研究论文

中国寒温带不同林龄白桦林碳储量及分配特征

展开
  • 东北林业大学林学院, 东北林业大学森林生态系统可持续经营教育部重点实验室, 哈尔滨 150040

收稿日期: 2019-05-28

  录用日期: 2019-10-06

  网络出版日期: 2019-12-22

基金资助

中央高校基本科研业务费专项资金项目(2572018AA02);国家自然科学基金(31770488)

Carbon storage and its allocation in Betula platyphylla forests of different ages in cold temperate zone of China

Expand
  • School of Forestry, Northeast Forestry University, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China

Received date: 2019-05-28

  Accepted date: 2019-10-06

  Online published: 2019-12-22

Supported by

the Fundamental Research Funds for the Central Universities(2572018AA02);the National Natural Science Foundation of China(31770488)

摘要

为了解中国寒温带地区不同林龄白桦林生态系统碳储量及固碳能力, 在样地调查基础上, 以大兴安岭地区25、40与61年白桦(Betula platyphylla)林生态系统为研究对象, 对其乔木层、林下地被物层(灌木层、草本层、凋落物层)、土壤层(0-100 cm)碳储量与分配特征进行调查研究。结果表明白桦林乔木层各器官碳含量在440.7-506.7 g·kg -1之间, 各器官碳含量随着林龄的增长而降低; 灌木层、草本层碳含量随林龄的增加呈先降后升的变化趋势; 凋落物层碳含量随林龄增加而降低; 土壤层(0-100 cm)碳含量随林龄增加而显著升高, 随着土层深度的增加而降低。白桦林生态系统各层次碳储量均随林龄的增加而明显升高。25、40与61年白桦林乔木层碳储量分别为11.9、19.1和34.2 t·hm -2, 各器官碳储量大小顺序表现为树干>树根>树枝>树叶, 树干碳储量分配比例随林龄增加而升高。25、40与61年白桦林生态系统碳储量分别为77.4、180.9和271.4 t·hm -2, 其中土壤层占生态系统总碳储量的81.6%、87.7%和85.9%, 是白桦林生态系统的主要碳库。随林龄增加, 白桦林年净生产力(2.0-4.4 t·hm -2·a -1)、年净固碳量(1.0-2.1 t·hm -2·a -1)均出现增长, 老龄白桦林仍具有较强的碳汇作用。

本文引用格式

魏红, 满秀玲 . 中国寒温带不同林龄白桦林碳储量及分配特征[J]. 植物生态学报, 2019 , 43(10) : 843 -852 . DOI: 10.17521/cjpe.2019.0127

Abstract

Aims The objective of this study was to estimate the carbon storage and its allocation in the Betula platyphylla forests of three different ages (25, 40, 61-year-old) in the cold temperate zone, NE China. Methods Through analyzing the field data, we estimated the carbon storage and sequestration rates of tree, understory layer (shrub layer, herb layer, litter layer) and soil layer (0-100 cm) of the 25, 40 and 61-year-old Betula platyphylla ecosystems in the north section of the Da Hinggan Ling Mountains. Important findings The results showed that the carbon content of each organ in the tree layer of the forests ranged from 440.7 to 506.7 g·kg-1, that decreased as the forest age increases. Carbon content in the shrub and herb layers decreased first and then increased as the forest aged, while that in the litter layer decreased with the increase of forest age. The carbon content in soil layer (0-100 cm) increased significantly with the forest age (p < 0.05), and decreased as soil drought intensified. The carbon storage of B. platyphylla ecosystem at all levels increased significantly with the increase of forest age. The carbon storage of tree layer in the forests of 25, 40 and 61-year-old were 11.9, 19.1 and 34.2 t·hm-2, respectively. The carbon storage of the organs follow the order of: trunk > root > branch > leaf, and the allocation ratio of trunk carbon increased as the forest aged. The carbon storage in the Betula platyphylla forest ecosystems of 25, 40 and 61-year-old were 77.4, 180.9 and 271.4 t·hm -2, respectively. Soil layer, the main carbon pool of the ecosystems, accounted for 81.6%, 87.7% and 85.9% of the total carbon storage. The annual net productivity (2.0-4.4 t·hm -2·a -1) and annual net carbon sequestration (1.0-2.1 t·hm -2·a -1) of the forests increased with the age increase of the forest, and the old-growth B. platyphylla forests hold a strong carbon sequestration capacity.

