ( 2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266. |
[20] | Güsewell S, Koerselman W ( 2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspective in Ecology, Evolution & Systematics, 5, 37-61. |
[21] | Hall EK, Maixner F, Franklin O, Daims H, Richter A, Battin T ( 2010). Linking microbial and ecosystem ecology using ecological stoichiometry: A synthesis of conceptual and empirical approaches. Ecosystems, 14, 261-273. |
[22] | Han WX, Fang JY, Guo DL, Zhang Y ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385. |
[23] | Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH ( 2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796. |
[24] | Han WX, Wu Y, Tang LY, Chen YH, Li LP, He JS, Fang JY ( 2009). Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Science Edition), 45, 855-860. |
[24] | [ 韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云 ( 2009). 北京及周边地区植物叶的碳氮磷元素计量特征. 北京大学学报(自然科学版), 45, 855-860.] |
[25] | He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z ( 2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122. |
[26] | He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY ( 2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland Biomes. Oecologia, 155, 301-310. |
[27] | Hessen DO, ?gren GI, Anderson TR, Elser JJ, de Ruiter PC ( 2004). Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 85, 1179-1192. |
[28] | Hobbie JE, Hobbie EA ( 2006). δ 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology, 87, 816-822. |
[29] | Hu CC, Liu XY, Lei YB, Tan YH, Zhang P, Dong YP, Liu CQ ( 2016). Foliar nitrogen and phosphorus stoichiometry of alien invasive plants and co-occurring natives in Xishuangbanna. Chinese Journal of Plant Ecology, 40, 1145-1153. |
[29] | [ 胡朝臣, 刘学炎, 类延宝, 谭运洪, 张鹏, 董玉平, 刘丛强 ( 2016). 西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征. 植物生态学报, 40, 1145-1153.] |
[30] | Hu CC, Lei YB, Tan YH, Sun XC, Xu H, Liu CQ, Liu XY ( 2018). Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China. Journal of Ecology , 107. DOI: 10.1111/1365-2745. 13008. |
[31] | Huang JJ, Wang XH ( 2003). Leaf nutrient and structural characteristics of 32 evergreen broad-leaved species. Journal of East China Normal University (Natural Science Edition), ( 1), 92-97. |
[31] | [ 黄建军, 王希华 ( 2003). 浙江天童32种常绿阔叶树叶片的营养及结构特征. 华东师范大学学报(自然科学版), ( 1), 92-97.] |
[32] | Jonasson S ( 1989). Implications of leaf longevity, leaf nutrient re-absorption and translocation for the resource economy of five evergreen plant species. Oikos, 56, 121-131. |
[33] | Kerkhoff AJ, Enquist BJ ( 2006). Ecosystem allometry: The scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9, 419-427. |
[34] | Kudo G ( 1995). Leaf traits and shoot performance of an evergreen shrub,Ledum palustre spp. decumbens, in accordance with latitudinal change. Canadian Journal of Botany, 73, 1451-1456. |
[35] | Koerselman W, Meuleman AF ( 1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[36] | Liu XY, Koba K, Koyama LA, Hobbie SE, Weiss MS, Inagaki Y, Shaver GR, Giblin AE, Hobara S, Nadelhoffer KJ, Sommerkorn M, Rastetter EB, Kling GW, Laundre JA, Yano Y, Makabe A, Yano M, Liu CQ ( 2018). Nitrate is an important nitrogen source for arctic tundra plants. Proceedings of the National Academy of Sciences of the United States of America, 115, 3398-3403. |
[37] | Mao R, Zhang XH, Song CC, Wang XW, Finnegan PM ( 2018). Plant functional group controls litter decomposition rate and its temperature sensitivity: An incubation experiment on litters from a boreal peatland in northeast China. Science of the Total Environment, 626, 678-683. |
[38] | Michelsen A, Quarmby C, Sleep D, Jonasson S ( 1998). Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots . Oecologia, 115, 406-418. |
[39] | Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE ( 2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368-19373. |
[40] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L ( 2011). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. |
[41] | Ren SJ, Yu GR, Jiang CM, Fang HJ, Sun XM ( 2012). Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the north-south transect of east China. Chinese Journal of Applied Ecology, 23, 581-586. |
[41] | [ 任书杰, 于贵瑞, 姜春明, 方华军, 孙晓敏 ( 2012). 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征. 应用生态学报, 23, 581-586.] |
[42] | Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD ( 1999). Generality of leaf trait relationships: A test across six biomes. Ecology, 80, 1955-1969. |
[43] | Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[44] | Shaver GR, Bret-Harte MS, Jones MH, Johnstone J, Gough L, Laundre J, Chapin III FS ( 2001). Species composition interacts with fertilizer to control longterm change in tundra productivity. Ecology, 82, 3163-3181. |
