研究论文

中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素

展开
  • 1北京林业大学水土保持学院, 北京 100083
    2宁夏盐池毛乌素沙地生态系统国家定位观测研究站, 北京 100083
    3北京林业大学水土保持国家林业和草原局重点实验室, 北京 100083

收稿日期: 2019-11-04

  录用日期: 2020-02-02

  网络出版日期: 2020-03-26

基金资助

国家自然科学基金(31670708);国家自然科学基金(31670710);国家自然科学基金(31901366);中央高校基本科研业务费专项资金(2015ZCQ-SB-02)

Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China

Expand
  • 1School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    2Yanchi Ecology Research Station of Mau Us Desert, Beijing 100083, China
    3Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

Received date: 2019-11-04

  Accepted date: 2020-02-02

  Online published: 2020-03-26

Supported by

National Natural Science Foundation of China(31670708);National Natural Science Foundation of China(31670710);National Natural Science Foundation of China(31901366);Fundamental Research Funds for the Central Universities(2015ZCQ-SB-02)

摘要

土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林Q10季节和年际变化规律的研究, 但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足, 已有结果缺乏一致结论。该研究通过整合已发表论文, 构建了中国森林生态系统年尺度Q10数据集, 共包含399条记录、5种森林类型(落叶阔叶林(DBF)、落叶针叶林(DNF)、常绿阔叶林(EBF)、常绿针叶林(ENF)、混交林(MF))。分析了不同森林类型Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示, 1) Q10介于1.09到6.24之间, 平均值(±标准误差)为2.37 (± 0.04), 且在不同森林类型之间无显著差异; 2)当考虑所有森林类型时, Q10随纬度、海拔、土壤有机碳含量(SOC)和土壤全氮含量(TN)的增加而增大, 随经度、年平均气温(MAT)、平均年降水量(MAP)的增加而减小。气候(MATMAP)和土壤(SOCTN)因素间存在相互作用, 共同解释了33%的Q10空间变异, 其中MATSOCQ10空间变异的主要驱动因素; 3)不同类型森林Q10对气候和土壤因素的响应存在差异。在DNF中Q10MAP的增加而减小, 而其他类型森林中Q10MAP无显著相关性; 在EBF、DBF、ENF中Q10TN的增加而增大, 但Q10TN的敏感性在EBF中最高, 在ENF中最低。这些结果表明, 尽管Q10有一定的集中分布趋势, 但仍有较大范围的空间变异, 在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和Q10对环境因素的响应随森林类型而变化, 在气候变化情景下, 不同森林类型间Q10可能发生分异。因此, 未来的碳循环-气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。

本文引用格式

郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山 . 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020 , 44(6) : 687 -698 . DOI: 10.17521/cjpe.2019.0300

Abstract

Aims Our objective was to determine the spatial variation of the temperature sensitivity of soil respiration (Q10) and it’s controlling factors in forest ecosystems across China.
Methods Based on published papers, the field measurement data of soil respiration were collected to build the dataset of annual Q10 in forest ecosystems across China. Further, the spatial variation and the drivers of Q10 in different forest types were analyzed.
Important findings The results showed that 1) Q10 ranges from 1.09 to 6.24, with a mean value (± standard error) of 2.37 (± 0.04) and no significant difference among different forest types; 2) When all forest types were considered, Q10 increased with increasing latitude, altitude, soil organic carbon content (SOC) and soil total nitrogen content (TN), but decreased with increasing longitude, mean annual temperature (MAT) and mean annual precipitation (MAP). Climate (MAT, MAP) and soil (SOC, TN) factors together explained 32.8% variations in Q10. MAT and SOC were considered as the primary factors driving the spatial variation of Q10. 3) Q10 of different forest types responded differently to climate and soil factors. Q10 decreased with the increase of MAP in the deciduous needleleaf forest (DNF), while Q10 showed no significant correlation with MAP in other forest types. Q10 increased with the increase of TN in evergreen broadleaved forest (EBF), deciduous broadleaved forest (DBF), evergreen needleleaf forest (ENF), and the sensitivity of Q10 to TN was the highest in EBF and the lowest in ENF. Although Q10 showed concentrated distribution trend, more attention should be paid to the large range of variation in future C budget studies. The primary driving factors and the response to environmental factors of Q10 varied among forest types. Under the scenario of future climate change, Q10 may vary divergently among different forest types. Therefore, the divergent responses of key parameters of carbon cycle in different forest types to climate change should also be considered in future carbon-climate models.