参考文献

[1] . Bradford JB, Kastendick DN (2010). Age-related patterns of forest complexity and carbon storage in pine and aspen- birch ecosystems of northern Minnesota, USA. Canadian Journal of Forest Research, 40, 401-409.
[2] . Chen HYH, Luo Y (2015). Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada’s boreal forests. Global Change Biology, 21, 3675-3684.
[3] . Ding GJ, Wang PC (2002). Study on change laws of biomass and productivity of Masson pine forest plantation II. Biomass and productivity of stand at different ages. Forest Research, 15(l), 54-60.
[3] [ 丁贵杰, 王鹏程 (2002). 马尾松人工林生物量及生产力变化规律研究II. 不同林龄生物量及生产力. 林业科学研究, 15(l), 54-60.]
[4] . Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
[5] . Fang JY, Piao SL, Zhao SQ (2001). The carbon sink: The role of the middle and high latitudes terrestrial ecosystems in the Northern Hemisphere. Acta Phytoecologica Sinica, 25, 594-602.
[5] [ 方精云, 朴世龙, 赵淑清 (2001). CO2失汇与北半球中高纬度陆地生态系统的碳汇. 植物生态学报, 25, 594-602.]
[6] . Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Büntgen U, Guo XJ, Bhatti J (2016). No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proceedings of the National Academy of Sciences of the United States of America, 113, 8406-8414.
[7] . Han YY, Huang W, Sun T, Lu B, Mao ZJ (2015). Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxing?an Mountain, China. Acta Ecologica Sinica, 35, 1460-1469.
[7] [ 韩营营, 黄唯, 孙涛, 陆彬, 毛子军 (2015). 不同林龄白桦天然次生林土壤碳通量和有机碳储量. 生态学报, 35, 1460-1469.]
[8] . Hu HQ, Luo BZ, Wei SJ, Wei SW, Wen ZM, Sun L, Luo SS, Wang LM, Ma HB (2015). Estimating biological carbon storage of five typical forest types in the Daxing?an Ling Mountains, Heilongjiang, China. Acta Ecologica Sinica, 35, 5745-5760.
[8] [ 胡海清, 罗碧珍, 魏书精, 魏书威, 文正敏, 孙龙, 罗斯生, 王立明, 马洪斌 (2015). 大兴安岭5种典型林型森林生物碳储量. 生态学报, 35, 5745-5760.]
[9] . Huang GS, Ma W, Wang XJ, Xia CZ, Dang YF (2014). Carbon storage measurement of larch forest in northeastern China. Scientia Silvae Sinicae, 50(6), 167-174.
[9] [ 黄国胜, 马炜, 王雪军, 夏朝宗, 党永锋 (2014). 东北地区落叶松林碳储量估算. 林业科学, 50(6), 167-174.]
[10] . Lan SB (2018). Comparison, selection and its progeny test of natural population of Betula platyphylla in northern China. Journal of Beihua University (Natural Science), 19, 582-587.
[10] [ 兰士波 (2018). 中国北方白桦自然群体比较选择及子代测定. 北华大学学报(自然科学版), 19, 582-587.]
[11] . Li JQ, Ju H, Zhang QL (2010). Study on the Betula platyphylia natural forest biomass model. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 31(1), 76-82.
[11] [ 李建强, 菊花, 张秋良 (2010). 白桦天然林生物量模型的研究. 内蒙古农业大学学报(自然科学版), 31(1), 76-82.]
[12] . Li NN, Mu CC, Zheng T, Zhang Y, Cheng JY, Cao WL (2015). Effect of site types on carbon storage of natural white birch forest ecosystem in Changbai Mountains, Northeast China. Forest Research, 28, 618-626.
[12] [ 李娜娜, 牟长城, 郑瞳, 张毅, 程家友, 曹万亮 (2015). 立地类型对长白山天然白桦林生态系统碳储量的影响. 林业科学研究, 28, 618-626.]
[13] . Li WY, Man XL, Zhang YW (2009). Soil properties and water conservation function of Betula platyphylla secondary forest with different stand ages. Science of Soil and Water Conservation, 7(5), 63-69.
[13] [ 李文影, 满秀玲, 张阳武 (2009). 不同林龄白桦次生林土壤特性及其水源涵养功能. 中国水土保持科学, 7(5), 63-69.]
[14] . Li XD, Yi MJ, Son Y, Park PS, Lee KH, Son YM, Kim RH, Jeong MJ (2011). Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology,54, 33-42.