[45] | Small E ( 1972). Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Canadian Journal of Botany, 50, 2227-2233. |
[46] | Song CC, Wang XW, Miao YP, Wang JY, Mao R, Song YY ( 2014). Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing’an Mountains, China. Science of the Total Environment, 487, 604-610. |
[47] | Sterner RW, Elser JJ ( 2002).Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[48] | Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, Han WX, Hu HF, Fang JY, Xie ZQ ( 2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038. |
[49] | Thompson K, Parkinson JA, Band SR, Spencer RE ( 1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136, 679-689. |
[50] | Tian D, Yan ZB, Niklas KJ, Han WX, Kattge J, Reich PB, Luo YK, Chen YH, Tang ZY, Hu HF, Wright IJ, Schmid B, Fang JY ( 2017). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 5, 728-739. |
[51] | Vitousek P ( 1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572. |
[52] | Wang M, Moore TR, Talbot J, Riley JL ( 2015). The stoichiometry of carbon and nutrients in peat formation. Global Biogeochemical Cycles, 29, 113-121. |
[53] | Wieder WR, Cleveland CC, Smith WK, Todd-Brown K ( 2015). Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8, 441-447. |
[54] | Wu ZY, Hong DY ( 2010). Flora of China. Science Press, Beijing. |
[54] | [ 吴征镒, 洪德元 ( 2010). 中国植物志. 科学出版社, 北京.] |
[55] | Xu WD ( 1986). The relation between the zonal distribution of types vegetation and the climate in northeast China. Acta Phytoecologica et Geobotanica Sinica, 10, 254-263. |
[55] | [ 徐文铎 ( 1986). 中国东北主要植被类型的分布与气候的关系. 植物生态学与地植物学学报, 10, 254-263.] |
[56] | Xu XL, Wanek W, Zhou CP, Richter A, Song MH, Cao GM, Ouyang H, Kuzyakov Y ( 2014). Nutrient limitation of alpine plants: Implications from leaf N:P stoichiometry and leaf δ 15N. Journal of Plant Nutrition and Soil Science, 177, 378-387. |
[57] | Yan ZB, Tian D, Han WX, Tang ZY, Fang JY ( 2017). An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Annals of Botany, 120, 1-6. |
[58] | Yang X, Chi XL, Ji CJ, Liu HY, Ma WH, Mohhammat A, Shi ZY, Wang XP, Yu SL, Yue M, Tang ZY ( 2015). Variations of leaf N, P concentrations in shrubland biomes across northern China: Phylogeny, climate and soil. Biogeosciences, 12, 18973-18998. |
[59] | Yu LM, Wang CK, Wang XC ( 2011). Allocation of nonstructural carbohydrates for three temperate tree species in northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255. |
[59] | [ 于丽敏, 王传宽, 王兴昌 ( 2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.] |
[60] | Zeng J, Bu ZJ, Wang M, Ma JZ, Zhao HY, Li HK, Wang SZ ( 2013). Effects of nitrogen deposition on peatland: A review. Chinese Journal of Ecology, 32, 473-481. |
[60] | [ 曾竞, 卜兆君, 王猛, 马进泽, 赵红艳, 李鸿凯, 王升忠 ( 2013). 氮沉降对泥炭地影响的研究进展. 生态学杂志, 32, 473-481.] |
[61] | Zhang HY, Wu HG, Yu Q, Wang ZW, Wei CZ, Long M, Kattge J, Smith M, Han XG ( 2013). Sampling date, leaf age and root size: Implications for the study of plant C:N:P stoichiometry. PLOS ONE, 8, e60360. DOI: 10.1371/ journal.pone.0060360?. |
[62] | Zhang LX, Bai YF, Han XG ( 2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 46, 259-270. |
[63] | Zhang JH, Zhao N, Liu CC, Yang H, Li ML, Yu GR, Wilcox K, Yu Q, He NP ( 2018). C:N:P stoichiometry in China’s forests: From organs to ecosystems. Functional Ecology, 32, 50-60. |
[64] | Zhang K, Chen YL, Gao YH, Hui R, He MZ ( 2014). Stoichiometry characteristics of leaf nitrogen and phosphorus of different plant functional groups in Alashan desert region. Journal of Desert Research, 34, 1261-1267. |
[64] | [ 张珂, 陈永乐, 高艳红, 回嵘, 何明珠 ( 2014). 阿拉善荒漠典型植物功能群氮、磷化学计量特征. 中国沙漠, 34, 1261-1267.] |
[65] | Zhang SB, Zhang JK, Slik JWF, Gao KF ( 2011). Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecology & Biogeography, 21, 809-818. |
[66] | Zhang WY, Fan JW, Zhong HP, Hu ZM, Song LL, Wang N ( 2010). The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 18, 503-509. |
[66] | [ 张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁 ( 2010). 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草业学报, 18, 503-509.] |
[67] | Zhao, XF, Yang JS, Yao RJ ( 2010). Characteristics of soil salinization in mudflat of north Jiangsu province based on canonical correspondence analysis. Acta Pedologica Sinica, 47, 422-428. |
[67] | [ 赵秀芳, 杨劲松, 姚荣江 ( 2010). 基于典范对应分析的苏北滩涂土壤春季盐渍化特征研究. 土壤学报, 47, 422-428.] |
[68] | Zhou YL ( 1997). Vegetation Geography of Northeastern China. Science Press, Beijing. |
[68] | [ 周以良 ( 1997). 中国东北植被地理. 科学出版社, 北京.] |
/
〈 |
|
〉 |