参考文献

[1] Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149, 1791-1799.
[2] Bao SD (2000). Soil Agro-Chemistrical Analysis. 3rd ed. Chinese Agriculture Press, Beijing.
[2] [ 鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.]
[3] Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560, 80-83.
[4] Bond-Lamberty B, Thomson A (2010). Temperature-associated increases in the global soil respiration record. Nature, 464, 579-582.
[5] Canadell JG, Raupach MR (2008). Managing forests for climate change mitigation. Science, 320, 1456-1457.
[6] CDIAC (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory) (2016). Updated fossil fuel CO2 emissions estimates. http://cdiac.essdive.lbl.gov/. Cited: 2017-02-12.
[7] Chen H, Tian HQ (2005). Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? Journal of Integrative Plant Biology, 47, 1288-1302.
[8] Curiel Yuste J, Janssens IA, Carrara A, Ceulemans R (2004). Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 10, 161-169.
[9] Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227.
[10] Davidson EA, Janssens IA, Luo YQ (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154-164.
[11] Davidson EA, Savage K, Verchot LV, Navarro R (2002). Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113, 21-37.
[12] Fang C, Smith P, Moncrieff JB, Smith JU (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59.
[13] Feng JG, Wang JS, Song YJ, Zhu B (2018). Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China. Biogeosciences, 15, 5329-5341.
[14] Fierer N, Colman BP, Schimel JP, Jackson RB (2006). Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Global Biogeochemical Cycles, 20, GB3026. DOI: 10.1029/2005GB002644.
[15] Foereid B, Ward DS, Mahowald N, Paterson E, Lehmann J (2014). The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes. Earth System Dynamics, 5, 211-221.
[16] G?rden?s AI, ?gren GI, Bird JA, Clarholm M, Hallin S, Ineson P, K?tterer T, Knicker H, Nilsson SI, N?sholm T, Oglej S, Paustian K, Persson T, Stendahl J (2011). Knowledge gaps in soil carbon and nitrogen interactions: from molecular to global scale. Soil Biology & Biochemistry, 43, 702-717.
[17] Geng Y, Wang YH, Yang K, Wang SP, Zeng H, Baumann F, Kuehn P, Scholten T, He JS (2012). Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLOS ONE, 7, e34968. DOI: 10.1371/journal.pone.0031968.
[18] Giardina CP, Ryan MG (2000). Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404, 858-861.
[19] Jia X, Zha XT, Wu B, Zhang YQ, Chen WJ, Wang XP, Yu HQ, He GM (2013). Temperature response of soil respiration in a Chinese pine plantation: hysteresis and seasonal vs. diel Q10. PLOS ONE, 8, e57858. DOI: 10.1371/journal.pone.0057858.
[20] Klimek B, Choczyński Μ, Juszkiewicz A (2009). Scots pine (Pinus sylvestris L.) roots and soil moisture did not affect soil thermal sensitivity. European Journal of Soil Biology, 45, 442-447.
[21] Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo Y, Sala OE, Smith MD (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 21, 2624-2633.
[22] Lellei-Kovács E, Kovács-Láng E, Botta-Dukát Z, Kalapos T, Emmett B, Beier C (2011). Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. European Journal of Soil Biology, 47, 247-255.
[23] Lenton TM, Huntingford C (2003). Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Global Change Biology, 9, 1333-1352.
[24] Li JQ, Nie M, Pendall E, Reich PB, Pei JM, Noh NJ, Zhu T, Li B, Fang CM (2019). Biogeographic variation in temperature sensitivity of decomposition in forest soils. Global Change Biology, 26, 1873-1885.