[15] . Liu LX, Wang J, Yang XJ, Liu CZ, Wang XW (2018). Forest plant community and soil organic carbon density in Da Xing?an Mountains. Ecology and Environmental Sciences, 27, 1610-1616.
[15] [ 刘林馨, 王健, 杨晓杰, 刘传照, 王秀文 (2018). 大兴安岭不同森林群落植被多样性对土壤有机碳密度的影响. 生态环境学报, 27, 1610-1616.]
[16] . Liu SN, Zhou T, Wei LY, Shu Y (2012). The spatial distribution of forest carbon sinks and sources in China. Chinese Science Bulletin, 57, 943-950, 987.
[16] [ 刘双娜, 周涛, 魏林艳, 舒阳 (2012). 中国森林植被的碳汇/源空间分布格局. 科学通报, 57, 943-950, 987.]
[17] . Liu X, Man XL, Tian YH (2015). Hydro-chemical and nutrient importing characteristics of precipitation in secondary Betula platyphylla forests in northern Great Xing’an Mountains, northeastern China. Journal of Beijing Forestry University, 37(8), 83-89.
[17] [ 刘茜, 满秀玲, 田野宏 (2015). 白桦次生林降雨水化学及养分输入特征. 北京林业大学学报, 37(8), 83-89.]
[18] . Lu BQ, Zang SY, Sun L (2019). The effects of freezing- thawing process on soil active organic carbon and nitrogen mineralization in Daxing?anling Mountain forests. Acta Scientiae Circumstantiae, 39, 1664-1672.
[18] [ 鲁博权, 臧淑英, 孙丽 (2019). 冻融作用对大兴安岭典型森林土壤活性有机碳和氮矿化的影响. 环境科学学报, 39, 1664-1672.]
[19] . Lü CQ, Sun SC (2004). A review on the distribution patterns of carbon density in terrestrial ecosystems. Acta Phytoecologica Sinica, 28, 692-703.
[19] [ 吕超群, 孙书存 (2004). 陆地生态系统碳密度格局研究概述. 植物生态学报, 28, 692-703.]
[20] . Ma FF, Zhang CM, Li YZ (2016). Density and distribution of organic carbon of Larix kaempferi plantation ecosystem in Subtropics. Journal of Central South University of Forestry & Technology, 36(1), 94-100.
[20] [ 马丰丰, 张灿明, 李有志 (2016). 亚热带日本落叶松人工林生态系统碳密度及其分配特征. 中南林业科技大学学报, 36(1), 94-100.]
[21] . Ma L (2012). Xiaoxing’anling Birch Natural Forest Ecosystem Carbon Storage Research. Master degree dissertation, Northeast Forestry University, Harbin.
[21] [ 马林 (2012). 小兴安岭白桦天然林生态系统碳储量的研究. 硕士学位论文, 东北林业大学, 哈尔滨.]
[22] . Ming AG, Jia HY, Tian ZW, Tao Y, Lu LH, Cai DX, Shi ZM, Wang WX (2014). Characteristics of carbon storage and its allocation in Erythrophleum fordii plantations with different ages. Chinese Journal of Applied Ecology, 25, 940-946.
[22] [ 明安刚, 贾宏炎, 田祖为, 陶怡, 卢立华, 蔡道雄, 史作民, 王卫霞 (2014). 不同林龄格木人工林碳储量及其分配特征. 应用生态学报, 25, 940-946.]
[23] . Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, David McGuire A, Piao SL, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
[24] . Pregitzer KS, Euskirchen ES (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10, 2052-2077.
[25] . Qi G, Wang QL, Wang XC, Qi L, Wang QW, Ye YJ, Dai LM (2011). Vegetation carbon storage in Larix gmelinii plantations in Great Xing’an Mountains. Chinese Journal of Applied Ecology, 22, 273-279.
[25] [ 齐光, 王庆礼, 王新闯, 齐麟, 王庆伟, 叶雨静, 代力民 (2011). 大兴安岭林区兴安落叶松人工林植被碳贮量. 应用生态学报, 22, 273-279.]
[26] . Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM (2006). Temperature influences carbon accumulation in moist tropical forests. Ecology, 87, 76-87.
[27] . Shu Y, Zhou M, Zhao PW, Zeng N, Shi L, Wang ZX, Wang D, Ge P, Zhang B (2016). Carbon storage and its distribution characteristics in the planted forest of Larix principis in southern Daxinganling. Ecology and Environmental Sciences, 25, 1604-1611.
[27] [ 舒洋, 周梅, 赵鹏武, 曾楠, 石亮, 王梓璇, 王鼎, 葛鹏, 张波 (2016). 大兴安岭南段华北落叶松人工林碳储量及分配特征研究. 生态环境学报, 25, 1604-1611.]
[28] . van Huysen TL, Perakis SS, Harmon ME (2016). Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant and Soil, 406, 1-14.
[29] . Wang Z, Liu GB, Xu MX, Zhang J, Wang Y, Tang L (2012). Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau, China. Catena, 99, 26-33.
[30] . Wu XR, Zhang JB, Tian Y, Li P (2014). Provincial agricultural carbon emissions in China: Calculation, performance change and influencing factors. Resources Science, 36, 129-138.
[30] [ 吴贤荣, 张俊飚, 田云, 李鹏 (2014). 中国省域农业碳排放: 测算、效率变动及影响因素研究——基于DEA-Malmquist指数分解方法与Tobit模型运用. 资源科学, 36, 129-138.]
[31] . Xiang YX, Chen SK, Pan P, Ouyang XZ, Ning JK, Li Q (2019). Stoichiometric traits of C, N and P of leaf-litter-?soil system of Pinus massoniana forest. Journal of Forest and Environment, 39(2), 120-126.
[31] [ 向云西, 陈胜魁, 潘萍, 欧阳勋志, 宁金魁, 李琦 (2019). 马尾松叶片-凋落物-土壤的碳氮磷化学计量特征. 森林与环境学报, 39(2), 120-126.]
[32] . Xie XL, Sun B, Zhou HZ, Li ZP (2004). Soil carbon stocks and their influencing factors under native vegetations in China. Acta Pedologica Sinica, 41, 687-699.
[32] [ 解宪丽, 孙波, 周慧珍, 李忠佩 (2004). 不同植被下中国土壤有机碳的储量与影响因子. 土壤学报, 41, 687-699.]
[33] . Yang LL, Wang YH, Wen SZ, Liu YH, Du M, Hao J, Li ZH (2015). Carbon and nitrogen storage and distribution in four forest ecosystems in Liupan Mountains, northwestern China. Acta Ecologica Sinica, 35, 5215-5227.
[33] [ 杨丽丽, 王彦辉, 文仕知, 刘延惠, 杜敏, 郝佳, 李振华 (2015). 六盘山四种森林生态系统的碳氮储量、组成及分布特征. 生态学报, 35, 5215-5227.]
[34] . Zhang Y (2015). Effect of Site Types on Carbon Storage of Natural White Birch Forest Ecosystem in Xiaoxing’an Mountains of China. Master degree dissertation, Northeast Forestry University, Harbin.
[34] [ 张毅 (2015). 立地类型对小兴安岭天然白桦次生林生态系统碳储量的影响. 硕士学位论文, 东北林业大学, 哈尔滨.]
[35] . Zhang Y, Mu CC, Zheng T, Li NN (2015). Ecosystem carbon storage of natural secondary birch forests in Xiaoxing’an Mountains of China. Journal of Beijing Forestry University, 37, 38-47.
[35] [ 张毅, 牟长城, 郑曈, 李娜娜 (2015). 小兴安岭天然白桦林生态系统碳储量. 北京林业大学学报, 37, 38-47.]
[36] . Zhang ZJ, Zhang XQ, Wang YH, Luo YJ, Li ZY, Cao L (2009). Carbon storage and distribution of Pinus massoniana forest ecosystem in Tieshanping of Chongqing. Scientia Silvae Sinicae, 45(5), 49-53.
[36] [ 张治军, 张小全, 王彦辉, 罗云建, 李志勇, 曹磊 (2009). 重庆铁山坪马尾松林生态系统碳贮量及其分配特征. 林业科学, 45(5), 49-53.]
[37] . Zheng T, Mu CC, Zhang Y, Li NN (2016). Effects of site condition on ecosystem carbon storage in a natural Betula platyphylla forest in the Zhangguangcai Mountains, China. Acta Ecologica Sinica, 36, 6284-6294.
[37] [ 郑瞳, 牟长城, 张毅, 李娜娜 (2016). 立地类型对张广才岭天然白桦林生态系统碳储量的影响. 生态学报, 36, 6284-6294.]
[38] . Zhou XL, Cai Q, Xiong XY, Fang WJ, Zhu JX, Zhu JL, Fang JY, Ji CJ (2018). Ecosystem carbon stock and within-?system distribution in successional Fagus lucida forests in Mt. Yueliang, Guizhou, China. Chinese Journal of Plant Ecology, 42, 703-712.
[38] [ 周序力, 蔡琼, 熊心雨, 方文静, 朱剑霄, 朱江玲, 方精云, 吉成均 (2018). 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局. 植物生态学报, 42, 703-712.]
[39] . Zhou Y, Hartemink AE, Shi Z, Liang ZZ, Lu YL (2019). Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 647, 1230-1238.
[40] . Zhu JX, Hu HF, Tao SL, Chi XL, Li P, Jiang L, Ji CJ, Zhu JL, Tang ZY, Pan YD, Birdsey RA, He XH, Fang JY (2017 a). Carbon stocks and changes of dead organic matter in China’s forests. Nature Communications, 8, 151-160.
[41] . Zhu JX, Zhou XL, Fang WJ, Xiong XY, Zhu B, Ji CJ, Fang JY (2017b) . Plant debris and its contribution to ecosystem carbon storage in successional Larix gmelinii forests in northeastern China. Forests, 8, 191-200.
文章导航

/