[25] Li JQ, Pei JM, Pendall E, Fang CM, Nie M (2020). Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biology & Biochemistry, 141, 107675. DOI: 10.1016/j.soilbio.2019.107675.
[26] Liu Y, He NP, Zhu JX, Li X, Yu GR, Niu SL, Sun XM, Wen XF (2017). Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23, 3393-3402.
[27] Liu YC, Liu SR, Wan SQ, Wang JX, Luan JW, Wang H (2016). Differential responses of soil respiration to soil warming and experimental throughfall reduction in a transitional oak forest in central China. Agricultural and Forest Meteorology, 226-227, 186-198.
[28] Lu F, Hu HF, Sun WJ, Lu F, Hu H, Sun W, Zhu J, Liu G, Zou W, Zhang Q, Shi P, Liu X, Wu X, Zhang L, Wei X, Dai L, Zhang K, Sun Y, Xue S, Zhang W, Xiong D, Deng L, Liu B, Zhou L, Zhang C, Zheng X, Cao J, Huang Y, He N, Zhou G, Bai Y, Xie Z, Tang Z, Wu B, Fang J, Liu G, Yu G (2018). Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proceeding of the National Academy of Science of the United States of America, 115, 4039-4044.
[29] Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne S, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Montagnani L, Richardson AD (2010). Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329, 838-840.
[30] Moinet GYK, Hunt JE, Kirschbaum MUF, Morcom CP, Midwood AJ, Millard P (2018). The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biology & Biochemistry, 116, 333-339.
[31] Olsson BA, Hansson K, Persson T, Beuker E, Helmisaari HS (2012). Heterotrophic respiration and nitrogen mineralisation in soils of Norway spruce, scots pine and silver birch stands in contrasting climates. Forest Ecology & Management, 269, 197-205.
[32] Peng SS, Piao SL, Wang T, Sun JY, Shen ZH (2009). Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology & Biochemistry, 41, 1008-1014.
[33] Peterson ME, Daniel RM, Danson MJ, Eisenthal R (2007). The dependence of enzyme activity on temperature: determination and validation of parameters. Biochemical Journal, 402, 331-337.
[34] Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7, 811-841.
[35] Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore III B, V?r?smarty CJ (1991). Potential net primary productivity in south America: application of a global modle. Ecological Applications, 1, 399-429.
[36] Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005). Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters, 8, 811-818.
[37] Reichstein M, Tenhunen J, Roupsar O, Ourcival J, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002). Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Global Change Biology, 8, 999-1017.
[38] Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
[39] Schermelleh-Engel K, Moosbrugger H, Müller H (2003). Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8, 23-74.
[40] Schipper LA, Hobbs JK, Rutledge S, Arcus VL (2014). Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Global Change Biology, 20, 3578-3586.
[41] Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
[42] Song XZ, Peng CH, Zhao ZY, Zhang ZT, Guo BH, Wang WF, Jiang H, Zhu Q (2014). Quantification of soil respiration in forest ecosystems across China. Atmospheric Environment, 94, 546-551.
[43] State Forestry and Grassland Administration (2014). Chinese Forest Resources Report, the Eighth National Forest Resources Inventory. China Forestry Publishing House, Beijing.
[43] [ 国家林业和草原局 (2014). 中国森林资源报告, 第八次全国森林资源清查. 中国林业出版社, 北京.]
[44] State Forestry and Grassland Administration (2019). How is the forest coverage rate investigated? http://www.forestry.gov.cn/. Cited: 2019-06-17.
[44] [ 国家林业和草原局 (2019). 森林覆盖率是怎么调查出来的? http://www.forestry.gov.cn/. 2019-06-17引用.]
[45] Steinbauer MJ, Grytnes JA, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E, Bjorkman AD, Breiner FT, Burg S, Czortek P, Dawes MA, Delimat A, Dullinger S, Erschbamer B, Felde VA, Fernández-Arberas O, Fossheim KF, Gómez-García D, Georges D, Grindrud ET, Haider S, Haugum SV, Henriksen H, Herreros MJ, Jaroszewicz B, Jaroszynska F, Kanka R, Kapfer J, Klanderud K, Kühn I, Lamprecht A, Matteodo M, di Cella UM, Normand S, Odland A, Olsen SL, Palacio S, Petey M, Piscová V, Sedlakova B, Steinbauer K, St?ckli V, Svenning JC, Teppa G, Theurillat JP, Vittoz P, Woodin SJ, Zimmermann NE, Wipf S (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556, 231-234.
[46] Van’t Hoff JH (1898). Lectures on Theoretical and Physical Chemistry. Part Ι: Chemical Dynamics. Edward Arnold, London.
[47] Wang B, Zha TS, Jia X, Gong JN, Bourque C, Feng W, Tian Y, Wu B, Zhang YQ, Pelto H (2017). Soil water regulates the control of photosynthesis on diel hysteresis between soil respiration and temperature in a desert shrubland. Biogeosciences, 14, 3899-3908.
[48] Wang B, Zha TS, Jia X, Wu B, Zhang YQ, Qin SG (2014). Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences, 11, 259-268.
[49] Wang LP, Wen M, Song JX, Dou XY (2016). Spatial-temporal Variation of Aridity Index during 1961-2014 in China. Journal of Natural Resources, 31, 1488-1498.
[49] [ 王利平, 文明, 宋进喜, 窦馨逸 (2016). 1961-2014年中国干燥度指数的时空变化研究. 自然资源学报, 31, 1488-1498.]
[50] Wang QK, Liu SG, Tian P (2018a). Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Global Change Biology, 24, 2841-2849.
[51] Wang X, Piao SL, Ciais P, Janssens IA, Reichstein M, Peng SS, Wang T (2010). Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biology & Biochemistry, 42, 1728-1734.
[52] Wang YH, Song C, Yu LF, Mi ZR, Wang SP, Zeng H, Fang CM, Li JY, He JS (2018b). Convergence in temperature sensitivity of soil respiration: evidence from the Tibetan alpine grasslands. Soil Biology & Biochemistry, 122, 50-59.
[53] Xu ZF, Tang SS, Xiong L, Yang WQ, Yin HJ, Tu LH, Wu FZ, Chen LH, Tan B (2015). Temperature sensitivity of soil respiration in China’s forest ecosystems: patterns and controls. Applied Soil Ecology, 93, 105-110.
[54] Yan T, Song HH, Wang ZQ, Teramoto M, Wang JS, Liang NS, Ma C, Sun ZZ, Xi Y, Li LL, Peng SS (2019). Temperature sensitivity of soil respiration across multiple time scales in a temperate plantation forest. The Science of the Total Environment, 688, 479-485.
[55] Yvon-Durocher G, Caffrey JM, Cescatti A, Cescatti A, Dossena M, Giorgio PD, Gasol JM, Montoya JM, Pumpanen J, Staehr PA, Trimmer M, Woodward G, Allen AP (2012). Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature, 487, 472-476.
[56] Zhao JX, Li RC, Li X, Tian LX (2017). Environmental controls on soil respiration in alpine meadow along a large altitudinal gradient on the central Tibetan Plateau. Catena, 159, 84-92.
[57] Zheng TL, Zhu JL, Wang SP, Fang JY (2016). When will China achieve its carbon emission peak? National Science Review, 3, 8-12.
[58] Zheng Z, Yu GR, Fu YL, Wang YS, Sun XM, Wang YH (2009). Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: a trans-China based case study. Soil Biology & Biochemistry, 41, 1531-1540.
[59] Zhou T, Shi PJ, Hui DF, Luo YQ (2009). Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback. Journal of Geophysical Research, 114, 271-274.
文章导航

/